Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steven Rostedt | 1433 | 29.38% | 3 | 2.83% |
Ingo Molnar | 1429 | 29.30% | 16 | 15.09% |
Peter Zijlstra | 543 | 11.13% | 19 | 17.92% |
Bharata B Rao | 297 | 6.09% | 3 | 2.83% |
Nathan Zimmer | 240 | 4.92% | 1 | 0.94% |
Srikar Dronamraju | 103 | 2.11% | 5 | 4.72% |
Josh Poimboeuf | 86 | 1.76% | 4 | 3.77% |
Lucas De Marchi | 85 | 1.74% | 1 | 0.94% |
Joe Lawrence | 61 | 1.25% | 2 | 1.89% |
Paul Turner | 59 | 1.21% | 5 | 4.72% |
Wanpeng Li | 48 | 0.98% | 3 | 2.83% |
Mel Gorman | 43 | 0.88% | 1 | 0.94% |
Daniel Bristot de Oliveira | 39 | 0.80% | 1 | 0.94% |
Patrick Bellasi | 39 | 0.80% | 1 | 0.94% |
Ben Segall | 37 | 0.76% | 2 | 1.89% |
Kamalesh Babulal | 36 | 0.74% | 2 | 1.89% |
Yuyang Du | 36 | 0.74% | 2 | 1.89% |
Christian Ehrhardt | 31 | 0.64% | 1 | 0.94% |
Srivatsa Vaddagiri | 27 | 0.55% | 1 | 0.94% |
Vincent Guittot | 27 | 0.55% | 1 | 0.94% |
Arjan van de Ven | 24 | 0.49% | 2 | 1.89% |
Alex Shi | 20 | 0.41% | 3 | 2.83% |
Tommaso Cucinotta | 20 | 0.41% | 1 | 0.94% |
Yisheng Xie | 19 | 0.39% | 1 | 0.94% |
Mike Galbraith | 11 | 0.23% | 2 | 1.89% |
Xie XiuQi | 9 | 0.18% | 2 | 1.89% |
Oleg Nesterov | 9 | 0.18% | 3 | 2.83% |
Morten Rasmussen | 8 | 0.16% | 1 | 0.94% |
Jiada Wang | 8 | 0.16% | 1 | 0.94% |
Al Viro | 8 | 0.16% | 1 | 0.94% |
Aleksa Sarai | 8 | 0.16% | 1 | 0.94% |
Davidlohr Bueso A | 5 | 0.10% | 1 | 0.94% |
Christoph Hellwig | 5 | 0.10% | 1 | 0.94% |
Hitoshi Mitake | 4 | 0.08% | 1 | 0.94% |
Mateusz Guzik | 3 | 0.06% | 1 | 0.94% |
Tejun Heo | 3 | 0.06% | 1 | 0.94% |
Viresh Kumar | 3 | 0.06% | 1 | 0.94% |
Denis V. Lunev | 2 | 0.04% | 1 | 0.94% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.94% |
Masahiro Yamada | 2 | 0.04% | 1 | 0.94% |
Rik Van Riel | 1 | 0.02% | 1 | 0.94% |
Li Zefan | 1 | 0.02% | 1 | 0.94% |
Dmitry Adamushko | 1 | 0.02% | 1 | 0.94% |
Roman Zippel | 1 | 0.02% | 1 | 0.94% |
Joshua Hunt | 1 | 0.02% | 1 | 0.94% |
Total | 4877 | 106 |
/* * kernel/sched/debug.c * * Print the CFS rbtree and other debugging details * * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "sched.h" static DEFINE_SPINLOCK(sched_debug_lock); /* * This allows printing both to /proc/sched_debug and * to the console */ #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else \ pr_cont(x); \ } while (0) /* * Ease the printing of nsec fields: */ static long long nsec_high(unsigned long long nsec) { if ((long long)nsec < 0) { nsec = -nsec; do_div(nsec, 1000000); return -nsec; } do_div(nsec, 1000000); return nsec; } static unsigned long nsec_low(unsigned long long nsec) { if ((long long)nsec < 0) nsec = -nsec; return do_div(nsec, 1000000); } #define SPLIT_NS(x) nsec_high(x), nsec_low(x) #define SCHED_FEAT(name, enabled) \ #name , static const char * const sched_feat_names[] = { #include "features.h" }; #undef SCHED_FEAT static int sched_feat_show(struct seq_file *m, void *v) { int i; for (i = 0; i < __SCHED_FEAT_NR; i++) { if (!(sysctl_sched_features & (1UL << i))) seq_puts(m, "NO_"); seq_printf(m, "%s ", sched_feat_names[i]); } seq_puts(m, "\n"); return 0; } #ifdef CONFIG_JUMP_LABEL #define jump_label_key__true STATIC_KEY_INIT_TRUE #define jump_label_key__false STATIC_KEY_INIT_FALSE #define SCHED_FEAT(name, enabled) \ jump_label_key__##enabled , struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { #include "features.h" }; #undef SCHED_FEAT static void sched_feat_disable(int i) { static_key_disable_cpuslocked(&sched_feat_keys[i]); } static void sched_feat_enable(int i) { static_key_enable_cpuslocked(&sched_feat_keys[i]); } #else static void sched_feat_disable(int i) { }; static void sched_feat_enable(int