Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 1026 | 34.80% | 52 | 35.14% |
Miquel Raynal | 567 | 19.23% | 11 | 7.43% |
Thomas Gleixner | 232 | 7.87% | 10 | 6.76% |
David Woodhouse | 229 | 7.77% | 4 | 2.70% |
Sascha Hauer | 182 | 6.17% | 2 | 1.35% |
Brian Norris | 125 | 4.24% | 10 | 6.76% |
Huang Shijie | 84 | 2.85% | 8 | 5.41% |
Masahiro Yamada | 82 | 2.78% | 5 | 3.38% |
Linus Torvalds (pre-git) | 66 | 2.24% | 2 | 1.35% |
Artem B. Bityutskiy | 56 | 1.90% | 7 | 4.73% |
Thomas Petazzoni | 43 | 1.46% | 2 | 1.35% |
Alexey Korolev | 27 | 0.92% | 1 | 0.68% |
Gupta Pekon | 26 | 0.88% | 1 | 0.68% |
David Mosberger-Tang | 22 | 0.75% | 1 | 0.68% |
Janusz Krzysztofik | 21 | 0.71% | 1 | 0.68% |
Abhishek Sahu | 18 | 0.61% | 1 | 0.68% |
Rafał Miłecki | 14 | 0.47% | 1 | 0.68% |
Maxim Levitsky | 13 | 0.44% | 2 | 1.35% |
Uwe Kleine-König | 12 | 0.41% | 1 | 0.68% |
Lothar Waßmann | 11 | 0.37% | 1 | 0.68% |
Richard Weinberger | 9 | 0.31% | 1 | 0.68% |
Sneha Narnakaje | 8 | 0.27% | 2 | 1.35% |
Stefan Agner | 7 | 0.24% | 2 | 1.35% |
Jeff Westfahl | 7 | 0.24% | 1 | 0.68% |
Alessandro Rubini | 7 | 0.24% | 2 | 1.35% |
Mike Dunn | 7 | 0.24% | 2 | 1.35% |
Jean-Louis Thekekara | 7 | 0.24% | 1 | 0.68% |
Zach Brown | 6 | 0.20% | 1 | 0.68% |
Scott Wood | 5 | 0.17% | 1 | 0.68% |
Ben Dooks | 4 | 0.14% | 1 | 0.68% |
Florian Fainelli | 4 | 0.14% | 1 | 0.68% |
Mauro Carvalho Chehab | 4 | 0.14% | 1 | 0.68% |
Ivan Djelic | 4 | 0.14% | 1 | 0.68% |
Kamal Dasu | 3 | 0.10% | 1 | 0.68% |
Matthieu CASTET | 2 | 0.07% | 1 | 0.68% |
Josh Wu | 2 | 0.07% | 1 | 0.68% |
Geert Uytterhoeven | 2 | 0.07% | 1 | 0.68% |
David A. Marlin | 1 | 0.03% | 1 | 0.68% |
Randy Dunlap | 1 | 0.03% | 1 | 0.68% |
Adrian Hunter | 1 | 0.03% | 1 | 0.68% |
Sebastian Andrzej Siewior | 1 | 0.03% | 1 | 0.68% |
Total | 2948 | 148 |
/* * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> * Steven J. Hill <sjhill@realitydiluted.com> * Thomas Gleixner <tglx@linutronix.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Info: * Contains standard defines and IDs for NAND flash devices * * Changelog: * See git changelog. */ #ifndef __LINUX_MTD_RAWNAND_H #define __LINUX_MTD_RAWNAND_H #include <linux/wait.h> #include <linux/spinlock.h> #include <linux/mtd/mtd.h> #include <linux/mtd/flashchip.h> #include <linux/mtd/bbm.h> #include <linux/mtd/jedec.h> #include <linux/mtd/onfi.h> #include <linux/of.h> #include <linux/types.h> struct nand_chip; /* The maximum number of NAND chips in an array */ #define NAND_MAX_CHIPS 8 /* * Constants for hardware specific CLE/ALE/NCE function * * These are bits which can be or'ed to set/clear multiple * bits in one go. */ /* Select the chip by setting nCE to low */ #define NAND_NCE 0x01 /* Select the command latch by setting CLE to high */ #define NAND_CLE 0x02 /* Select the address latch by setting ALE to high */ #define NAND_ALE 0x04 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) #define NAND_CTRL_CHANGE 0x80 /* * Standard NAND flash commands */ #define NAND_CMD_READ0 0 #define NAND_CMD_READ1 1 #define NAND_CMD_RNDOUT 5 #define NAND_CMD_PAGEPROG 0x10 #define NAND_CMD_READOOB 0x50 #define NAND_CMD_ERASE1 0x60 #define NAND_CMD_STATUS 0x70 #define NAND_CMD_SEQIN 0x80 #define NAND_CMD_RNDIN 0x85 #define NAND_CMD_READID 0x90 #define NAND_CMD_ERASE2 0xd0 #define NAND_CMD_PARAM 0xec #define NAND_CMD_GET_FEATURES 0xee #define NAND_CMD_SET_FEATURES 0xef #define NAND_CMD_RESET 0xff /* Extended commands for large page devices */ #define NAND_CMD_READSTART 0x30 #define NAND_CMD_RNDOUTSTART 0xE0 #define NAND_CMD_CACHEDPROG 0x15 #define NAND_CMD_NONE -1 /* Status bits */ #define NAND_STATUS_FAIL 0x01 #define NAND_STATUS_FAIL_N1 0x02 #define NAND_STATUS_TRUE_READY 0x20 #define NAND_STATUS_READY 0x40 #define NAND_STATUS_WP 0x80 #define NAND_DATA_IFACE_CHECK_ONLY -1 /* * Constants for ECC_MODES */ typedef enum { NAND_ECC_NONE, NAND_ECC_SOFT, NAND_ECC_HW, NAND_ECC_HW_SYNDROME, NAND_ECC_HW_OOB_FIRST, NAND_ECC_ON_DIE, } nand_ecc_modes_t; enum nand_ecc_algo { NAND_ECC_UNKNOWN, NAND_ECC_HAMMING, NAND_ECC_BCH, NAND_ECC_RS, }; /* * Constants for Hardware ECC */ /* Reset Hardware ECC for read */ #define NAND_ECC_READ 0 /* Reset Hardware ECC for write */ #define NAND_ECC_WRITE 1 /* Enable Hardware ECC before syndrome is read back from flash */ #define NAND_ECC_READSYN 2 /* * Enable generic NAND 'page erased' check. This check is only done when * ecc.correct() returns -EBADMSG. * Set this flag if your implementation does not fix bitflips in erased * pages and you want to rely on the default implementation. */ #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) #define NAND_ECC_MAXIMIZE BIT(1) /* * When using software implementation of Hamming, we can specify which byte * ordering should be used. */ #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) /* * Option constants for bizarre disfunctionality and real * features. */ /* Buswidth is 16 bit */ #define NAND_BUSWIDTH_16 0x00000002 /* Chip has cache program function */ #define NAND_CACHEPRG 0x00000008 /* * Chip requires ready check on read (for auto-incremented sequential read). * True only for small page devices; large page devices do not support * autoincrement. */ #define NAND_NEED_READRDY 0x00000100 /* Chip does not allow subpage writes */ #define NAND_NO_SUBPAGE_WRITE 0x00000200 /* Device is one of 'new' xD cards that expose fake nand command set */ #define NAND_BROKEN_XD 0x00000400 /* Device behaves just like nand, but is readonly */ #define NAND_ROM 0x00000800 /* Device supports subpage reads */ #define NAND_SUBPAGE_READ 0x00001000 /* * Some MLC NANDs need data scrambling to limit bitflips caused by repeated * patterns. */ #define NAND_NEED_SCRAMBLING 0x00002000 /* Device needs 3rd row address cycle */ #define NAND_ROW_ADDR_3 0x00004000 /* Options valid for Samsung large page devices */ #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG /* Macros to identify the above */ #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) /* Non chip related options */ /* This option skips the bbt scan during initialization. */ #define NAND_SKIP_BBTSCAN 0x00010000 /* Chip may not exist, so silence any errors in scan */ #define NAND_SCAN_SILENT_NODEV 0x00040000 /* * Autodetect nand buswidth with readid/onfi. * This suppose the driver will configure the hardware in 8 bits mode * when calling nand_scan_ident, and update its configuration * before calling nand_scan_tail. */ #define NAND_BUSWIDTH_AUTO 0x00080000 /* * This option could be defined by controller drivers to protect against * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers */ #define NAND_USE_BOUNCE_BUFFER 0x00100000 /* * In case your controller is implementing ->legacy.cmd_ctrl() and is relying * on the default ->cmdfunc() implementation, you may want to let the core * handle the tCCS delay which is required when a column change (RNDIN or * RNDOUT) is requested. * If your controller already takes care of this delay, you don't need to set * this flag. */ #define NAND_WAIT_TCCS 0x00200000 /* * Whether the NAND chip is a boot medium. Drivers might use this information * to select ECC algorithms supported by the boot ROM or similar restrictions. */ #define NAND_IS_BOOT_MEDIUM 0x00400000 /* * Do not try to tweak the timings at runtime. This is needed when the * controller initializes the timings on itself or when it relies on * configuration done by the bootloader. */ #define NAND_KEEP_TIMINGS 0x00800000 /* Cell info constants */ #define NAND_CI_CHIPNR_MSK 0x03 #define NAND_CI_CELLTYPE_MSK 0x0C #define NAND_CI_CELLTYPE_SHIFT 2 /** * struct nand_parameters - NAND generic parameters from the parameter page * @model: Model name * @supports_set_get_features: The NAND chip supports setting/getting features * @set_feature_list: Bitmap of features that can be set * @get_feature_list: Bitmap of features that can be get * @onfi: ONFI specific parameters */ struct nand_parameters { /* Generic parameters */ const char *model; bool supports_set_get_features; DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); /* ONFI parameters */ struct onfi_params *onfi; }; /* The maximum expected count of bytes in the NAND ID sequence */ #define NAND_MAX_ID_LEN 8 /** * struct nand_id - NAND id structure * @data: buffer containing the id bytes. * @len: ID length. */ struct nand_id { u8 data[NAND_MAX_ID_LEN]; int len; }; /** * struct nand_ecc_step_info - ECC step information of ECC engine * @stepsize: data bytes per ECC step * @strengths: array of supported strengths * @nstrengths: number of supported strengths */ struct nand_ecc_step_info { int stepsize; const int *strengths; int nstrengths; }; /** * struct nand_ecc_caps - capability of ECC engine * @stepinfos: array of ECC step information * @nstepinfos: number of ECC step information * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step */ struct nand_ecc_caps { const struct nand_ecc_step_info *stepinfos; int nstepinfos; int (*calc_ecc_bytes)(int step_size, int strength); }; /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ static const int __name##_strengths[] = { __VA_ARGS__ }; \ static const struct nand_ecc_step_info __name##_stepinfo = { \ .stepsize = __step, \ .strengths = __name##_strengths, \ .nstrengths = ARRAY_SIZE(__name##_strengths), \ }; \ static const struct nand_ecc_caps __name = { \ .stepinfos = &__name##_stepinfo, \ .nstepinfos = 1, \ .calc_ecc_bytes = __calc, \ } /** * struct nand_ecc_ctrl - Control structure for ECC * @mode: ECC mode * @algo: ECC algorithm * @steps: number of ECC steps per page * @size: data bytes per ECC step * @bytes: ECC bytes per step * @strength: max number of correctible bits per ECC step * @total: total number of ECC bytes per page * @prepad: padding information for syndrome based ECC generators * @postpad: padding information for syndrome based ECC generators * @options: ECC specific options (see NAND_ECC_XXX flags defined above) * @priv: pointer to private ECC control data * @calc_buf: buffer for calculated ECC, size is oobsize. * @code_buf: buffer for ECC read from flash, size is oobsize. * @hwctl: function to control hardware ECC generator. Must only * be provided if an hardware ECC is available * @calculate: function for ECC calculation or readback from ECC hardware * @correct: function for ECC correction, matching to ECC generator (sw/hw). * Should return a positive number representing the