Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Claudiu Manoil | 2813 | 86.05% | 7 | 50.00% |
Horia Geantă | 395 | 12.08% | 4 | 28.57% |
Madalin Bucur | 54 | 1.65% | 2 | 14.29% |
Tudor Laurentiu | 7 | 0.21% | 1 | 7.14% |
Total | 3269 | 14 |
/* Copyright 2008 - 2016 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __FSL_QMAN_H #define __FSL_QMAN_H #include <linux/bitops.h> /* Hardware constants */ #define QM_CHANNEL_SWPORTAL0 0 #define QMAN_CHANNEL_POOL1 0x21 #define QMAN_CHANNEL_CAAM 0x80 #define QMAN_CHANNEL_POOL1_REV3 0x401 #define QMAN_CHANNEL_CAAM_REV3 0x840 extern u16 qm_channel_pool1; extern u16 qm_channel_caam; /* Portal processing (interrupt) sources */ #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ /* * This mask contains all the interrupt sources that need handling except DQRI, * ie. that if present should trigger slow-path processing. */ #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ QM_PIRQ_MRI) /* For qman_static_dequeue_*** APIs */ #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff /* for n in [1,15] */ #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) /* for conversion from n of qm_channel */ static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) { return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1); } /* --- QMan data structures (and associated constants) --- */ /* "Frame Descriptor (FD)" */ struct qm_fd { union { struct { u8 cfg8b_w1; u8 bpid; /* Buffer Pool ID */ u8 cfg8b_w3; u8 addr_hi; /* high 8-bits of 40-bit address */ __be32 addr_lo; /* low 32-bits of 40-bit address */ } __packed; __be64 data; }; __be32 cfg; /* format, offset, length / congestion */ union { __be32 cmd; __be32 status; }; } __aligned(8); #define QM_FD_FORMAT_SG BIT(31) #define QM_FD_FORMAT_LONG BIT(30) #define QM_FD_FORMAT_COMPOUND BIT(29) #define QM_FD_FORMAT_MASK GENMASK(31, 29) #define QM_FD_OFF_SHIFT 20 #define QM_FD_OFF_MASK GENMASK(28, 20) #define QM_FD_LEN_MASK GENMASK(19, 0) #define QM_FD_LEN_BIG_MASK GENMASK(28, 0) enum qm_fd_format { /* * 'contig' implies a contiguous buffer, whereas 'sg' implies a * scatter-gather table. 'big' implies a 29-bit length with no offset * field, otherwise length is 20-bit and offset is 9-bit. 'compound' * implies a s/g-like table, where each entry itself represents a frame * (contiguous or scatter-gather) and the 29-bit "length" is * interpreted purely for congestion calculations, ie. a "congestion * weight". */ qm_fd_contig = 0, qm_fd_contig_big = QM_FD_FORMAT_LONG, qm_fd_sg = QM_FD_FORMAT_SG, qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, qm_fd_compound = QM_FD_FORMAT_COMPOUND }; static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) { return be64_to_cpu(fd->data) & 0xffffffffffLLU; } static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) { return be64_to_cpu(fd->data) & 0xffffffffffLLU; } static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr) { fd->addr_hi = upper_32_bits(addr); fd->addr_lo = cpu_to_be32(lower_32_bits(addr)); } /* * The 'format' field indicates the interpretation of the remaining * 29 bits of the 32-bit word. * If 'format' is _contig or _sg, 20b length and 9b offset. * If 'format' is _contig_big or _sg_big, 29b length. * If 'format' is _compound, 29b "congestion weight". */ static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd) { return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK; } static inline int qm_fd_get_offset(const struct qm_fd *fd) { return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT; } static inline int qm_fd_get_length(const struct qm_fd *fd) { return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK; } static inline int qm_fd_get_len_big(const struct qm_fd *fd) { return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK; } static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt, int off, int len) { fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) | ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK)); } #define qm_fd_set_contig(fd, off, len) \ qm_fd_set_param(fd, qm_fd_contig, off, len) #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len) #define qm_fd_set_contig_big(fd, len) \ qm_fd_set_param(fd, qm_fd_contig_big, 0, len) #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len) #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len) static inline void qm_fd_clear_fd(struct qm_fd *fd) { fd->data = 0; fd->cfg = 0; fd->cmd = 0; } /* Scatter/Gather table entry */ struct qm_sg_entry { union { struct { u8 __reserved1[3]; u8 