i) { }; #endif /* CONFIG_JUMP_LABEL */ static int sched_feat_set(char *cmp) { int i; int neg = 0; if (strncmp(cmp, "NO_", 3) == 0) { neg = 1; cmp += 3; } i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); if (i < 0) return i; if (neg) { sysctl_sched_features &= ~(1UL << i); sched_feat_disable(i); } else { sysctl_sched_features |= (1UL << i); sched_feat_enable(i); } return 0; } static ssize_t sched_feat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; char *cmp; int ret; struct inode *inode; if (cnt > 63) cnt = 63; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; cmp = strstrip(buf); /* Ensure the static_key remains in a consistent state */ inode = file_inode(filp); cpus_read_lock(); inode_lock(inode); ret = sched_feat_set(cmp); inode_unlock(inode); cpus_read_unlock(); if (ret < 0) return ret; *ppos += cnt; return cnt; } static int sched_feat_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_feat_show, NULL); } static const struct file_operations sched_feat_fops = { .open = sched_feat_open, .write = sched_feat_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; __read_mostly bool sched_debug_enabled; static __init int sched_init_debug(void) { debugfs_create_file("sched_features", 0644, NULL, NULL, &sched_feat_fops); debugfs_create_bool("sched_debug", 0644, NULL, &sched_debug_enabled); return 0; } late_initcall(sched_init_debug); #ifdef CONFIG_SMP #ifdef CONFIG_SYSCTL static struct ctl_table sd_ctl_dir[] = { { .procname = "sched_domain", .mode = 0555, }, {} }; static struct ctl_table sd_ctl_root[] = { { .procname = "kernel", .mode = 0555, .child = sd_ctl_dir, }, {} }; static struct ctl_table *sd_alloc_ctl_entry(int n) { struct ctl_table *entry = kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); return entry; } static void sd_free_ctl_entry(struct ctl_table **tablep) { struct ctl_table *entry; /* * In the intermediate directories, both the child directory and * procname are dynamically allocated and could fail but the mode * will always be set. In the lowest directory the names are * static strings and all have proc handlers. */ for (entry = *tablep; entry->mode; entry++) { if (entry->child) sd_free_ctl_entry(&entry->child); if (entry->proc_handler == NULL) kfree(entry->procname); } kfree(*tablep); *tablep = NULL; } static int min_load_idx = 0; static int max_load_idx = CPU_LOAD_IDX_MAX-1; static void set_table_entry(struct ctl_table *entry, const char *procname, void *data, int maxlen, umode_t mode, proc_handler *proc_handler, bool load_idx) { entry->procname = procname; entry->data = data; entry->maxlen = maxlen; entry->mode = mode; entry->proc_handler = proc_handler; if (load_idx) { entry->extra1 = &min_load_idx; entry->extra2 = &max_load_idx; } } static struct ctl_table * sd_alloc_ctl_domain_table(struct sched_domain *sd) { struct ctl_table *table = sd_alloc_ctl_entry(14); if (table == NULL) return NULL; set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false); set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false); set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false); set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false); set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false); set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false); /* &table[13] is terminator */ return table; } static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) { struct ctl_table *entry, *table; struct sched_domain *sd; int domain_num = 0, i; char buf[32]; for_each_domain(cpu, sd) domain_num++; entry = table = sd_alloc_ctl_entry(domain_num + 1); if (table == NULL) return NULL; i = 0; for_each_domain(cpu, sd) { snprintf(buf, 