number of * corrected bitflips, -EBADMSG if the number of bitflips exceed * ECC strength, or any other error code if the error is not * directly related to correction. * If -EBADMSG is returned the input buffers should be left * untouched. * @read_page_raw: function to read a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and always return contiguous in-band and * out-of-band data even if they're not stored * contiguously on the NAND chip (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @write_page_raw: function to write a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and consider the passed data as contiguous * in-band and out-of-band data. ECC controller is * responsible for doing the appropriate transformations * to adapt to its specific layout (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @read_page: function to read a page according to the ECC generator * requirements; returns maximum number of bitflips corrected in * any single ECC step, -EIO hw error * @read_subpage: function to read parts of the page covered by ECC; * returns same as read_page() * @write_subpage: function to write parts of the page covered by ECC. * @write_page: function to write a page according to the ECC generator * requirements. * @write_oob_raw: function to write chip OOB data without ECC * @read_oob_raw: function to read chip OOB data without ECC * @read_oob: function to read chip OOB data * @write_oob: function to write chip OOB data */ struct nand_ecc_ctrl { nand_ecc_modes_t mode; enum nand_ecc_algo algo; int steps; int size; int bytes; int total; int strength; int prepad; int postpad; unsigned int options; void *priv; u8 *calc_buf; u8 *code_buf; void (*hwctl)(struct nand_chip *chip, int mode); int (*calculate)(struct nand_chip *chip, const uint8_t *dat, uint8_t *ecc_code); int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc); int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*read_page)(struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*read_subpage)(struct nand_chip *chip, uint32_t offs, uint32_t len, uint8_t *buf, int page); int (*write_subpage)(struct nand_chip *chip, uint32_t offset, uint32_t data_len, const uint8_t *data_buf, int oob_required, int page); int (*write_page)(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*write_oob_raw)(struct nand_chip *chip, int page); int (*read_oob_raw)(struct nand_chip *chip, int page); int (*read_oob)(struct nand_chip *chip, int page); int (*write_oob)(struct nand_chip *chip, int page); }; /** * struct nand_sdr_timings - SDR NAND chip timings * * This struct defines the timing requirements of a SDR NAND chip. * These information can be found in every NAND datasheets and the timings * meaning are described in the ONFI specifications: * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing * Parameters) * * All these timings are expressed in picoseconds. * * @tBERS_max: Block erase time * @tCCS_min: Change column setup time * @tPROG_max: Page program time * @tR_max: Page read time * @tALH_min: ALE hold time * @tADL_min: ALE to data loading time * @tALS_min: ALE setup time * @tAR_min: ALE to RE# delay * @tCEA_max: CE# access time * @tCEH_min: CE# high hold time * @tCH_min: CE# hold time * @tCHZ_max: CE# high to output hi-Z * @tCLH_min: CLE hold time * @tCLR_min: CLE to RE# delay * @tCLS_min: CLE setup time * @tCOH_min: CE# high to output hold * @tCS_min: CE# setup time * @tDH_min: Data hold time * @tDS_min: Data setup time * @tFEAT_max: Busy time for Set Features and Get Features * @tIR_min: Output hi-Z to RE# low * @tITC_max: Interface and Timing Mode Change time * @tRC_min: RE# cycle time * @tREA_max: RE# access time * @tREH_min: RE# high hold time * @tRHOH_min: RE# high to output hold * @tRHW_min: RE# high to WE# low * @tRHZ_max: RE# high to output hi-Z * @tRLOH_min: RE# low to output hold * @tRP_min: RE# pulse width * @tRR_min: Ready to RE# low (data only) * @tRST_max: Device reset time, measured from the falling edge of R/B# to the * rising edge of R/B#. * @tWB_max: WE# high to SR[6] low * @tWC_min: WE# cycle time * @tWH_min: WE# high hold time * @tWHR_min: WE# high to RE# low * @tWP_min: WE# pulse width * @tWW_min: WP# transition to WE# low */ struct nand_sdr_timings { u64 tBERS_max; u32 tCCS_min; u64 tPROG_max; u64 tR_max; u32 tALH_min; u32 tADL_min; u32 tALS_min; u32 tAR_min; u32 tCEA_max; u32 tCEH_min; u32 tCH_min; u32 tCHZ_max; u32 tCLH_min; u32 tCLR_min; u32 tCLS_min; u32 tCOH_min; u32 tCS_min; u32 tDH_min; u32 tDS_min; u32 tFEAT_max; u32 tIR_min; u32 tITC_max; u32 tRC_min; u32 tREA_max; u32 tREH_min; u32 tRHOH_min; u32 tRHW_min; u32 tRHZ_max; u32 tRLOH_min; u32 tRP_min; u32 tRR_min; u64 tRST_max; u32 tWB_max; u32 tWC_min; u32 tWH_min; u32 tWHR_min; u32 tWP_min; u32 tWW_min; }; /** * enum nand_data_interface_type - NAND interface timing type * @NAND_SDR_IFACE: Single Data Rate interface */ enum nand_data_interface_type { NAND_SDR_IFACE, }; /** * struct nand_data_interface - NAND interface timing * @type: type of the timing * @timings: The timing, type according to @type * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. */ struct nand_data_interface { enum nand_data_interface_type