addr_hi; /* high 8-bits of 40-bit address */ __be32 addr_lo; /* low 32-bits of 40-bit address */ }; __be64 data; }; __be32 cfg; /* E bit, F bit, length */ u8 __reserved2; u8 bpid; __be16 offset; /* 13-bit, _res[13-15]*/ } __packed; #define QM_SG_LEN_MASK GENMASK(29, 0) #define QM_SG_OFF_MASK GENMASK(12, 0) #define QM_SG_FIN BIT(30) #define QM_SG_EXT BIT(31) static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) { return be64_to_cpu(sg->data) & 0xffffffffffLLU; } static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg) { return be64_to_cpu(sg->data) & 0xffffffffffLLU; } static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr) { sg->addr_hi = upper_32_bits(addr); sg->addr_lo = cpu_to_be32(lower_32_bits(addr)); } static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg) { return be32_to_cpu(sg->cfg) & QM_SG_FIN; } static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg) { return be32_to_cpu(sg->cfg) & QM_SG_EXT; } static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg) { return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK; } static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len) { sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK); } static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len) { sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK)); } static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg) { return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK; } /* "Frame Dequeue Response" */ struct qm_dqrr_entry { u8 verb; u8 stat; __be16 seqnum; /* 15-bit */ u8 tok; u8 __reserved2[3]; __be32 fqid; /* 24-bit */ __be32 context_b; struct qm_fd fd; u8 __reserved4[32]; } __packed; #define QM_DQRR_VERB_VBIT 0x80 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ /* 'fqid' is a 24-bit field in every h/w descriptor */ #define QM_FQID_MASK GENMASK(23, 0) #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK)) #define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK) /* "ERN Message Response" */ /* "FQ State Change Notification" */ union qm_mr_entry { struct { u8 verb; u8 __reserved[63]; }; struct { u8 verb; u8 dca; __be16 seqnum; u8 rc; /* Rej Code: 8-bit */ u8 __reserved[3]; __be32 fqid; /* 24-bit */ __be32 tag; struct qm_fd fd; u8 __reserved1[32]; } __packed ern; struct { u8 verb; u8 fqs; /* Frame Queue Status */ u8 __reserved1[6]; __be32 fqid; /* 24-bit */ __be32 context_b; u8 __reserved2[48]; } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */ }; #define QM_MR_VERB_VBIT 0x80 /* * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished * from the other MR types by noting if the 0x20 bit is unset. */ #define QM_MR_VERB_TYPE_MASK 0x27 #define QM_MR_VERB_DC_ERN 0x20 #define QM_MR_VERB_FQRN 0x21 #define QM_MR_VERB_FQRNI 0x22 #define QM_MR_VERB_FQRL 0x23 #define QM_MR_VERB_FQPN 0x24 #define QM_MR_RC_MASK 0xf0 /* contains one of; */ #define QM_MR_RC_CGR_TAILDROP 0x00 #define QM_MR_RC_WRED 0x10 #define QM_MR_RC_ERROR 0x20 #define QM_MR_RC_ORPWINDOW_EARLY 0x30 #define QM_MR_RC_ORPWINDOW_LATE 0x40 #define QM_MR_RC_FQ_TAILDROP 0x50 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60 #define QM_MR_RC_ORP_ZERO 0x70 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ /* * An identical structure of FQD fields is present in the "Init FQ" command and * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the * latter has two inlines to assist with converting to/from the mant+exp * representation. */ struct qm_fqd_stashing { /* See QM_STASHING_EXCL_<...> */ u8 exclusive; /* Numbers of cachelines */ u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */ }; struct qm_fqd_oac { /* "Overhead Accounting Control", see QM_OAC_<...> */ u8 oac; /* oac[6-7], _res[0-5] */ /* Two's-complement value (-128 to +127) */ s8 oal; /* "Overhead Accounting Length" */ }; struct qm_fqd { /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */ u8 orpc; u8 cgid; __be16 fq_ctrl; /* See QM_FQCTRL_<...