32, "domain%d", i); entry->procname = kstrdup(buf, GFP_KERNEL); entry->mode = 0555; entry->child = sd_alloc_ctl_domain_table(sd); entry++; i++; } return table; } static cpumask_var_t sd_sysctl_cpus; static struct ctl_table_header *sd_sysctl_header; void register_sched_domain_sysctl(void) { static struct ctl_table *cpu_entries; static struct ctl_table **cpu_idx; char buf[32]; int i; if (!cpu_entries) { cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); if (!cpu_entries) return; WARN_ON(sd_ctl_dir[0].child); sd_ctl_dir[0].child = cpu_entries; } if (!cpu_idx) { struct ctl_table *e = cpu_entries; cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); if (!cpu_idx) return; /* deal with sparse possible map */ for_each_possible_cpu(i) { cpu_idx[i] = e; e++; } } if (!cpumask_available(sd_sysctl_cpus)) { if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) return; /* init to possible to not have holes in @cpu_entries */ cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); } for_each_cpu(i, sd_sysctl_cpus) { struct ctl_table *e = cpu_idx[i]; if (e->child) sd_free_ctl_entry(&e->child); if (!e->procname) { snprintf(buf, 32, "cpu%d", i); e->procname = kstrdup(buf, GFP_KERNEL); } e->mode = 0555; e->child = sd_alloc_ctl_cpu_table(i); __cpumask_clear_cpu(i, sd_sysctl_cpus); } WARN_ON(sd_sysctl_header); sd_sysctl_header = register_sysctl_table(sd_ctl_root); } void dirty_sched_domain_sysctl(int cpu) { if (cpumask_available(sd_sysctl_cpus)) __cpumask_set_cpu(cpu, sd_sysctl_cpus); } /* may be called multiple times per register */ void unregister_sched_domain_sysctl(void) { unregister_sysctl_table(sd_sysctl_header); sd_sysctl_header = NULL; } #endif /* CONFIG_SYSCTL */ #endif /* CONFIG_SMP */ #ifdef CONFIG_FAIR_GROUP_SCHED static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) if (!se) return; PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); if (schedstat_enabled()) { PN_SCHEDSTAT(se->statistics.wait_start); PN_SCHEDSTAT(se->statistics.sleep_start); PN_SCHEDSTAT(se->statistics.block_start); PN_SCHEDSTAT(se->statistics.sleep_max); PN_SCHEDSTAT(se->statistics.block_max); PN_SCHEDSTAT(se->statistics.exec_max); PN_SCHEDSTAT(se->statistics.slice_max); PN_SCHEDSTAT(se->statistics.wait_max); PN_SCHEDSTAT(se->statistics.wait_sum); P_SCHEDSTAT(se->statistics.wait_count); } P(se->load.weight); P(se->runnable_weight); #ifdef CONFIG_SMP P(se->avg.load_avg); P(se->avg.util_avg); P(se->avg.runnable_load_avg); #endif #undef PN_SCHEDSTAT #undef PN #undef P_SCHEDSTAT #undef P } #endif #ifdef CONFIG_CGROUP_SCHED static char group_path[PATH_MAX]; static char *task_group_path(struct task_group *tg) { if (autogroup_path(tg, group_path, PATH_MAX)) return group_path; cgroup_path(tg->css.cgroup, group_path, PATH_MAX); return group_path; } #endif static void print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) { if (rq->curr == p) SEQ_printf(m, ">R"); else SEQ_printf(m, " %c", task_state_to_char(p)); SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio); SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); #ifdef CONFIG_NUMA_BALANCING SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); #endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %s", task_group_path(task_group(p))); #endif SEQ_printf(m, "\n"); } static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; SEQ_printf(m, "\n"); SEQ_printf(m, "runnable tasks:\n"); SEQ_printf(m, " S task PID tree-key switches prio" " wait-time sum-exec sum-sleep\n"); SEQ_printf(m, "-------------------------------------------------------" "----------------------------------------------------\n"); rcu_read_lock(); for_each_process_thread(g, p) { if (task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); } rcu_read_unlock(); } void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, spread, rq0_min_vruntime, spread0; struct rq *rq = cpu_rq(cpu); struct sched_entity *last; unsigned long flags; #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, "\n"); SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); #else SEQ_printf(m, "\n"); SEQ_printf(m, "cfs_rq[%d]:\n", cpu); #endif SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", SPLIT_NS(cfs_rq->exec_clock)); raw_spin_lock_irqsave(&rq->lock, flags); if (rb_first_cached(&cfs_rq->tasks_timeline)) MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; last = __pick_last_entity(cfs_rq); if (last) max_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; raw_spin_unlock_irqrestore(&rq->lock, flags); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", SPLIT_NS(MIN_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", SPLIT_NS(max_vruntime)); spread = max_vruntime - MIN_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); spread0 = min_vruntime - rq0_min_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", SPLIT_NS(spread0)); SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", cfs_rq->nr_spread_over); SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_SMP SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight); SEQ_printf(m, " .%-30s: %lu\n", "load_avg", cfs_rq->avg.load_avg); SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", cfs_rq->avg.runnable_load_avg); SEQ_printf(m, " .%-30s: %lu\n", "util_avg", cfs_rq->avg.util_avg); SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", cfs_rq->avg.util_est.enqueued); SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", cfs_rq->removed.load_avg); SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", cfs_rq->removed.util_avg); SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum", cfs_rq->removed.runnable_sum); #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", cfs_rq->tg_load_avg_contrib); SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", atomic_long_read(&cfs_rq->tg->load_avg)); #endif #endif #ifdef CONFIG_CFS_BANDWIDTH SEQ_printf(m, " .%-30s: %d\n", "throttled", cfs_rq->throttled); SEQ_printf(m, " .%-30s: %d\n", "throttle_count", cfs_rq->throttle_count); #endif #ifdef CONFIG_FAIR_GROUP_SCHED print_cfs_group_stats(m, cpu, cfs_rq->tg); #endif } void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) { #ifdef CONFIG_RT_GROUP_SCHED SEQ_printf(m, "\n"); SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); #else SEQ_printf(m, "\n"); SEQ_printf(m, "rt_rq[%d]:\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) #define PU(x) \ SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) PU(rt_nr_running); #ifdef CONFIG_SMP PU(rt_nr_migratory); #endif P(rt_throttled); PN(rt_time); PN(rt_runtime); #undef PN #undef PU #undef P } void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) { struct dl_bw *dl_bw; SEQ_printf(m, "\n"); SEQ_printf(m, "dl_rq[%d]:\n", cpu); #define PU(x) \ SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) PU(dl_nr_running); #ifdef CONFIG_SMP PU(dl_nr_migratory); dl_bw = &cpu_rq(cpu)->rd->dl_bw; #else dl_bw = &dl_rq->dl_bw; #endif SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); #undef PU } static void print_cpu(struct seq_file *m, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else SEQ_printf(m, "cpu#%d\n", cpu); #endif #define P(x) \ do { \ if (sizeof(rq->x) == 4) \ SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ else \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ } while (0) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) P(nr_running); SEQ_printf(m, " .