type; union { struct nand_sdr_timings sdr; } timings; }; /** * nand_get_sdr_timings - get SDR timing from data interface * @conf: The data interface */ static inline const struct nand_sdr_timings * nand_get_sdr_timings(const struct nand_data_interface *conf) { if (conf->type != NAND_SDR_IFACE) return ERR_PTR(-EINVAL); return &conf->timings.sdr; } /** * struct nand_op_cmd_instr - Definition of a command instruction * @opcode: the command to issue in one cycle */ struct nand_op_cmd_instr { u8 opcode; }; /** * struct nand_op_addr_instr - Definition of an address instruction * @naddrs: length of the @addrs array * @addrs: array containing the address cycles to issue */ struct nand_op_addr_instr { unsigned int naddrs; const u8 *addrs; }; /** * struct nand_op_data_instr - Definition of a data instruction * @len: number of data bytes to move * @buf: buffer to fill * @buf.in: buffer to fill when reading from the NAND chip * @buf.out: buffer to read from when writing to the NAND chip * @force_8bit: force 8-bit access * * Please note that "in" and "out" are inverted from the ONFI specification * and are from the controller perspective, so a "in" is a read from the NAND * chip while a "out" is a write to the NAND chip. */ struct nand_op_data_instr { unsigned int len; union { void *in; const void *out; } buf; bool force_8bit; }; /** * struct nand_op_waitrdy_instr - Definition of a wait ready instruction * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms */ struct nand_op_waitrdy_instr { unsigned int timeout_ms; }; /** * enum nand_op_instr_type - Definition of all instruction types * @NAND_OP_CMD_INSTR: command instruction * @NAND_OP_ADDR_INSTR: address instruction * @NAND_OP_DATA_IN_INSTR: data in instruction * @NAND_OP_DATA_OUT_INSTR: data out instruction * @NAND_OP_WAITRDY_INSTR: wait ready instruction */ enum nand_op_instr_type { NAND_OP_CMD_INSTR, NAND_OP_ADDR_INSTR, NAND_OP_DATA_IN_INSTR, NAND_OP_DATA_OUT_INSTR, NAND_OP_WAITRDY_INSTR, }; /** * struct nand_op_instr - Instruction object * @type: the instruction type * @ctx: extra data associated to the instruction. You'll have to use the * appropriate element depending on @type * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR * or %NAND_OP_DATA_OUT_INSTR * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR * @delay_ns: delay the controller should apply after the instruction has been * issued on the bus. Most modern controllers have internal timings * control logic, and in this case, the controller driver can ignore * this field. */ struct nand_op_instr { enum nand_op_instr_type type; union { struct nand_op_cmd_instr cmd; struct nand_op_addr_instr addr; struct nand_op_data_instr data; struct nand_op_waitrdy_instr waitrdy; } ctx; unsigned int delay_ns; }; /* * Special handling must be done for the WAITRDY timeout parameter as it usually * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or * tBERS (during an erase) which all of them are u64 values that cannot be * divided by usual kernel macros and must be handled with the special * DIV_ROUND_UP_ULL() macro. * * Cast to type of dividend is needed here to guarantee that the result won't * be an unsigned long long when the dividend is an unsigned long (or smaller), * which is what the compiler does when it sees ternary operator with 2 * different return types (picks the largest type to make sure there's no * loss). */ #define __DIVIDE(dividend, divisor) ({ \ (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ DIV_ROUND_UP(dividend, divisor) : \ DIV_ROUND_UP_ULL(dividend, divisor)); \ }) #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) #define NAND_OP_CMD(id, ns) \ { \ .type = NAND_OP_CMD_INSTR, \ .ctx.cmd.opcode = id, \ .delay_ns = ns, \ } #define NAND_OP_ADDR(ncycles, cycles, ns) \ { \ .type = NAND_OP_ADDR_INSTR, \ .ctx.addr = { \ .naddrs = ncycles, \ .addrs = cycles, \ }, \ .delay_ns = ns, \ } #define NAND_OP_DATA_IN(l, b, ns) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .ctx.data = { \ .len = l, \ .buf.in = b, \ .force_8bit = false, \ }, \ .delay_ns = ns, \ } #define NAND_OP_DATA_OUT(l, b, ns) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .ctx.data = { \ .len = l, \ .buf.out = b, \ .force_8bit = false, \ }, \ .delay_ns = ns, \ } #define NAND_OP_8BIT_DATA_IN(l, b, ns) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .ctx.data = { \ .len = l, \ .buf.in = b, \ .force_8bit = true, \ }, \ .delay_ns = ns, \ } #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .ctx.data = { \ .len = l, \ .buf.out = b, \ .force_8bit = true, \ }, \ .delay_ns = ns, \ } #define NAND_OP_WAIT_RDY(tout_ms, ns) \ { \ .type = NAND_OP_WAITRDY_INSTR, \ .ctx.waitrdy.timeout_ms = tout_ms, \ .delay_ns = ns, \ } /** * struct nand_subop - a sub operation * @instrs: array of instructions * @ninstrs: length of the @instrs array * @first_instr_start_off: offset to start from for the first instruction * of the sub-operation * @last_instr_end_off: offset to end at (excluded) for the last instruction * of the sub-operation * * Both @first_instr_start_off and @last_instr_end_off only apply to data or * address instructions. * * When an operation cannot be handled as is by the NAND