> */ __be16 dest_wq; /* channel[3-15], wq[0-2] */ __be16 ics_cred; /* 15-bit */ /* * For "Initialize Frame Queue" commands, the write-enable mask * determines whether 'td' or 'oac_init' is observed. For query * commands, this field is always 'td', and 'oac_query' (below) reflects * the Overhead ACcounting values. */ union { __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */ struct qm_fqd_oac oac_init; }; __be32 context_b; union { /* Treat it as 64-bit opaque */ __be64 opaque; struct { __be32 hi; __be32 lo; }; /* Treat it as s/w portal stashing config */ /* see "FQD Context_A field used for [...]" */ struct { struct qm_fqd_stashing stashing; /* * 48-bit address of FQ context to * stash, must be cacheline-aligned */ __be16 context_hi; __be32 context_lo; } __packed; } context_a; struct qm_fqd_oac oac_query; } __packed; #define QM_FQD_CHAN_OFF 3 #define QM_FQD_WQ_MASK GENMASK(2, 0) #define QM_FQD_TD_EXP_MASK GENMASK(4, 0) #define QM_FQD_TD_MANT_OFF 5 #define QM_FQD_TD_MANT_MASK GENMASK(12, 5) #define QM_FQD_TD_MAX 0xe0000000 #define QM_FQD_TD_MANT_MAX 0xff #define QM_FQD_OAC_OFF 6 #define QM_FQD_AS_OFF 4 #define QM_FQD_DS_OFF 2 #define QM_FQD_XS_MASK 0x3 /* 64-bit converters for context_hi/lo */ static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) { return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; } static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) { return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; } static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) { return qm_fqd_stashing_get64(fqd); } static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr) { fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr)); fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr)); } static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr) { fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr)); fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr)); } /* convert a threshold value into mant+exp representation */ static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val, int roundup) { u32 e = 0; int td, oddbit = 0; if (val > QM_FQD_TD_MAX) return -ERANGE; while (val > QM_FQD_TD_MANT_MAX) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK; td |= (e & QM_FQD_TD_EXP_MASK); fqd->td = cpu_to_be16(td); return 0; } /* and the other direction */ static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd) { int td = be16_to_cpu(fqd->td); return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF) << (td & QM_FQD_TD_EXP_MASK); } static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs) { struct qm_fqd_stashing *st = &fqd->context_a.stashing; st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) | ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) | (cs & QM_FQD_XS_MASK); } static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd) { return fqd->context_a.stashing.cl; } static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val) { fqd->oac_init.oac = val << QM_FQD_OAC_OFF; } static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val) { fqd->oac_init.oal = val; } static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq) { fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) | (wq & QM_FQD_WQ_MASK)); } static inline int qm_fqd_get_chan(const struct qm_fqd *fqd) { return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF; } static inline int qm_fqd_get_wq(const struct qm_fqd *fqd) { return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK; } /* See "Frame Queue Descriptor (FQD)" */ /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ /* See "FQD Context_A field used for [...] */ /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ #define QM_STASHING_EXCL_ANNOTATION 0x04 #define QM_STASHING_EXCL_DATA 0x02 #define QM_STASHING_EXCL_CTX 0x01 /* See "Intra Class Scheduling" */ /* FQD field 'OAC' (Overhead ACcounting) uses these constants */ #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ /* * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields * and associated commands/responses. The WRED parameters are calculated from * these fields as follows; * MaxTH = MA * (2 ^ Mn) * Slope = SA / (2 ^ Sn) * MaxP = 4 * (Pn + 1) */ struct qm_cgr_wr_parm { /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */ __be32 word; }; /* * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding * management commands, this is padded to a 16-bit structure field, so that's * how we represent it here. The congestion state threshold is calculated from * these fields as follows; * CS threshold = TA * (2 ^ Tn) */ struct qm_cgr_cs_thres { /* _res[13-15], TA[5-12], Tn[0-4] */ __be16 word; }; /* * This identical structure of CGR fields is present in the "Init/Modify CGR" * commands and the "Query CGR" result. It's suctioned out here into its own * struct. */ struct __qm_mc_cgr { struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; u8 wr_en_g; /* boolean, use QM_CGR_EN */ u8 wr_en_y; /* boolean, use QM_CGR_EN */ u8 wr_en_r; /* boolean, use QM_CGR_EN */ u8 cscn_en; /* boolean, use QM_CGR_EN */ union { struct { __be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */ __be16 cscn_targ_dcp_low; }; __be32 cscn_targ; /* use QM_CGR_TARG_* */ }; u8 cstd_en; /* boolean, use QM_CGR_EN */ u8 cs; /* boolean, only used in query response */ struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */ u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ } __packed; #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ /* Convert CGR thresholds to/from "cs_thres" format */ static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) { int thres = be16_to_cpu(th->word); return ((thres >> 5) & 0xff) << (thres & 0x1f); } static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, int roundup) { u32 e = 0; int oddbit = 0; while (val > 0xff) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f)); return 0; } /* "Initialize FQ" */ struct qm_mcc_initfq { u8 __reserved1[2]; __be16 we_mask; /* Write Enable Mask */ __be32 fqid; /* 24-bit */ __be16 count; /* Initialises 'count+1' FQDs */ struct qm_fqd fqd; /* the FQD fields go here */ u8 __reserved2[30]; } __packed; /* "Initialize/Modify CGR" */ struct qm_mcc_initcgr { u8 __reserve1[2]; __be16 we_mask; /* Write Enable Mask */ struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[2]; u8 cgid; u8 __reserved3[32]; } __packed; /* INITFQ-specific flags */ #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ #define QM_INITFQ_WE_OAC 0x0100 #define QM_INITFQ_WE_ORPC 0x0080 #define QM_INITFQ_WE_CGID 0x0040 #define QM_INITFQ_WE_FQCTRL 0x0020 #define QM_INITFQ_WE_DESTWQ 0x0010 #define QM_INITFQ_WE_ICSCRED 0x0008 #define QM_INITFQ_WE_TDTHRESH 0x0004 #define QM_INITFQ_WE_CONTEXTB 0x0002 #define QM_INITFQ_WE_CONTEXTA 0x0001 /* INITCGR/MODIFYCGR-specific flags */ #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ #define QM_CGR_WE_WR_PARM_G 0x0400 #define QM_CGR_WE_WR_PARM_Y 0x0200 #define QM_CGR_WE_WR_PARM_R 0x0100 #define QM_CGR_WE_WR_EN_G 0x0080 #define QM_CGR_WE_WR_EN_Y 0x0040 #define QM_CGR_WE_WR_EN_R 0x0020 #define QM_CGR_WE_CSCN_EN 0x0010 #define QM_CGR_WE_CSCN_TARG 0x0008 #define QM_CGR_WE_CSTD_EN 0x0004 #define QM_CGR_WE_CS_THRES 0x0002 #define QM_CGR_WE_MODE 0x0001 #define QMAN_CGR_FLAG_USE_INIT 0x00000001 #define QMAN_CGR_MODE_FRAME 0x00000001 /* Portal and Frame Queues */ /* Represents a managed portal */ struct qman_portal; /* * This object type represents QMan frame queue descriptors (FQD), it is * cacheline-aligned, and initialised by qman_create_fq(). The structure is * defined further down. */ struct qman_fq; /* * This object type represents a QMan congestion group, it is defined further * down. */ struct qman_cgr; /* * This enum, and the callback type that returns it, are used when handling * dequeued frames via DQRR. Note that for "null" callbacks registered with the * portal object (for handling dequeues that do not demux because context_b is * NULL), the return value *MUST* be qman_cb_dqrr_consume. */ enum qman_cb_dqrr_result { /* DQRR entry can be consumed */ qman_cb_dqrr_consume, /* Like _consume, but requests parking - FQ must be held-active */ qman_cb_dqrr_park, /* Does not consume, for DCA mode only. */ qman_cb_dqrr_defer, /* * Stop processing without consuming this ring entry. Exits the current * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within * an interrupt handler, the callback would typically call * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, * otherwise the interrupt will reassert immediately. */ qman_cb_dqrr_stop, /* Like qman_cb_dqrr_stop, but consumes the current entry. */ qman_cb_dqrr_consume_stop }; typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr); /* * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They * are always consumed after the callback returns. */ typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, const union qm_mr_entry *msg); /* * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + * held-active + held-suspended are just "sched". Things like "retired" will not * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until * then, to indicate it's completing and to gate attempts to retry the retire * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's * technically impossible in the case of enqueue DCAs (which refer to DQRR ring * index rather than the FQ that ring entry corresponds to), so repeated park * commands are allowed (if you're silly enough to try) but won't change FQ * state, and the resulting park notifications move FQs from "sched" to * "parked". */ enum qman_fq_state { qman_fq_state_oos, qman_fq_state_parked, qman_fq_state_sched, qman_fq_state_retired }; #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ /* * Frame queue objects (struct qman_fq) are stored within memory passed to * qman_create_fq(), as this allows stashing of caller-provided demux callback * pointers at no extra cost to stashing of (driver-internal) FQ state. If the * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, * they should; * * (a) extend the qman_fq structure with their state; eg. * * // myfq is allocated and driver_fq callbacks filled in; * struct my_fq { * struct qman_fq base; * int an_extra_field; * [ ... add other fields to be associated with each FQ ...] * } *myfq = some_my_fq_allocator(); * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); * * // in a dequeue callback, access extra fields from 'fq' via a cast; * struct my_fq *myfq = (struct my_fq *)fq; * do_something_with(myfq->an_extra_field); * [...] * * (b) when and if configuring the FQ for context stashing, specify how ever * many cachelines are required to stash 'struct my_fq', to accelerate not * only the QMan driver but the callback as well. */ struct qman_fq_cb { qman_cb_dqrr dqrr; /* for dequeued frames */ qman_cb_mr ern; /* for s/w ERNs */ qman_cb_mr fqs; /* frame-queue state changes*/ }; struct qman_fq { /* Caller of qman_create_fq() provides these demux callbacks */ struct qman_fq_cb cb; /* * These are internal to the driver, don't touch. In particular, they * may change, be removed, or extended (so you shouldn't rely on * sizeof(qman_fq) being a constant). */ u32 fqid, idx; unsigned long flags; enum qman_fq_state state; int cgr_groupid; }; /* * This callback type is used when handling congestion group entry/exit. * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. */ typedef void (*qman_cb_cgr)(struct qman_portal *qm, struct qman_cgr *cgr, int congested); struct qman_cgr { /* Set these prior to qman_create_cgr() */ u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ qman_cb_cgr cb; /* These are private to the driver */ u16 chan; /* portal channel this object is created on */ struct list_head node; }; /* Flags to qman_create_fq() */ #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ /* Flags to qman_init_fq() */ #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ /* * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use * FQID(n) to fill in the frame queue ID. */ #define QM_VDQCR_PRECEDENCE_VDQCR 0x0 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000 #define QM_VDQCR_EXACT 0x40000000 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24) #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f) #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0) #define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */ #define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */ #define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */ /* "Query FQ Non-Programmable Fields" */ struct qm_mcr_queryfq_np { u8 verb; u8 result; u8 __reserved1; u8 state; /* QM_MCR_NP_STATE_*** */ u32 fqd_link; /* 24-bit, _res2[24-31] */ u16 odp_seq; /* 14-bit, _res3[14-15] */ u16 orp_nesn; /* 14-bit, _res4[14-15] */ u16 orp_ea_hseq; /* 15-bit, _res5[15] */ u16 orp_ea_tseq; /* 15-bit, _res6[15] */ u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */ u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */ u32 pfdr_hptr; /* 24-bit, _res9[24-31] */ u32 pfdr_tptr; /* 24-bit, _res10[24-31] */ u8 __reserved2[5]; u8 is; /* 1-bit, _res12[1-7] */ u16 ics_surp; u32 byte_cnt; u32 frm_cnt; /* 24-bit, _res13[24-31] */ u32 __reserved3; u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ u16 __reserved4; u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ } __packed; #define QM_MCR_NP_STATE_FE 0x10 #define QM_MCR_NP_STATE_R 0x08 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */ #define QM_MCR_NP_STATE_OOS 0x00 #define QM_MCR_NP_STATE_RETIRED 0x01 #define QM_MCR_NP_STATE_TEN_SCHED 0x02 #define QM_MCR_NP_STATE_TRU_SCHED 0x03 #define QM_MCR_NP_STATE_PARKED 0x04 #define QM_MCR_NP_STATE_ACTIVE 0x05 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */ #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */ #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */ #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */ #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */ enum qm_mcr_queryfq_np_masks { qm_mcr_fqd_link_mask = BIT(24) - 1, qm_mcr_odp_seq_mask = BIT(14) - 1, qm_mcr_orp_nesn_mask = BIT(14) - 