Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Fastabend | 1397 | 62.09% | 7 | 25.93% |
Jesper Dangaard Brouer | 590 | 26.22% | 8 | 29.63% |
Daniel Borkmann | 128 | 5.69% | 5 | 18.52% |
Toshiaki Makita | 92 | 4.09% | 2 | 7.41% |
Martin KaFai Lau | 19 | 0.84% | 1 | 3.70% |
Tobias Klauser | 12 | 0.53% | 1 | 3.70% |
Chenbo Feng | 6 | 0.27% | 1 | 3.70% |
Jakub Kiciński | 4 | 0.18% | 1 | 3.70% |
Taehee Yoo | 2 | 0.09% | 1 | 3.70% |
Total | 2250 | 27 |
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* Devmaps primary use is as a backend map for XDP BPF helper call * bpf_redirect_map(). Because XDP is mostly concerned with performance we * spent some effort to ensure the datapath with redirect maps does not use * any locking. This is a quick note on the details. * * We have three possible paths to get into the devmap control plane bpf * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall * will invoke an update, delete, or lookup operation. To ensure updates and * deletes appear atomic from the datapath side xchg() is used to modify the * netdev_map array. Then because the datapath does a lookup into the netdev_map * array (read-only) from an RCU critical section we use call_rcu() to wait for * an rcu grace period before free'ing the old data structures. This ensures the * datapath always has a valid copy. However, the datapath does a "flush" * operation that pushes any pending packets in the driver outside the RCU * critical section. Each bpf_dtab_netdev tracks these pending operations using * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed * until all bits are cleared indicating outstanding flush operations have * completed. * * BPF syscalls may race with BPF program calls on any of the update, delete * or lookup operations. As noted above the xchg() operation also keep the * netdev_map consistent in this case. From the devmap side BPF programs * calling into these operations are the same as multiple user space threads * making system calls. * * Finally, any of the above may race with a netdev_unregister notifier. The * unregister notifier must search for net devices in the map structure that * contain a reference to the net device and remove them. This is a two step * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) * check to see if the ifindex is the same as the net_device being removed. * When removing the dev a cmpxchg() is used to ensure the correct dev is * removed, in the case of a concurrent update or delete operation it is * possible that the initially referenced dev is no longer in the map. As the * notifier hook walks the map we know that new dev references can not be * added by the user because core infrastructure ensures dev_get_by_index() * calls will fail at this point. */ #include <linux/bpf.h> #include <net/xdp.h> #include <linux/filter.h> #include <trace/events/xdp.h> #define DEV_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) #define DEV_MAP_BULK_SIZE 16 struct xdp_bulk_queue { struct xdp_frame *q[DEV_MAP_BULK_SIZE]; struct net_device *dev_rx; unsigned int count; }; struct bpf_dtab_netdev { struct net_device *dev; /* must be first member, due to tracepoint */ struct bpf_dtab *dtab; unsigned int bit; struct xdp_bulk_queue __percpu *bulkq; struct rcu_head rcu; }; struct bpf_dtab { struct bpf_map map; struct bpf_dtab_netdev **netdev_map; unsigned long __percpu *flush_needed; struct list_head list; }; static DEFINE_SPINLOCK(dev_map_lock); static LIST_HEAD(dev_map_list); static u64 dev_map_bitmap_size(const union bpf_attr *attr) { return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); } static struct bpf_map *dev_map_alloc(union bpf_attr *attr) { struct bpf_dtab *dtab; int err = -EINVAL; u64 cost; if (!capable(CAP_NET_ADMIN)) return ERR_PTR(-EPERM); /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); dtab = kzalloc(sizeof(*dtab), GFP_USER); if (!dtab) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&dtab->map, attr); /* make sure page count doesn't overflow */ cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); cost += dev_map_bitmap_size(attr) * num_possible_cpus(); if (cost >= U32_MAX - PAGE_SIZE) goto free_dtab; dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; /* if map size is larger than memlock limit, reject it early */ err = bpf_map_precharge_memlock(dtab->map.pages); if (err) goto free_dtab; err = -ENOMEM; /* A per cpu bitfield with a bit per possible net device */ dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), __alignof__(unsigned long), GFP_KERNEL | __GFP_NOWARN); if (!dtab->flush_needed) goto free_dtab; dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *), dtab->map.numa_node); if (!dtab->netdev_map) goto free_dtab; spin_lock(&dev_map_lock); list_add_tail_rcu(&dtab->list, &dev_map_list); spin_unlock(&dev_map_lock); return &dtab->map; free_dtab: free_percpu(dtab->flush_needed); kfree(dtab); return ERR_PTR(err); } static void dev_map_free(struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); int i, cpu; /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the programs (can be more than one that used this map) were * disconnected from events. Wait for outstanding critical sections in * these programs to complete. The rcu critical section only guarantees * no further reads against netdev_map. It does __not__ ensure pending * flush operations (if any) are complete. */ spin_lock(&dev_map_lock); list_del_rcu(&dtab->list); spin_unlock(&dev_map_lock); bpf_clear_redirect_map(map); synchronize_rcu(); /* To ensure all pending flush operations have completed wait for flush * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. * Because the above synchronize_rcu() ensures the map is disconnected * from the program we can assume no new bits will be set. */ for_each_online_cpu(cpu) { unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); while (!bitmap_empty(bitmap, dtab->map.max_entries)) cond_resched(); } for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev; dev = dtab->netdev_map[i]; if (!dev) continue; dev_put(dev->dev); kfree(dev); } free_percpu(dtab->flush_needed); bpf_map_area_free(dtab->netdev_map); kfree(dtab); } static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = next_key; if (index >= dtab->map.max_entries) { *next = 0; return 0; } if (index == dtab->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); __set_bit(bit, bitmap); } static int bq_xmit_all(struct bpf_dtab_netdev *obj, struct xdp_bulk_queue *bq, u32 flags, bool in_napi_ctx) { struct net_device *dev = obj->dev; int sent = 0, drops = 0, err = 0; int i; if (unlikely(!bq->count)) return 0; for (i = 0; i < bq->count; i++) { struct xdp_frame *xdpf = bq->q[i]; prefetch(xdpf); } sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); if (sent < 0) { err = sent; sent = 0; goto error; } drops = bq->count - sent; out: bq->count = 0; trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit, sent, drops, bq->dev_rx, dev, err); bq->dev_rx = NULL; return 0; error: /* If ndo_xdp_xmit fails with an errno, no frames have been * xmit'ed and it's our responsibility to them free all. */ for (i = 0; i < bq->count; i++) { struct xdp_frame *xdpf = bq->q[i]; /* RX path under NAPI protection, can return frames faster */ if (likely(in_napi_ctx)) xdp_return_frame_rx_napi(xdpf); else xdp_return_frame(xdpf); drops++; } goto out; } /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled * from the driver before returning from its napi->poll() routine. The poll() * routine is called either from busy_poll context or net_rx_action signaled * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the * net device can be torn down. On devmap tear down we ensure the ctx bitmap * is zeroed before completing to ensure all flush operations have completed. */ void __dev_map_flush(struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); u32 bit; for_each_set_bit(bit, bitmap, map->max_entries) { struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); struct xdp_bulk_queue *bq; /* This is possible if the dev entry is removed by user space * between xdp redirect and flush op. */ if (unlikely(!dev)) continue; __clear_bit(bit, bitmap); bq = this_cpu_ptr(dev->bulkq); bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true); } } /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or * update happens in parallel here a dev_put wont happen until after reading the * ifindex. */ struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *obj; if (key >= map->max_entries) return NULL; obj = READ_ONCE(dtab->netdev_map[key]); return obj; } /* Runs under RCU-read-side, plus in softirq under NAPI protection. * Thus, safe percpu variable access. */ static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, struct net_device *dev_rx) { struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) bq_xmit_all(obj, bq, 0, true); /* Ingress dev_rx will be the same for all xdp_frame's in * bulk_queue, because bq stored per-CPU and must be flushed * from net_device drivers NAPI func end. */ if (!bq->dev_rx) bq->dev_rx = dev_rx; bq->q[bq->count++] = xdpf; return 