controller, it will * be split by the parser into sub-operations which will be passed to the * controller driver. */ struct nand_subop { const struct nand_op_instr *instrs; unsigned int ninstrs; unsigned int first_instr_start_off; unsigned int last_instr_end_off; }; unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, unsigned int op_id); unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, unsigned int op_id); unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, unsigned int op_id); unsigned int nand_subop_get_data_len(const struct nand_subop *subop, unsigned int op_id); /** * struct nand_op_parser_addr_constraints - Constraints for address instructions * @maxcycles: maximum number of address cycles the controller can issue in a * single step */ struct nand_op_parser_addr_constraints { unsigned int maxcycles; }; /** * struct nand_op_parser_data_constraints - Constraints for data instructions * @maxlen: maximum data length that the controller can handle in a single step */ struct nand_op_parser_data_constraints { unsigned int maxlen; }; /** * struct nand_op_parser_pattern_elem - One element of a pattern * @type: the instructuction type * @optional: whether this element of the pattern is optional or mandatory * @ctx: address or data constraint * @ctx.addr: address constraint (number of cycles) * @ctx.data: data constraint (data length) */ struct nand_op_parser_pattern_elem { enum nand_op_instr_type type; bool optional; union { struct nand_op_parser_addr_constraints addr; struct nand_op_parser_data_constraints data; } ctx; }; #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ { \ .type = NAND_OP_CMD_INSTR, \ .optional = _opt, \ } #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ { \ .type = NAND_OP_ADDR_INSTR, \ .optional = _opt, \ .ctx.addr.maxcycles = _maxcycles, \ } #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .optional = _opt, \ .ctx.data.maxlen = _maxlen, \ } #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .optional = _opt, \ .ctx.data.maxlen = _maxlen, \ } #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ { \ .type = NAND_OP_WAITRDY_INSTR, \ .optional = _opt, \ } /** * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor * @elems: array of pattern elements * @nelems: number of pattern elements in @elems array * @exec: the function that will issue a sub-operation * * A pattern is a list of elements, each element reprensenting one instruction * with its constraints. The pattern itself is used by the core to match NAND * chip operation with NAND controller operations. * Once a match between a NAND controller operation pattern and a NAND chip * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() * hook is called so that the controller driver can issue the operation on the * bus. * * Controller drivers should declare as many patterns as they support and pass * this list of patterns (created with the help of the following macro) to * the nand_op_parser_exec_op() helper. */ struct nand_op_parser_pattern { const struct nand_op_parser_pattern_elem *elems; unsigned int nelems; int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); }; #define NAND_OP_PARSER_PATTERN(_exec, ...) \ { \ .exec = _exec, \ .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ sizeof(struct nand_op_parser_pattern_elem), \ } /** * struct nand_op_parser - NAND controller operation parser descriptor * @patterns: array of supported patterns * @npatterns: length of the @patterns array * * The parser descriptor is just an array of supported patterns which will be * iterated by nand_op_parser_exec_op() everytime it tries to execute an * NAND operation (or tries to determine if a specific operation is supported). * * It is worth mentioning that patterns will be tested in their declaration * order, and the first match will be taken, so it's important to order patterns * appropriately so that simple/inefficient patterns are placed at the end of * the list. Usually, this is where you put single instruction patterns. */ struct nand_op_parser { const struct nand_op_parser_pattern *patterns; unsigned int npatterns; }; #define NAND_OP_PARSER(...) \ { \ .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ sizeof(struct nand_op_parser_pattern), \ } /** * struct nand_operation - NAND operation descriptor * @cs: the CS line to select for this NAND operation * @instrs: array of instructions to execute * @ninstrs: length of the @instrs array * * The actual operation structure that will be passed to chip->exec_op(). */ struct nand_operation { unsigned int cs; const struct nand_op_instr *instrs; unsigned int ninstrs; }; #define NAND_OPERATION(_cs, _instrs) \ { \ .cs = _cs, \ .instrs = _instrs, \ .ninstrs = ARRAY_SIZE(_instrs), \ } int nand_op_parser_exec_op(struct nand_chip *chip, const struct nand_op_parser *parser, const struct nand_operation *op, bool check_only); /** * struct nand_controller_ops - Controller operations * * @attach_chip: this method is called after the NAND detection phase after * flash ID and MTD fields such as erase size, page size and OOB * size have been set up. ECC requirements are available if * provided by the NAND chip or device tree. Typically used to * choose the appropriate ECC configuration and allocate * associated resources. * This hook is optional. * @detach_chip: free all resources allocated/claimed in * nand_controller_ops->attach_chip(). * This hook is optional. * @exec_op: controller specific method to execute NAND operations. * This method replaces chip->legacy.cmdfunc(), * chip->legacy.