%-30s: %lu\n", "load", rq->load.weight); P(nr_switches); P(nr_load_updates); P(nr_uninterruptible); PN(next_balance); SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); PN(clock); PN(clock_task); P(cpu_load[0]); P(cpu_load[1]); P(cpu_load[2]); P(cpu_load[3]); P(cpu_load[4]); #undef P #undef PN #ifdef CONFIG_SMP #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); P64(avg_idle); P64(max_idle_balance_cost); #undef P64 #endif #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); if (schedstat_enabled()) { P(yld_count); P(sched_count); P(sched_goidle); P(ttwu_count); P(ttwu_local); } #undef P spin_lock_irqsave(&sched_debug_lock, flags); print_cfs_stats(m, cpu); print_rt_stats(m, cpu); print_dl_stats(m, cpu); print_rq(m, rq, cpu); spin_unlock_irqrestore(&sched_debug_lock, flags); SEQ_printf(m, "\n"); } static const char *sched_tunable_scaling_names[] = { "none", "logaritmic", "linear" }; static void sched_debug_header(struct seq_file *m) { u64 ktime, sched_clk, cpu_clk; unsigned long flags; local_irq_save(flags); ktime = ktime_to_ns(ktime_get()); sched_clk = sched_clock(); cpu_clk = local_clock(); local_irq_restore(flags); SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); #define P(x) \ SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(ktime); PN(sched_clk); PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK P(sched_clock_stable()); #endif #undef PN #undef P SEQ_printf(m, "\n"); SEQ_printf(m, "sysctl_sched\n"); #define P(x) \ SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(sysctl_sched_latency); PN(sysctl_sched_min_granularity); PN(sysctl_sched_wakeup_granularity); P(sysctl_sched_child_runs_first); P(sysctl_sched_features); #undef PN #undef P SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", sysctl_sched_tunable_scaling, sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); SEQ_printf(m, "\n"); } static int sched_debug_show(struct seq_file *m, void *v) { int cpu = (unsigned long)(v - 2); if (cpu != -1) print_cpu(m, cpu); else sched_debug_header(m); return 0; } void sysrq_sched_debug_show(void) { int cpu; sched_debug_header(NULL); for_each_online_cpu(cpu) print_cpu(NULL, cpu); } /* * This itererator needs some explanation. * It returns 1 for the header position. * This means 2 is CPU 0. * In a hotplugged system some CPUs, including CPU 0, may be missing so we have * to use cpumask_* to iterate over the CPUs. */ static void *sched_debug_start(struct seq_file *file, loff_t *offset) { unsigned long n = *offset; if (n == 0) return (void *) 1; n--; if (n > 0) n = cpumask_next(n - 1, cpu_online_mask); else n = cpumask_first(cpu_online_mask); *offset = n + 1; if (n < nr_cpu_ids) return (void *)(unsigned long)(n + 2); return NULL; } static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; return sched_debug_start(file, offset); } static void sched_debug_stop(struct seq_file *file, void *data) { } static const struct seq_operations sched_debug_sops = { .start = sched_debug_start, .next = sched_debug_next, .stop = sched_debug_stop, .show = sched_debug_show, }; static int __init init_sched_debug_procfs(void) { if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops)) return -ENOMEM; return 0; } __initcall(init_sched_debug_procfs); #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) #ifdef CONFIG_NUMA_BALANCING void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, unsigned long tpf, unsigned long gsf, unsigned long gpf) { SEQ_printf(m, "numa_faults node=%d ", node); SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); } #endif static void sched_show_numa(struct task_struct *p, struct seq_file *m) { #ifdef CONFIG_NUMA_BALANCING struct mempolicy *pol; if (p->mm) P(mm->numa_scan_seq); task_lock(p); pol = p->mempolicy; if (pol && !