Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaroslav Kysela | 6603 | 96.62% | 17 | 50.00% |
Takashi Iwai | 161 | 2.36% | 7 | 20.59% |
David Flater | 54 | 0.79% | 3 | 8.82% |
Krzysztof Helt | 6 | 0.09% | 2 | 5.88% |
Paul Gortmaker | 3 | 0.04% | 1 | 2.94% |
Nishanth Aravamudan | 3 | 0.04% | 1 | 2.94% |
Alan Cox | 2 | 0.03% | 1 | 2.94% |
Ingo Molnar | 1 | 0.01% | 1 | 2.94% |
Lucas De Marchi | 1 | 0.01% | 1 | 2.94% |
Total | 6834 | 34 |
/* * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk> * Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de> * * Routines for control of EMU8000 chip * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/wait.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/ioport.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/io.h> #include <sound/core.h> #include <sound/emu8000.h> #include <sound/emu8000_reg.h> #include <linux/uaccess.h> #include <linux/init.h> #include <sound/control.h> #include <sound/initval.h> /* * emu8000 register controls */ /* * The following routines read and write registers on the emu8000. They * should always be called via the EMU8000*READ/WRITE macros and never * directly. The macros handle the port number and command word. */ /* Write a word */ void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val) { unsigned long flags; spin_lock_irqsave(&emu->reg_lock, flags); if (reg != emu->last_reg) { outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */ emu->last_reg = reg; } outw((unsigned short)val, port); /* Send data */ spin_unlock_irqrestore(&emu->reg_lock, flags); } /* Read a word */ unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg) { unsigned short res; unsigned long flags; spin_lock_irqsave(&emu->reg_lock, flags); if (reg != emu->last_reg) { outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */ emu->last_reg = reg; } res = inw(port); /* Read data */ spin_unlock_irqrestore(&emu->reg_lock, flags); return res; } /* Write a double word */ void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val) { unsigned long flags; spin_lock_irqsave(&emu->reg_lock, flags); if (reg != emu->last_reg) { outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */ emu->last_reg = reg; } outw((unsigned short)val, port); /* Send low word of data */ outw((unsigned short)(val>>16), port+2); /* Send high word of data */ spin_unlock_irqrestore(&emu->reg_lock, flags); } /* Read a double word */ unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg) { unsigned short low; unsigned int res; unsigned long flags; spin_lock_irqsave(&emu->reg_lock, flags); if (reg != emu->last_reg) { outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */ emu->last_reg = reg; } low = inw(port); /* Read low word of data */ res = low + (inw(port+2) << 16); spin_unlock_irqrestore(&emu->reg_lock, flags); return res; } /* * Set up / close a channel to be used for DMA. */ /*exported*/ void snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode) { unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0; mode &= EMU8000_RAM_MODE_MASK; if (mode == EMU8000_RAM_CLOSE) { EMU8000_CCCA_WRITE(emu, ch, 0); EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F); return; } EMU8000_DCYSUSV_WRITE(emu, ch, 0x80); EMU8000_VTFT_WRITE(emu, ch, 0); EMU8000_CVCF_WRITE(emu, ch, 0); EMU8000_PTRX_WRITE(emu, ch, 0x40000000); EMU8000_CPF_WRITE(emu, ch, 0x40000000); EMU8000_PSST_WRITE(emu, ch, 0); EMU8000_CSL_WRITE(emu, ch, 0); if (mode == EMU8000_RAM_WRITE) /* DMA write */ EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit); else /* DMA read */ EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit); } /* */ static void snd_emu8000_read_wait(struct snd_emu8000 *emu) { while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) { schedule_timeout_interruptible(1); if (signal_pending(current)) break; } } /* */ static void snd_emu8000_write_wait(struct snd_emu8000 *emu) { while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) { schedule_timeout_interruptible(1); if (signal_pending(current)) break; } } /* * detect a card at the given port */ static int snd_emu8000_detect(struct snd_emu8000 *emu) { /* Initialise */ EMU8000_HWCF1_WRITE(emu, 0x0059); EMU8000_HWCF2_WRITE(emu, 0x0020); EMU8000_HWCF3_WRITE(emu, 0x0000); /* Check for a recognisable emu8000 */ /* if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c) return -ENODEV; */ if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058) return -ENODEV; if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003) return -ENODEV; snd_printdd("EMU8000 [0x%lx]: Synth chip found\n", emu->port1); return 0; } /* * intiailize audio channels */ static void init_audio(struct snd_emu8000 *emu) { int ch; /* turn off envelope engines */ for (ch = 0; ch < EMU8000_CHANNELS; ch++) EMU8000_DCYSUSV_WRITE(emu, ch, 0x80); /* reset all other parameters to zero */ for (ch = 0; ch < EMU8000_CHANNELS; ch++) { EMU8000_ENVVOL_WRITE(emu, ch, 0); EMU8000_ENVVAL_WRITE(emu, ch, 0); EMU8000_DCYSUS_WRITE(emu, ch, 0); EMU8000_ATKHLDV_WRITE(emu, ch, 0); EMU8000_LFO1VAL_WRITE(emu, ch, 0); EMU8000_ATKHLD_WRITE(emu, ch, 0); EMU8000_LFO2VAL_WRITE(emu, ch, 0); EMU8000_IP_WRITE(emu, ch, 0); EMU8000_IFATN_WRITE(emu, ch, 0); EMU8000_PEFE_WRITE(emu, ch, 0); EMU8000_FMMOD_WRITE(emu, ch, 