{read,write}_{buf,byte,word}(), * chip->legacy.dev_ready() and chip->legacy.waifunc(). * @setup_data_interface: setup the data interface and timing. If * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this * means the configuration should not be applied but * only checked. * This hook is optional. */ struct nand_controller_ops { int (*attach_chip)(struct nand_chip *chip); void (*detach_chip)(struct nand_chip *chip); int (*exec_op)(struct nand_chip *chip, const struct nand_operation *op, bool check_only); int (*setup_data_interface)(struct nand_chip *chip, int chipnr, const struct nand_data_interface *conf); }; /** * struct nand_controller - Structure used to describe a NAND controller * * @lock: protection lock * @active: the mtd device which holds the controller currently * @wq: wait queue to sleep on if a NAND operation is in * progress used instead of the per chip wait queue * when a hw controller is available. * @ops: NAND controller operations. */ struct nand_controller { spinlock_t lock; struct nand_chip *active; wait_queue_head_t wq; const struct nand_controller_ops *ops; }; static inline void nand_controller_init(struct nand_controller *nfc) { nfc->active = NULL; spin_lock_init(&nfc->lock); init_waitqueue_head(&nfc->wq); } /** * struct nand_legacy - NAND chip legacy fields/hooks * @IO_ADDR_R: address to read the 8 I/O lines of the flash device * @IO_ADDR_W: address to write the 8 I/O lines of the flash device * @select_chip: select/deselect a specific target/die * @read_byte: read one byte from the chip * @write_byte: write a single byte to the chip on the low 8 I/O lines * @write_buf: write data from the buffer to the chip * @read_buf: read data from the chip into the buffer * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used * to write command and address * @cmdfunc: hardware specific function for writing commands to the chip. * @dev_ready: hardware specific function for accessing device ready/busy line. * If set to NULL no access to ready/busy is available and the * ready/busy information is read from the chip status register. * @waitfunc: hardware specific function for wait on ready. * @block_bad: check if a block is bad, using OOB markers * @block_markbad: mark a block bad * @erase: erase function * @set_features: set the NAND chip features * @get_features: get the NAND chip features * @chip_delay: chip dependent delay for transferring data from array to read * regs (tR). * @dummy_controller: dummy controller implementation for drivers that can * only control a single chip * * If you look at this structure you're already wrong. These fields/hooks are * all deprecated. */ struct nand_legacy { void __iomem *IO_ADDR_R; void __iomem *IO_ADDR_W; void (*select_chip)(struct nand_chip *chip, int cs); u8 (*read_byte)(struct nand_chip *chip); void (*write_byte)(struct nand_chip *chip, u8 byte); void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, int page_addr); int (*dev_ready)(struct nand_chip *chip); int (*waitfunc)(struct nand_chip *chip); int (*block_bad)(struct nand_chip *chip, loff_t ofs); int (*block_markbad)(struct nand_chip *chip, loff_t ofs); int (*erase)(struct nand_chip *chip, int page); int (*set_features)(struct nand_chip *chip, int feature_addr, u8 *subfeature_para); int (*get_features)(struct nand_chip *chip, int feature_addr, u8 *subfeature_para); int chip_delay; struct nand_controller dummy_controller; }; /** * struct nand_chip - NAND Private Flash Chip Data * @mtd: MTD device registered to the MTD framework * @legacy: All legacy fields/hooks. If you develop a new driver, * don't even try to use any of these fields/hooks, and if * you're modifying an existing driver that is using those * fields/hooks, you should consider reworking the driver * avoid using them. * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for * setting the read-retry mode. Mostly needed for MLC NAND. * @ecc: [BOARDSPECIFIC] ECC control structure * @buf_align: minimum buffer alignment required by a platform * @state: [INTERN] the current state of the NAND device * @oob_poi: "poison value buffer," used for laying out OOB data * before writing * @page_shift: [INTERN] number of address bits in a page (column * address bits). * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry * @chip_shift: [INTERN] number of address bits in one chip * @options: [BOARDSPECIFIC] various chip options. They can partly * be set to inform nand_scan about special functionality. * See the defines for further explanation. * @bbt_options: [INTERN] bad block specific options. All options used * here must come from bbm.h. By default, these options * will be copied to the appropriate nand_bbt_descr's. * @badblockpos: [INTERN] position of the bad block marker in the oob * area. * @badblockbits: [INTERN] minimum number of set bits in