(pol->flags & MPOL_F_MORON)) pol = NULL; mpol_get(pol); task_unlock(p); P(numa_pages_migrated); P(numa_preferred_nid); P(total_numa_faults); SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", task_node(p), task_numa_group_id(p)); show_numa_stats(p, m); mpol_put(pol); #endif } void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, struct seq_file *m) { unsigned long nr_switches; SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), get_nr_threads(p)); SEQ_printf(m, "---------------------------------------------------------" "----------\n"); #define __P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) #define P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) #define P_SCHEDSTAT(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) #define __PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) #define PN_SCHEDSTAT(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) PN(se.exec_start); PN(se.vruntime); PN(se.sum_exec_runtime); nr_switches = p->nvcsw + p->nivcsw; P(se.nr_migrations); if (schedstat_enabled()) { u64 avg_atom, avg_per_cpu; PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); PN_SCHEDSTAT(se.statistics.wait_start); PN_SCHEDSTAT(se.statistics.sleep_start); PN_SCHEDSTAT(se.statistics.block_start); PN_SCHEDSTAT(se.statistics.sleep_max); PN_SCHEDSTAT(se.statistics.block_max); PN_SCHEDSTAT(se.statistics.exec_max); PN_SCHEDSTAT(se.statistics.slice_max); PN_SCHEDSTAT(se.statistics.wait_max); PN_SCHEDSTAT(se.statistics.wait_sum); P_SCHEDSTAT(se.statistics.wait_count); PN_SCHEDSTAT(se.statistics.iowait_sum); P_SCHEDSTAT(se.statistics.iowait_count); P_SCHEDSTAT(se.statistics.nr_migrations_cold); P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); P_SCHEDSTAT(se.statistics.nr_forced_migrations); P_SCHEDSTAT(se.statistics.nr_wakeups); P_SCHEDSTAT(se.statistics.nr_wakeups_sync); P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); P_SCHEDSTAT(se.statistics.nr_wakeups_local); P_SCHEDSTAT(se.statistics.nr_wakeups_remote); P_SCHEDSTAT(se.statistics.nr_wakeups_affine); P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); P_SCHEDSTAT(se.statistics.nr_wakeups_passive); P_SCHEDSTAT(se.statistics.nr_wakeups_idle); avg_atom = p->se.sum_exec_runtime; if (nr_switches) avg_atom = div64_ul(avg_atom, nr_switches); else avg_atom = -1LL; avg_per_cpu = p->se.sum_exec_runtime; if (p->se.nr_migrations) { avg_per_cpu = div64_u64(avg_per_cpu, p->se.nr_migrations); } else { avg_per_cpu = -1LL; } __PN(avg_atom); __PN(avg_per_cpu); } __P(nr_switches); SEQ_printf(m, "%-45s:%21Ld\n", "nr_voluntary_switches", (long long)p->nvcsw); SEQ_printf(m, "%-45s:%21Ld\n", "nr_involuntary_switches", (long long)p->nivcsw); P(se.load.weight); P(se.runnable_weight); #ifdef CONFIG_SMP P(se.avg.load_sum); P(se.avg.runnable_load_sum); P(se.avg.util_sum); P(se.avg.load_avg); P(se.avg.runnable_load_avg); P(se.avg.util_avg); P(se.avg.last_update_time); P(se.avg.util_est.ewma); P(se.avg.util_est.enqueued); #endif P(policy); P(prio); if (task_has_dl_policy(p)) { P(dl.runtime); P(dl.deadline); } #undef PN_SCHEDSTAT #undef PN #undef __PN #undef P_SCHEDSTAT #undef P #undef __P { unsigned int this_cpu = raw_smp_processor_id(); u64 t0, t1; t0 = cpu_clock(this_cpu); t1 = cpu_clock(this_cpu); SEQ_printf(m, "%-45s:%21Ld\n", "clock-delta", (long long)(t1-t0)); } sched_show_numa(p, m); } void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1