0); EMU8000_TREMFRQ_WRITE(emu, ch, 0); EMU8000_FM2FRQ2_WRITE(emu, ch, 0); EMU8000_PTRX_WRITE(emu, ch, 0); EMU8000_VTFT_WRITE(emu, ch, 0); EMU8000_PSST_WRITE(emu, ch, 0); EMU8000_CSL_WRITE(emu, ch, 0); EMU8000_CCCA_WRITE(emu, ch, 0); } for (ch = 0; ch < EMU8000_CHANNELS; ch++) { EMU8000_CPF_WRITE(emu, ch, 0); EMU8000_CVCF_WRITE(emu, ch, 0); } } /* * initialize DMA address */ static void init_dma(struct snd_emu8000 *emu) { EMU8000_SMALR_WRITE(emu, 0); EMU8000_SMARR_WRITE(emu, 0); EMU8000_SMALW_WRITE(emu, 0); EMU8000_SMARW_WRITE(emu, 0); } /* * initialization arrays; from ADIP */ static unsigned short init1[128] = { 0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330, 0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730, 0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30, 0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30, 0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330, 0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730, 0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30, 0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30, 0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330, 0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730, 0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30, 0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30, 0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330, 0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730, 0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30, 0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30, }; static unsigned short init2[128] = { 0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330, 0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730, 0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30, 0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30, 0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330, 0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730, 0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30, 0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30, 0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330, 0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730, 0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30, 0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30, 0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330, 0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730, 0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30, 0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30, }; static unsigned short init3[128] = { 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5, 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254, 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234, 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224, 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254, 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264, 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294, 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3, 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287, 0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7, 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386, 0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55, 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308, 0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F, 0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319, 0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570, }; static unsigned short init4[128] = { 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5, 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254, 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234, 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224, 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254, 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264, 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294, 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3, 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287, 0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7, 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386, 0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55, 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308, 0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F, 0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319, 0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570, }; /* send an initialization array * Taken from the oss driver, not obvious from the doc how this * is meant to work */ static void send_array(struct snd_emu8000 *emu, unsigned short *data, int size) { int i; unsigned short *p; p = data; for (i = 0; i < size; i++, p++) EMU8000_INIT1_WRITE(emu, i, *p); for (i = 0; i < size; i++, p++) EMU8000_INIT2_WRITE(emu, i, *p); for (i = 0; i < size; i++, p++) EMU8000_INIT3_WRITE(emu, i, *p); for (i = 0; i < size; i++, p++) EMU8000_INIT4_WRITE(emu, i, *p); } /* * Send initialization arrays to start up, this just follows the * initialisation sequence in the adip. */ static void init_arrays(struct snd_emu8000 *emu) { send_array(emu, init1, ARRAY_SIZE(init1)/4); msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */ send_array(emu, init2, ARRAY_SIZE(init2)/4); send_array(emu, init3, ARRAY_SIZE(init3)/4); EMU8000_HWCF4_WRITE(emu, 0); EMU8000_HWCF5_WRITE(emu, 0x83); EMU8000_HWCF6_WRITE(emu, 0x8000); send_array(emu, init4, ARRAY_SIZE(init4)/4); } #define UNIQUE_ID1 0xa5b9 #define UNIQUE_ID2 0x9d53 /* * Size the onboard memory. * This is written so as not to need arbitrary delays after the write. It * seems that the only way to do this is to use the one channel and keep * reallocating between read and write. */ static void size_dram(struct snd_emu8000 *emu) { int i, size; if (emu->dram_checked) return; size = 0; /* write out a magic number */ snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE); snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ); EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET); EMU8000_SMLD_WRITE(emu, UNIQUE_ID1); snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */ snd_emu8000_write_wait(emu); /* * Detect first 512 KiB. If a write succeeds at the beginning of a * 512 KiB page we assume that the whole page is there. */ EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET); EMU8000_SMLD_READ(emu); /* discard stale data */ if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1) goto skip_detect; /* No RAM */ snd_emu8000_read_wait(emu); for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) { /* Write a unique data on the test address. * if the address is out of range, the data is written on * 0x200000(=EMU8000_DRAM_OFFSET). Then the id word is * changed by this data. */ /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/ EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1)); EMU8000_SMLD_WRITE(emu, UNIQUE_ID2); snd_emu8000_write_wait(emu); /* * read the data on the just written DRAM address * if not the same then we have reached the end of ram. */ /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/ EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1)); /*snd_emu8000_read_wait(emu);*/ EMU8000_SMLD_READ(emu); /* discard stale data */ if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2) break; /* no memory at this address */ snd_emu8000_read_wait(emu); /* * If it is the same it could be that the address just * wraps back to the beginning; so check to see if the * initial value has been overwritten. */ EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET); EMU8000_SMLD_READ(emu); /* discard stale data */ if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1) break; /* we must have wrapped around */ snd_emu8000_read_wait(emu); /* Otherwise, it's valid memory. */ } skip_detect: /* wait until FULL bit in SMAxW register is false */ for (i = 0; i < 10000; i++) { if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0) break; schedule_timeout_interruptible(1); if (signal_pending(current)) break; } snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE); snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE); pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n", emu->port1, size/1024); emu->mem_size = size; emu->dram_checked = 1; } /* * Initiailise the FM section. You have to do this to use sample RAM * and therefore lose 2 voices. */ /*exported*/ void snd_emu8000_init_fm(struct snd_emu8000 *emu) { unsigned long flags; /* Initialize the last two channels for DRAM refresh and producing the reverb and chorus effects for Yamaha OPL-3 synthesizer */ /* 31: FM left channel, 0xffffe0-0xffffe8 */ EMU8000_DCYSUSV_WRITE(emu, 30, 0x80); EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */ EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24)); EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8)); EMU8000_CPF_WRITE(emu, 30, 0); EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3); /* 32: FM right channel, 0xfffff0-0xfffff8 */ EMU8000_DCYSUSV_WRITE(emu, 31, 0x80); EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */ EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24)); EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8)); EMU8000_CPF_WRITE(emu, 31, 0x8000); EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3); snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0); spin_lock_irqsave(&emu->reg_lock, flags); while (!(inw(EMU8000_PTR(emu)) & 0x1000)) ; while ((inw(EMU8000_PTR(emu)) & 0x1000)) ; spin_unlock_irqrestore(&emu->reg_lock, flags); snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828); /* this is really odd part.. */ outb(0x3C, EMU8000_PTR(emu)); outb(0, EMU8000_DATA1(emu)); /* skew volume & cutoff */ EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF); EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF); } /* * The main initialization routine. */ static void snd_emu8000_init_hw(struct snd_emu8000 *emu) { int i; emu->last_reg = 0xffff; /* reset the last register index */ /* initialize hardware configuration */ EMU8000_HWCF1_WRITE(emu, 0x0059); EMU8000_HWCF2_WRITE(emu, 0x0020); /* disable audio; this seems to reduce a clicking noise a bit.. */ EMU8000_HWCF3_WRITE(emu, 0); /* initialize audio channels */ init_audio(emu); /* initialize DMA */ init_dma(emu); /* initialize init arrays */ init_arrays(emu); /* * Initialize the FM section of the AWE32, this is needed * for DRAM refresh as well */ snd_emu8000_init_fm(emu); /* terminate