a good block's * bad block marker position; i.e., BBM == 11110111b is * not bad when badblockbits == 7 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC. * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet. * Minimum amount of bit errors per @ecc_step_ds guaranteed * to be correctable. If unknown, set to zero. * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, * also from the datasheet. It is the recommended ECC step * size, if known; if unknown, set to zero. * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is * set to the actually used ONFI mode if the chip is * ONFI compliant or deduced from the datasheet if * the NAND chip is not ONFI compliant. * @numchips: [INTERN] number of physical chips * @chipsize: [INTERN] the size of one chip for multichip arrays * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize). * @pagebuf: [INTERN] holds the pagenumber which is currently in * data_buf. * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID * @parameters: [INTERN] holds generic parameters under an easily * readable form. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a * this nand device will encounter their life times. * @blocks_per_die: [INTERN] The number of PEBs in a die * @data_interface: [INTERN] NAND interface timing information * @cur_cs: currently selected target. -1 means no target selected, * otherwise we should always have cur_cs >= 0 && * cur_cs < numchips. NAND Controller drivers should not * modify this value, but they're allowed to read it. * @read_retries: [INTERN] the number of read retry modes supported * @bbt: [INTERN] bad block table pointer * @bbt_td: [REPLACEABLE] bad block table descriptor for flash * lookup. * @bbt_md: [REPLACEABLE] bad block table mirror descriptor * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial * bad block scan. * @controller: [REPLACEABLE] a pointer to a hardware controller * structure which is shared among multiple independent * devices. * @priv: [OPTIONAL] pointer to private chip data * @manufacturer: [INTERN] Contains manufacturer information * @manufacturer.desc: [INTERN] Contains manufacturer's description * @manufacturer.priv: [INTERN] Contains manufacturer private information */ struct nand_chip { struct mtd_info mtd; struct nand_legacy legacy; int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); unsigned int options; unsigned int bbt_options; int page_shift; int phys_erase_shift; int bbt_erase_shift; int chip_shift; int numchips; uint64_t chipsize; int pagemask; u8 *data_buf; int pagebuf; unsigned int pagebuf_bitflips; int subpagesize; uint8_t bits_per_cell; uint16_t ecc_strength_ds; uint16_t ecc_step_ds; int onfi_timing_mode_default; int badblockpos; int badblockbits; struct nand_id id; struct nand_parameters parameters; u16 max_bb_per_die; u32 blocks_per_die; struct nand_data_interface data_interface; int cur_cs; int read_retries; flstate_t state; uint8_t *oob_poi; struct nand_controller *controller; struct nand_ecc_ctrl ecc; unsigned long buf_align; uint8_t *bbt; struct nand_bbt_descr *bbt_td; struct nand_bbt_descr *bbt_md; struct nand_bbt_descr *badblock_pattern; void *priv; struct { const struct nand_manufacturer *desc; void *priv; } manufacturer; }; extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; static inline void nand_set_flash_node(struct nand_chip *chip, struct device_node *np) { mtd_set_of_node(&chip->mtd, np); } static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) { return mtd_get_of_node(&chip->mtd); } static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) { return container_of(mtd, struct nand_chip, mtd); } static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) { return &chip->mtd; } static inline void *nand_get_controller_data(struct nand_chip *chip) { return chip->priv; } static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) { chip->priv = priv; } static inline void nand_set_manufacturer_data(struct nand_chip *chip, void *priv) { chip->manufacturer.priv = priv; } static inline void *nand_get_manufacturer_data(struct nand_chip *chip) { return chip->manufacturer.priv; } /* * A helper for defining older NAND chips where the second ID byte fully * defined the chip, including the geometry (chip size, eraseblock size, page * size). All these chips have 512 bytes NAND page size. */ #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } /* * A helper for defining newer chips which report their page size and * eraseblock size via the extended ID bytes. * * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the * device ID now only represented a particular total chip size (and voltage, * buswidth), and the page size, eraseblock size, and OOB size could vary while * using the same device ID. */ #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ .options = (opts) } #define NAND_ECC_INFO(_strength, _step) \ { .strength_ds = (_strength), .step_ds = (_step) } #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) #define NAND_ECC_STEP(type) ((type)->ecc.step_ds) /** * struct nand_flash_dev - NAND Flash Device ID Structure * @name: a human-readable name of the NAND chip * @dev_id: the device ID (the second byte of the full chip