1, qm_mcr_orp_ea_hseq_mask = BIT(15) - 1, qm_mcr_orp_ea_tseq_mask = BIT(15) - 1, qm_mcr_orp_ea_hptr_mask = BIT(24) - 1, qm_mcr_orp_ea_tptr_mask = BIT(24) - 1, qm_mcr_pfdr_hptr_mask = BIT(24) - 1, qm_mcr_pfdr_tptr_mask = BIT(24) - 1, qm_mcr_is_mask = BIT(1) - 1, qm_mcr_frm_cnt_mask = BIT(24) - 1, }; #define qm_mcr_np_get(np, field) \ ((np)->field & (qm_mcr_##field##_mask)) /* Portal Management */ /** * qman_p_irqsource_add - add processing sources to be interrupt-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Adds processing sources that should be interrupt-driven (rather than * processed via qman_poll_***() functions). */ void qman_p_irqsource_add(struct qman_portal *p, u32 bits); /** * qman_p_irqsource_remove - remove processing sources from being int-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Removes processing sources from being interrupt-driven, so that they will * instead be processed via qman_poll_***() functions. */ void qman_p_irqsource_remove(struct qman_portal *p, u32 bits); /** * qman_affine_cpus - return a mask of cpus that have affine portals */ const cpumask_t *qman_affine_cpus(void); /** * qman_affine_channel - return the channel ID of an portal * @cpu: the cpu whose affine portal is the subject of the query * * If @cpu is -1, the affine portal for the current CPU will be used. It is a * bug to call this function for any value of @cpu (other than -1) that is not a * member of the mask returned from qman_affine_cpus(). */ u16 qman_affine_channel(int cpu); /** * qman_get_affine_portal - return the portal pointer affine to cpu * @cpu: the cpu whose affine portal is the subject of the query */ struct qman_portal *qman_get_affine_portal(int cpu); /** * qman_p_poll_dqrr - process DQRR (fast-path) entries * @limit: the maximum number of DQRR entries to process * * Use of this function requires that DQRR processing not be interrupt-driven. * The return value represents the number of DQRR entries processed. */ int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit); /** * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) * * Adds a set of pool channels to the portal's static dequeue command register * (SDQCR). The requested pools are limited to those the portal has dequeue * access to. */ void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools); /* FQ management */ /** * qman_create_fq - Allocates a FQ * @fqid: the index of the FQD to encapsulate, must be "Out of Service" * @flags: bit-mask of QMAN_FQ_FLAG_*** options * @fq: memory for storing the 'fq', with callbacks filled in * * Creates a frame queue object for the given @fqid, unless the * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is * dynamically allocated (or the function fails if none are available). Once * created, the caller should not touch the memory at 'fq' except as extended to * adjacent memory for user-defined fields (see the definition of "struct * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to * pre-existing frame-queues that aren't to be otherwise interfered with, it * prevents all other modifications to the frame queue. The TO_DCPORTAL flag * causes the driver to honour any context_b modifications requested in the * qm_init_fq() API, as this indicates the frame queue will be consumed by a * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by * software portals, the context_b field is controlled by the driver and can't * be modified by the caller. */ int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); /** * qman_destroy_fq - Deallocates a FQ * @fq: the frame queue object to release * * The memory for this frame queue object ('fq' provided in qman_create_fq()) is * not deallocated but the caller regains ownership, to do with as desired. The * FQ must be in the 'out-of-service' or in the 'parked' state. */ void qman_destroy_fq(struct qman_fq *fq); /** * qman_fq_fqid - Queries the frame queue ID of a FQ object * @fq: the frame queue object to query */ u32 qman_fq_fqid(struct qman_fq *fq); /** * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" * @fq: the frame queue object to modify, must be 'parked' or new. * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options * @opts: the FQ-modification settings, as defined in the low-level API * * The @opts parameter comes from the low-level portal API. Select * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled * rather than parked. NB, @opts can be NULL. * * Note that some fields and options within @opts may be ignored or