all voices */ for (i = 0; i < EMU8000_DRAM_VOICES; i++) EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F); /* check DRAM memory size */ size_dram(emu); /* enable audio */ EMU8000_HWCF3_WRITE(emu, 0x4); /* set equzlier, chorus and reverb modes */ snd_emu8000_update_equalizer(emu); snd_emu8000_update_chorus_mode(emu); snd_emu8000_update_reverb_mode(emu); } /*---------------------------------------------------------------- * Bass/Treble Equalizer *----------------------------------------------------------------*/ static unsigned short bass_parm[12][3] = { {0xD26A, 0xD36A, 0x0000}, /* -12 dB */ {0xD25B, 0xD35B, 0x0000}, /* -8 */ {0xD24C, 0xD34C, 0x0000}, /* -6 */ {0xD23D, 0xD33D, 0x0000}, /* -4 */ {0xD21F, 0xD31F, 0x0000}, /* -2 */ {0xC208, 0xC308, 0x0001}, /* 0 (HW default) */ {0xC219, 0xC319, 0x0001}, /* +2 */ {0xC22A, 0xC32A, 0x0001}, /* +4 */ {0xC24C, 0xC34C, 0x0001}, /* +6 */ {0xC26E, 0xC36E, 0x0001}, /* +8 */ {0xC248, 0xC384, 0x0002}, /* +10 */ {0xC26A, 0xC36A, 0x0002}, /* +12 dB */ }; static unsigned short treble_parm[12][9] = { {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */ {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */ {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002} /* +12 dB */ }; /* * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB] */ /*exported*/ void snd_emu8000_update_equalizer(struct snd_emu8000 *emu) { unsigned short w; int bass = emu->bass_level; int treble = emu->treble_level; if (bass < 0 || bass > 11 || treble < 0 || treble > 11) return; EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]); EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]); EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]); EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]); EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]); EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]); EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]); EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]); EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]); EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]); w = bass_parm[bass][2] + treble_parm[treble][8]; EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262)); EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362)); } /*---------------------------------------------------------------- * Chorus mode control *----------------------------------------------------------------*/ /* * chorus mode parameters */ #define SNDRV_EMU8000_CHORUS_1 0 #define SNDRV_EMU8000_CHORUS_2 1 #define SNDRV_EMU8000_CHORUS_3 2 #define SNDRV_EMU8000_CHORUS_4 3 #define SNDRV_EMU8000_CHORUS_FEEDBACK 4 #define SNDRV_EMU8000_CHORUS_FLANGER 5 #define SNDRV_EMU8000_CHORUS_SHORTDELAY 6 #define SNDRV_EMU8000_CHORUS_SHORTDELAY2 7 #define SNDRV_EMU8000_CHORUS_PREDEFINED 8 /* user can define chorus modes up to 32 */ #define SNDRV_EMU8000_CHORUS_NUMBERS 32 struct soundfont_chorus_fx { unsigned short feedback; /* feedback level (0xE600-0xE6FF) */ unsigned short delay_offset; /* delay (0-0x0DA3) [1/44100 sec] */ unsigned short lfo_depth; /* LFO depth (0xBC00-0xBCFF) */ unsigned int delay; /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */ unsigned int lfo_freq; /* LFO freq LFO freq (0-0xFFFFFFFF) */ }; /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */ static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS]; static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = { {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */ {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */ {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */ {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */ {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */ {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */ {0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */ {0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */ }; /*exported*/ int snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len) { struct soundfont_chorus_fx rec; if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) { snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode); return -EINVAL; } if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec))) return -EFAULT; chorus_parm[mode] = rec; chorus_defined[mode] = 1; return 0; } /*exported*/ void snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu) { int effect = emu->chorus_mode; if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS || (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect])) return; EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback); EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset); EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth); EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay); EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq); EMU8000_HWCF6_WRITE(emu, 0x8000); EMU8000_HWCF7_WRITE(emu, 0x0000); } /*---------------------------------------------------------------- * Reverb mode control *----------------------------------------------------------------*/ /* * reverb mode parameters */ #define SNDRV_EMU8000_REVERB_ROOM1 0 #define SNDRV_EMU8000_REVERB_ROOM2 1 #define SNDRV_EMU8000_REVERB_ROOM3 2 #define SNDRV_EMU8000_REVERB_HALL1 