ID array) * @mfr_id: manufecturer ID part of the full chip ID array (refers the same * memory address as @id[0]) * @dev_id: device ID part of the full chip ID array (refers the same memory * address as @id[1]) * @id: full device ID array * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as * well as the eraseblock size) is determined from the extended NAND * chip ID array) * @chipsize: total chip size in MiB * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) * @options: stores various chip bit options * @id_len: The valid length of the @id. * @oobsize: OOB size * @ecc: ECC correctability and step information from the datasheet. * @ecc.strength_ds: The ECC correctability from the datasheet, same as the * @ecc_strength_ds in nand_chip{}. * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the * @ecc_step_ds in nand_chip{}, also from the datasheet. * For example, the "4bit ECC for each 512Byte" can be set with * NAND_ECC_INFO(4, 512). * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND * reset. Should be deduced from timings described * in the datasheet. * */ struct nand_flash_dev { char *name; union { struct { uint8_t mfr_id; uint8_t dev_id; }; uint8_t id[NAND_MAX_ID_LEN]; }; unsigned int pagesize; unsigned int chipsize; unsigned int erasesize; unsigned int options; uint16_t id_len; uint16_t oobsize; struct { uint16_t strength_ds; uint16_t step_ds; } ecc; int onfi_timing_mode_default; }; int nand_create_bbt(struct nand_chip *chip); /* * Check if it is a SLC nand. * The !nand_is_slc() can be used to check the MLC/TLC nand chips. * We do not distinguish the MLC and TLC now. */ static inline bool nand_is_slc(struct nand_chip *chip) { WARN(chip->bits_per_cell == 0, "chip->bits_per_cell is used uninitialized\n"); return chip->bits_per_cell == 1; } /** * Check if the opcode's address should be sent only on the lower 8 bits * @command: opcode to check */ static inline int nand_opcode_8bits(unsigned int command) { switch (command) { case NAND_CMD_READID: case NAND_CMD_PARAM: case NAND_CMD_GET_FEATURES: case NAND_CMD_SET_FEATURES: return 1; default: break; } return 0; } int nand_check_erased_ecc_chunk(void *data, int datalen, void *ecc, int ecclen, void *extraoob, int extraooblen, int threshold); int nand_ecc_choose_conf(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail); /* Default write_oob implementation */ int nand_write_oob_std(struct nand_chip *chip, int page); /* Default read_oob implementation */ int nand_read_oob_std(struct nand_chip *chip, int page); /* Stub used by drivers that do not support GET/SET FEATURES operations */ int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, u8 *subfeature_param); /* Default read_page_raw implementation */ int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page); /* Default write_page_raw implementation */ int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); /* Reset and initialize a NAND device */ int nand_reset(struct nand_chip *chip, int chipnr); /* NAND operation helpers */ int nand_reset_op(struct nand_chip *chip); int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, unsigned int len); int nand_status_op(struct nand_chip *chip, u8 *status); int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); int nand_read_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len); int nand_change_read_column_op(struct nand_chip *chip, unsigned int offset_in_page, void *buf, unsigned int len, bool force_8bit); int nand_read_oob_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len); int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len); int nand_prog_page_end_op(struct nand_chip *chip); int nand_prog_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len); int nand_change_write_column_op(struct nand_chip *chip, unsigned int offset_in_page, const void *buf, unsigned int len, bool force_8bit); int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, bool force_8bit); int nand_write_data_op(struct nand_chip *chip, const void *buf, unsigned int len, bool force_8bit); /* Scan and identify a NAND device */ int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, struct nand_flash_dev *ids); static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) { return nand_scan_with_ids(chip, max_chips, NULL); } /* Internal helper for board drivers which need to override command function */ void nand_wait_ready(struct nand_chip *chip); /* * Free resources held by the NAND device, must be called on error after a * sucessful nand_scan(). */ void nand_cleanup(struct nand_chip *chip); /* Unregister the MTD device and calls nand_cleanup() */ void nand_release(struct nand_chip *chip); /* * External helper for controller drivers that have to implement the WAITRDY * instruction and have no physical pin to check it. */ int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); struct gpio_desc; int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, unsigned long timeout_ms); /* Select/deselect a NAND target. */ void nand_select_target(struct nand_chip *chip, unsigned int cs); void nand_deselect_target(struct nand_chip *chip); #endif /* __LINUX_MTD_RAWNAND_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1