overwritten * by the driver; * 1. the 'count' and 'fqid' fields are always ignored (this operation only * affects one frame queue: @fq). * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated * 'fqd' structure's 'context_b' field are sometimes overwritten; * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is * initialised to a value used by the driver for demux. * - if context_b is initialised for demux, so is context_a in case stashing * is requested (see item 4). * (So caller control of context_b is only possible for TO_DCPORTAL frame queue * objects.) * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's * 'dest::channel' field will be overwritten to match the portal used to issue * the command. If the WE_DESTWQ write-enable bit had already been set by the * caller, the channel workqueue will be left as-is, otherwise the write-enable * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag * isn't set, the destination channel/workqueue fields and the write-enable bit * are left as-is. * 4. if the driver overwrites context_a/b for demux, then if * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite * context_a.address fields and will leave the stashing fields provided by the * user alone, otherwise it will zero out the context_a.stashing fields. */ int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); /** * qman_schedule_fq - Schedules a FQ * @fq: the frame queue object to schedule, must be 'parked' * * Schedules the frame queue, which must be Parked, which takes it to * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. */ int qman_schedule_fq(struct qman_fq *fq); /** * qman_retire_fq - Retires a FQ * @fq: the frame queue object to retire * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately * * Retires the frame queue. This returns zero if it succeeds immediately, +1 if * the retirement was started asynchronously, otherwise it returns negative for * failure. When this function returns zero, @flags is set to indicate whether * the retired FQ is empty and/or whether it has any ORL fragments (to show up * as ERNs). Otherwise the corresponding flags will be known when a subsequent * FQRN message shows up on the portal's message ring. * * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or * Active state), the completion will be via the message ring as a FQRN - but * the corresponding callback may occur before this function returns!! Ie. the * caller should be prepared to accept the callback as the function is called, * not only once it has returned. */ int qman_retire_fq(struct qman_fq *fq, u32 *flags); /** * qman_oos_fq - Puts a FQ "out of service" * @fq: the frame queue object to be put out-of-service, must be 'retired' * * The frame queue must be retired and empty, and if any order restoration list * was released as ERNs at the time of retirement, they must all be consumed. */ int qman_oos_fq(struct qman_fq *fq); /* * qman_volatile_dequeue - Issue a volatile dequeue command * @fq: the frame queue object to dequeue from * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set() * * Attempts to lock access to the portal's VDQCR volatile dequeue functionality. * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and * the VDQCR is already in use, otherwise returns non-zero for failure. If * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once * the VDQCR command has finished executing (ie. once the callback for the last * DQRR entry resulting from the VDQCR command has been called). If not using * the FINISH flag, completion can be determined either by detecting the * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting * for the QMAN_FQ_STATE_VDQCR bit to disappear. */ int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr); /** * qman_enqueue - Enqueue a frame to a frame queue * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * * Fills an entry in the EQCR of portal @qm to enqueue the frame described by * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' * field is ignored. The return value is non-zero on error, such as ring full. */ int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd); /** * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs * @result: is set by the API to the base FQID of the allocated range * @count: the number of FQIDs required * * Returns 0 on success, or a negative error code. */ int qman_alloc_fqid_range(u32 *result, u32 count); #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1) /** * qman_release_fqid - Release the specified