3 #define SNDRV_EMU8000_REVERB_HALL2 4 #define SNDRV_EMU8000_REVERB_PLATE 5 #define SNDRV_EMU8000_REVERB_DELAY 6 #define SNDRV_EMU8000_REVERB_PANNINGDELAY 7 #define SNDRV_EMU8000_REVERB_PREDEFINED 8 /* user can define reverb modes up to 32 */ #define SNDRV_EMU8000_REVERB_NUMBERS 32 struct soundfont_reverb_fx { unsigned short parms[28]; }; /* reverb mode settings; write the following 28 data of 16 bit length * on the corresponding ports in the reverb_cmds array */ static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS]; static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = { {{ /* room 1 */ 0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4, 0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516, 0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* room 2 */ 0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548, 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* room 3 */ 0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516, 0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A, }}, {{ /* hall 1 */ 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548, 0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, }}, {{ /* hall 2 */ 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254, 0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3, 0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* plate */ 0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548, 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* delay */ 0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204, 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500, 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, }}, {{ /* panning delay */ 0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204, 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500, 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, }}, }; enum { DATA1, DATA2 }; #define AWE_INIT1(c) EMU8000_CMD(2,c), DATA1 #define AWE_INIT2(c) EMU8000_CMD(2,c), DATA2 #define AWE_INIT3(c) EMU8000_CMD(3,c), DATA1 #define AWE_INIT4(c) EMU8000_CMD(3,c), DATA2 static struct reverb_cmd_pair { unsigned short cmd, port; } reverb_cmds[28] = { {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)}, {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)}, {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)}, {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)}, {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)}, {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)}, {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)}, }; /*exported*/ int snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len) { struct soundfont_reverb_fx rec; if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) { snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode); return -EINVAL; } if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec))) return -EFAULT; reverb_parm[mode] = rec; reverb_defined[mode] = 1; return 0; } /*exported*/ void snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu) { int effect = emu->reverb_mode; int i; if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS || (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect])) return; for (i = 0; i < 28; i++) { int port; if (reverb_cmds[i].port == DATA1) port = EMU8000_DATA1(emu); else port = EMU8000_DATA2(emu); snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]); } } /*---------------------------------------------------------------- * mixer interface *----------------------------------------------------------------*/ /* * bass/treble */ static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 11; return 0; } static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level; return 0; } static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); unsigned long flags; int change; unsigned short val1; val1 = ucontrol->value.integer.value[0] % 12; spin_lock_irqsave(&emu->control_lock, flags); if (kcontrol->private_value) { change = val1 != emu->treble_level; emu->treble_level = val1; } else { change = val1 != emu->bass_level; emu->bass_level = val1; } spin_unlock_irqrestore(&emu->control_lock, flags); snd_emu8000_update_equalizer(emu); return change; } static struct snd_kcontrol_new mixer_bass_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Synth Tone Control - Bass", .info = mixer_bass_treble_info, .get = mixer_bass_treble_get, .put = mixer_bass_treble_put, .private_value = 0, }; static struct snd_kcontrol_new mixer_treble_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Synth Tone Control - Treble", .info = mixer_bass_treble_info, .get = mixer_bass_treble_get, .put = mixer_bass_treble_put, .private_value = 1, }; /* * chorus/reverb mode */ static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1); return 0; } static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode; return 0; } static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); unsigned long flags; int change; unsigned short val1; spin_lock_irqsave(&emu->control_lock, flags); if (kcontrol->private_value) { val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS; change = val1 != emu->chorus_mode; emu->chorus_mode = val1; } else { val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS; change = val1 != emu->reverb_mode; emu->reverb_mode = val1; } spin_unlock_irqrestore(&emu->control_lock, flags); if (change) { if (kcontrol->private_value) snd_emu8000_update_chorus_mode(emu); else snd_emu8000_update_reverb_mode(emu); } return change; } static struct snd_kcontrol_new mixer_chorus_mode_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Chorus Mode", .info = mixer_chorus_reverb_info, .get = mixer_chorus_reverb_get, .put = mixer_chorus_reverb_put, .private_value = 1, }; static struct snd_kcontrol_new mixer_reverb_mode_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Reverb Mode", .info = mixer_chorus_reverb_info, .get = mixer_chorus_reverb_get, .put = mixer_chorus_reverb_put, .private_value = 0, }; /* * FM OPL3 chorus/reverb depth */ static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 255; return 0; } static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth; return 0; } static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol); unsigned long flags; int change; unsigned short val1; val1 = ucontrol->value.integer.value[0] % 256; spin_lock_irqsave(&emu->control_lock, flags); if (kcontrol->private_value) { change = val1 != emu->fm_chorus_depth; emu->fm_chorus_depth = val1; } else { change = val1 != emu->fm_reverb_depth; emu->fm_reverb_depth = val1; } spin_unlock_irqrestore(&emu->control_lock, flags); if (change) snd_emu8000_init_fm(emu); return change; } static struct snd_kcontrol_new mixer_fm_chorus_depth_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "FM Chorus Depth", .info = mixer_fm_depth_info, .get = mixer_fm_depth_get, .put = mixer_fm_depth_put, .private_value = 1, }; static struct snd_kcontrol_new mixer_fm_reverb_depth_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "FM Reverb Depth", .info = mixer_fm_depth_info, .get = mixer_fm_depth_get, .put = mixer_fm_depth_put, .private_value = 0, }; static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = { &mixer_bass_control, &mixer_treble_control, &mixer_chorus_mode_control, &mixer_reverb_mode_control, &mixer_fm_chorus_depth_control, &mixer_fm_reverb_depth_control, }; /* * create and attach mixer elements for WaveTable treble/bass controls */ static int snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu) { int i, err = 0; if (snd_BUG_ON(!emu || !card)) return -EINVAL; spin_lock_init(&emu->control_lock); memset(emu->controls, 0, sizeof(emu->controls)); for (i = 0; i < EMU8000_NUM_CONTROLS; i++) { if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0) goto __error; } return 0; __error: for (i = 0; i < EMU8000_NUM_CONTROLS; i++) { down_write(&card->controls_rwsem); if (emu->controls[i]) snd_ctl_remove(card, emu->controls[i]); up_write(&card->controls_rwsem); } return err; } /* * free resources */ static int snd_emu8000_free(struct snd_emu8000 *hw) { release_and_free_resource(hw->res_port1); release_and_free_resource(hw->res_port2); release_and_free_resource(hw->res_port3); kfree(hw); return 0; } /* */ static int snd_emu8000_dev_free(struct snd_device *device) { struct snd_emu8000 *hw = device->device_data; return snd_emu8000_free(hw); } /* * initialize and register emu8000 synth device. */ int snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports, struct snd_seq_device **awe_ret) { struct snd_seq_device *awe; struct snd_emu8000 *hw; int err; static struct snd_device_ops ops = { .dev_free = snd_emu8000_dev_free, }; if (awe_ret) *awe_ret = NULL; if (seq_ports <= 0) return 0; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (hw == NULL) return -ENOMEM; spin_lock_init(&hw->reg_lock); hw->index = index; hw->port1 = port; hw->port2 = port + 0x400; hw->port3 = port + 0x800; if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) || !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) || !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) { snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3); snd_emu8000_free(hw); return -EBUSY; } hw->mem_size = 0; hw->card = card; hw->seq_ports = seq_ports; hw->bass_level = 5; hw->treble_level = 9; hw->chorus_mode = 2; hw->reverb_mode = 4; hw->fm_chorus_depth = 0; hw->fm_reverb_depth = 0; if (snd_emu8000_detect(hw) < 0) { snd_emu8000_free(hw); return -ENODEV; } snd_emu8000_init_hw(hw); if ((err = snd_emu8000_create_mixer(card, hw)) < 0) { snd_emu8000_free(hw); return err; } if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) { snd_emu8000_free(hw); return err; } #if IS_ENABLED(CONFIG_SND_SEQUENCER) if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000, sizeof(struct snd_emu8000*), &awe) >= 0) { strcpy(awe->name, "EMU-8000"); *(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw; } #else awe = NULL; #endif if (awe_ret) *awe_ret = awe; return 0; } /* * exported stuff */ EXPORT_SYMBOL(snd_emu8000_poke); EXPORT_SYMBOL(snd_emu8000_peek); EXPORT_SYMBOL(snd_emu8000_poke_dw); EXPORT_SYMBOL(snd_emu8000_peek_dw); EXPORT_SYMBOL(snd_emu8000_dma_chan); EXPORT_SYMBOL(snd_emu8000_init_fm); EXPORT_SYMBOL(snd_emu8000_load_chorus_fx); EXPORT_SYMBOL(snd_emu8000_load_reverb_fx); EXPORT_SYMBOL(snd_emu8000_update_chorus_mode); EXPORT_SYMBOL(snd_emu8000_update_reverb_mode); EXPORT_SYMBOL(snd_emu8000_update_equalizer);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1