Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Graf | 679 | 57.84% | 1 | 6.25% |
Eric Dumazet | 420 | 35.78% | 5 | 31.25% |
Nogah Frankel | 57 | 4.86% | 2 | 12.50% |
Patrick McHardy | 4 | 0.34% | 2 | 12.50% |
Ilpo Järvinen | 3 | 0.26% | 1 | 6.25% |
Hannes Frederic Sowa | 3 | 0.26% | 1 | 6.25% |
Paul Gortmaker | 3 | 0.26% | 1 | 6.25% |
David Ward | 3 | 0.26% | 1 | 6.25% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 6.25% |
Aruna-Hewapathirane | 1 | 0.09% | 1 | 6.25% |
Total | 1174 | 16 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_RED_H #define __NET_SCHED_RED_H #include <linux/types.h> #include <linux/bug.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/dsfield.h> #include <linux/reciprocal_div.h> /* Random Early Detection (RED) algorithm. ======================================= Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. This file codes a "divisionless" version of RED algorithm as written down in Fig.17 of the paper. Short description. ------------------ When a new packet arrives we calculate the average queue length: avg = (1-W)*avg + W*current_queue_len, W is the filter time constant (chosen as 2^(-Wlog)), it controls the inertia of the algorithm. To allow larger bursts, W should be decreased. if (avg > th_max) -> packet marked (dropped). if (avg < th_min) -> packet passes. if (th_min < avg < th_max) we calculate probability: Pb = max_P * (avg - th_min)/(th_max-th_min) and mark (drop) packet with this probability. Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). max_P should be small (not 1), usually 0.01..0.02 is good value. max_P is chosen as a number, so that max_P/(th_max-th_min) is a negative power of two in order arithmetics to contain only shifts. Parameters, settable by user: ----------------------------- qth_min - bytes (should be < qth_max/2) qth_max - bytes (should be at least 2*qth_min and less limit) Wlog - bits (<32) log(1/W). Plog - bits (<32) Plog is related to max_P by formula: max_P = (qth_max-qth_min)/2^Plog; F.e. if qth_max=128K and qth_min=32K, then Plog=22 corresponds to max_P=0.02 Scell_log Stab Lookup table for log((1-W)^(t/t_ave). NOTES: Upper bound on W. ----------------- If you want to allow bursts of L packets of size S, you should choose W: L + 1 - th_min/S < (1-(1-W)^L)/W th_min/S = 32 th_min/S = 4 log(W) L -1 33 -2 35 -3 39 -4 46 -5 57 -6 75 -7 101 -8 135 -9 190 etc. */ /* * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001 * * Every 500 ms: * if (avg > target and max_p <= 0.5) * increase max_p : max_p += alpha; * else if (avg < target and max_p >= 0.01) * decrease max_p : max_p *= beta; * * target :[qth_min + 0.4*(qth_min - qth_max), * qth_min + 0.6*(qth_min - qth_max)]. * alpha : min(0.01, max_p / 4) * beta : 0.9 * max_P is a Q0.32 fixed point number (with 32 bits mantissa) * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ] */ #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100)) #define MAX_P_MIN (1 * RED_ONE_PERCENT) #define MAX_P_MAX (50 * RED_ONE_PERCENT) #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4) #define RED_STAB_SIZE 256 #define RED_STAB_MASK (RED_STAB_SIZE - 1) struct red_stats { u32 prob_drop; /* Early probability drops */ u32 prob_mark; /* Early probability marks */ u32 forced_drop; /* Forced drops, qavg > max_thresh */ u32 forced_mark; /* Forced marks, qavg > max_thresh */ u32 pdrop; /* Drops due to queue limits */ u32 other; /* Drops due to drop() calls */ }; struct red_parms { /* Parameters */ u32 qth_min; /* Min avg length threshold: Wlog scaled */ u32 qth_max; /* Max avg length threshold: Wlog scaled */ u32 Scell_max; u32 max_P; /* probability, [0 .. 1.0] 32 scaled */ /* reciprocal_value(max_P / qth_delta) */ struct reciprocal_value max_P_reciprocal; u32 qth_delta; /* max_th - min_th */ u32 target_min; /* min_th + 0.4*(max_th - min_th) */ u32 target_max; /* min_th + 0.6*(max_th - min_th) */ u8 Scell_log; u8 Wlog; /* log(W) */ u8 Plog; /* random number bits */ u8 Stab[RED_STAB_SIZE]; }; struct red_vars { /* Variables */ int qcount; /* Number of packets since last random number generation */ u32 qR; /* Cached random number */ unsigned long qavg; /* Average queue length: Wlog scaled */ ktime_t qidlestart; /* Start of current idle period */ }; static inline u32 red_maxp(u8 Plog) { return Plog < 32 ? (~0U >> Plog) : ~0U; } static inline void red_set_vars(struct red_vars *v) { /* Reset average queue length, the value is strictly bound * to the parameters below, reseting hurts a bit but leaving * it might result in an unreasonable qavg for a while. --TGR */ v->qavg = 0; v->qcount = -1; } static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog) { if (fls(qth_min) + Wlog > 32) return false; if (fls(qth_max) + Wlog > 32) return false; if (qth_max < qth_min) return false; return true; } static inline void red_set_parms(struct red_parms *p, u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, u8 Scell_log, u8 *stab, u32 max_P) { int delta = qth_max - qth_min; u32 max_p_delta; p->qth_min = qth_min << Wlog; p->qth_max = qth_max << Wlog; p->Wlog = Wlog; p->Plog = Plog; if (delta <= 0) delta = 1; p->qth_delta = delta; if (!max_P) { max_P = red_maxp(Plog); max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */ } p->max_P = max_P; max_p_delta = max_P / delta; max_p_delta = max(max_p_delta, 1U); p->max_P_reciprocal = reciprocal_value(max_p_delta); /* RED Adaptative target : * [min_th + 0.4*(min_th - max_th), * min_th + 0.6*(min_th - max_th)]. */ delta /= 5; p->target_min = qth_min + 2*delta; p->target_max = qth_min + 3*delta; p->Scell_log = Scell_log; p->Scell_max = (255 << Scell_log); if (stab) memcpy(p->Stab, stab, sizeof(p->Stab)); } static inline int red_is_idling(const struct red_vars *v) { return v->qidlestart != 0; } static inline void red_start_of_idle_period(struct red_vars *v) { v->qidlestart = ktime_get(); } static inline void red_end_of_idle_period(struct red_vars *v) { v->qidlestart = 0; } static inline void red_restart(struct red_vars *v) { red_end_of_idle_period(v); v->qavg = 0; v->qcount = -1; } static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p, const struct red_vars *v) { s64 delta = ktime_us_delta(ktime_get(), v->qidlestart); long us_idle = min_t(s64, delta, p->Scell_max); int shift; /* * The problem: ideally, average length queue recalcultion should * be done over constant clock intervals. This is too expensive, so * that the calculation is driven by outgoing packets. * When the queue is idle we have to model this clock by hand. * * SF+VJ proposed to "generate": * * m = idletime / (average_pkt_size / bandwidth) * * dummy packets as a burst after idle time, i.e. * * v->qavg *= (1-W)^m * * This is an apparently overcomplicated solution (f.e. we have to * precompute a table to make this calculation in reasonable time) * I believe that a simpler model may be used here, * but it is field for experiments. */ shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; if (shift) return v->qavg >> shift; else { /* Approximate initial part of exponent with linear function: * * (1-W)^m ~= 1-mW + ... * * Seems, it is the best solution to * problem of too coarse exponent tabulation. */ us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log; if (us_idle < (v->qavg >> 1)) return v->qavg - us_idle; else return v->qavg >> 1; } } static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p, const struct red_vars *v, unsigned int backlog) { /* * NOTE: v->qavg is fixed point number with point at Wlog. * The formula below is equvalent to floating point * version: * * qavg = qavg*(1-W) + backlog*W; * * --ANK (980924) */ return v->qavg + (backlog - (v->qavg >> p->Wlog)); } static inline unsigned long red_calc_qavg(const struct red_parms *p, const struct red_vars *v, unsigned int backlog) { if (!red_is_idling(v)) return red_calc_qavg_no_idle_time(p, v, backlog); else return red_calc_qavg_from_idle_time(p, v); } static inline u32 red_random(const struct red_parms *p) { return reciprocal_divide(prandom_u32(), p->max_P_reciprocal); } static inline int red_mark_probability(const struct red_parms *p, const struct red_vars *v, unsigned long qavg) { /* The formula used below causes questions. OK. qR is random number in the interval (0..1/max_P)*(qth_max-qth_min) i.e. 0..(2^Plog). If we used floating point arithmetics, it would be: (2^Plog)*rnd_num, where rnd_num is less 1. Taking into account, that qavg have fixed point at Wlog, two lines below have the following floating point equivalent: max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount Any questions? --ANK (980924) */ return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR); } enum { RED_BELOW_MIN_THRESH, RED_BETWEEN_TRESH, RED_ABOVE_MAX_TRESH, }; static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg) { if (qavg < p->qth_min) return RED_BELOW_MIN_THRESH; else if (qavg >= p->qth_max) return RED_ABOVE_MAX_TRESH; else return RED_BETWEEN_TRESH; } enum { RED_DONT_MARK, RED_PROB_MARK, RED_HARD_MARK, }; static inline int red_action(const struct red_parms *p, struct red_vars *v, unsigned long qavg) { switch (red_cmp_thresh(p, qavg)) { case RED_BELOW_MIN_THRESH: v->qcount = -1; return RED_DONT_MARK; case RED_BETWEEN_TRESH: if (++v->qcount) { if (red_mark_probability(p, v, qavg)) { v->qcount = 0; v->qR = red_random(p); return RED_PROB_MARK; } } else v->qR = red_random(p); return RED_DONT_MARK; case RED_ABOVE_MAX_TRESH: v->qcount = -1; return RED_HARD_MARK; } BUG(); return RED_DONT_MARK; } static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v) { unsigned long qavg; u32 max_p_delta; qavg = v->qavg; if (red_is_idling(v)) qavg = red_calc_qavg_from_idle_time(p, v); /* v->qavg is fixed point number with point at Wlog */ qavg >>= p->Wlog; if (qavg > p->target_max && p->max_P <= MAX_P_MAX) p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */ else if (qavg < p->target_min && p->max_P >= MAX_P_MIN) p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */ max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta); max_p_delta = max(max_p_delta, 1U); p->max_P_reciprocal = reciprocal_value(max_p_delta); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1