0; } int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, struct net_device *dev_rx) { struct net_device *dev = dst->dev; struct xdp_frame *xdpf; int err; if (!dev->netdev_ops->ndo_xdp_xmit) return -EOPNOTSUPP; err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); if (unlikely(err)) return err; xdpf = convert_to_xdp_frame(xdp); if (unlikely(!xdpf)) return -EOVERFLOW; return bq_enqueue(dst, xdpf, dev_rx); } int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog) { int err; err = xdp_ok_fwd_dev(dst->dev, skb->len); if (unlikely(err)) return err; skb->dev = dst->dev; generic_xdp_tx(skb, xdp_prog); return 0; } static void *dev_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); struct net_device *dev = obj ? obj->dev : NULL; return dev ? &dev->ifindex : NULL; } static void dev_map_flush_old(struct bpf_dtab_netdev *dev) { if (dev->dev->netdev_ops->ndo_xdp_xmit) { struct xdp_bulk_queue *bq; unsigned long *bitmap; int cpu; for_each_online_cpu(cpu) { bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); __clear_bit(dev->bit, bitmap); bq = per_cpu_ptr(dev->bulkq, cpu); bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false); } } } static void __dev_map_entry_free(struct rcu_head *rcu) { struct bpf_dtab_netdev *dev; dev = container_of(rcu, struct bpf_dtab_netdev, rcu); dev_map_flush_old(dev); free_percpu(dev->bulkq); dev_put(dev->dev); kfree(dev); } static int dev_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; int k = *(u32 *)key; if (k >= map->max_entries) return -EINVAL; /* Use call_rcu() here to ensure any rcu critical sections have * completed, but this does not guarantee a flush has happened * yet. Because driver side rcu_read_lock/unlock only protects the * running XDP program. However, for pending flush operations the * dev and ctx are stored in another per cpu map. And additionally, * the driver tear down ensures all soft irqs are complete before * removing the net device in the case of dev_put equals zero. */ old_dev = xchg(&dtab->netdev_map[k], NULL); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct net *net = current->nsproxy->net_ns; gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; struct bpf_dtab_netdev *dev, *old_dev; u32 i = *(u32 *)key; u32 ifindex = *(u32 *)value; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= dtab->map.max_entries)) return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) return -EEXIST; if (!ifindex) { dev = NULL; } else { dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node); if (!dev) return -ENOMEM; dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), sizeof(void *), gfp); if (!dev->bulkq) { kfree(dev); return -ENOMEM; } dev->dev = dev_get_by_index(net, ifindex); if (!dev->dev) { free_percpu(dev->bulkq); kfree(dev); return -EINVAL; } dev->bit = i; dev->dtab = dtab; } /* Use call_rcu() here to ensure rcu critical sections have completed * Remembering the driver side flush operation will happen before the * net device is removed. */ old_dev = xchg(&dtab->netdev_map[i], dev); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } const struct bpf_map_ops dev_map_ops = { .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_get_next_key, .map_lookup_elem = dev_map_lookup_elem, .map_update_elem = dev_map_update_elem, .map_delete_elem = dev_map_delete_elem, .map_check_btf = map_check_no_btf, }; static int dev_map_notification(struct notifier_block *notifier, ulong event, void *ptr) { struct net_device *netdev = netdev_notifier_info_to_dev(ptr); struct bpf_dtab *dtab; int i; switch (event) { case NETDEV_UNREGISTER: /* This rcu_read_lock/unlock pair is needed because * dev_map_list is an RCU list AND to ensure a delete * operation does not free a netdev_map entry while we * are comparing it against the netdev being unregistered. */ rcu_read_lock(); list_for_each_entry_rcu(dtab, &dev_map_list, list) { for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev, *odev; dev = READ_ONCE(dtab->netdev_map[i]); if (!dev || netdev != dev->dev) continue; odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); if (dev == odev) call_rcu(&dev->rcu, __dev_map_entry_free); } } rcu_read_unlock(); break; default: break; } return NOTIFY_OK; } static struct notifier_block dev_map_notifier = { .notifier_call = dev_map_notification, }; static int __init dev_map_init(void) { /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != offsetof(struct _bpf_dtab_netdev, dev)); register_netdevice_notifier(&dev_map_notifier); return 0; } subsys_initcall(dev_map_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1