frame queue ID * @fqid: the FQID to be released back to the resource pool * * This function can also be used to seed the allocator with * FQID ranges that it can subsequently allocate from. * Returns 0 on success, or a negative error code. */ int qman_release_fqid(u32 fqid); /** * qman_query_fq_np - Queries non-programmable FQD fields * @fq: the frame queue object to be queried * @np: storage for the queried FQD fields */ int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np); /* Pool-channel management */ /** * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs * @result: is set by the API to the base pool-channel ID of the allocated range * @count: the number of pool-channel IDs required * * Returns 0 on success, or a negative error code. */ int qman_alloc_pool_range(u32 *result, u32 count); #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1) /** * qman_release_pool - Release the specified pool-channel ID * @id: the pool-chan ID to be released back to the resource pool * * This function can also be used to seed the allocator with * pool-channel ID ranges that it can subsequently allocate from. * Returns 0 on success, or a negative error code. */ int qman_release_pool(u32 id); /* CGR management */ /** * qman_create_cgr - Register a congestion group object * @cgr: the 'cgr' object, with fields filled in * @flags: QMAN_CGR_FLAG_* values * @opts: optional state of CGR settings * * Registers this object to receiving congestion entry/exit callbacks on the * portal affine to the cpu portal on which this API is executed. If opts is * NULL then only the callback (cgr->cb) function is registered. If @flags * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset * any unspecified parameters) will be used rather than a modify hw hardware * (which only modifies the specified parameters). */ int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts); /** * qman_delete_cgr - Deregisters a congestion group object * @cgr: the 'cgr' object to deregister * * "Unplugs" this CGR object from the portal affine to the cpu on which this API * is executed. This must be excuted on the same affine portal on which it was * created. */ int qman_delete_cgr(struct qman_cgr *cgr); /** * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU * @cgr: the 'cgr' object to deregister * * This will select the proper CPU and run there qman_delete_cgr(). */ void qman_delete_cgr_safe(struct qman_cgr *cgr); /** * qman_query_cgr_congested - Queries CGR's congestion status * @cgr: the 'cgr' object to query * @result: returns 'cgr's congestion status, 1 (true) if congested */ int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result); /** * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs * @result: is set by the API to the base CGR ID of the allocated range * @count: the number of CGR IDs required * * Returns 0 on success, or a negative error code. */ int qman_alloc_cgrid_range(u32 *result, u32 count); #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1) /** * qman_release_cgrid - Release the specified CGR ID * @id: the CGR ID to be released back to the resource pool * * This function can also be used to seed the allocator with * CGR ID ranges that it can subsequently allocate from. * Returns 0 on success, or a negative error code. */ int qman_release_cgrid(u32 id); /** * qman_is_probed - Check if qman is probed * * Returns 1 if the qman driver successfully probed, -1 if the qman driver * failed to probe or 0 if the qman driver did not probed yet. */ int qman_is_probed(void); /** * qman_dqrr_get_ithresh - Get coalesce interrupt threshold * @portal: portal to get the value for * @ithresh: threshold pointer */ void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh); /** * qman_dqrr_set_ithresh - Set coalesce interrupt threshold * @portal: portal to set the new value on * @ithresh: new threshold value * * Returns 0 on success, or a negative error code. */ int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh); /** * qman_dqrr_get_iperiod - Get coalesce interrupt period * @portal: portal to get the value for * @iperiod: period pointer */ void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod); /** * qman_dqrr_set_iperiod - Set coalesce interrupt period * @portal: portal to set the new value on * @ithresh: new period value * * Returns 0 on success, or a negative error code. */ int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod); #endif /* __FSL_QMAN_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1