Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Paprocki | 1527 | 29.95% | 1 | 1.41% |
Jaroslav Kysela | 1480 | 29.03% | 6 | 8.45% |
Takashi Iwai | 1218 | 23.89% | 40 | 56.34% |
Fengguang Wu | 218 | 4.28% | 6 | 8.45% |
David Henningsson | 193 | 3.79% | 2 | 2.82% |
Wang Xingchao | 186 | 3.65% | 5 | 7.04% |
Mengdong Lin | 177 | 3.47% | 1 | 1.41% |
Michael Karcher | 31 | 0.61% | 1 | 1.41% |
Jonathan Phenix | 23 | 0.45% | 1 | 1.41% |
ChenLi Tien | 15 | 0.29% | 1 | 1.41% |
Pascal de Bruijn | 11 | 0.22% | 1 | 1.41% |
Dan Carpenter | 8 | 0.16% | 1 | 1.41% |
Matt Ranostay | 4 | 0.08% | 1 | 1.41% |
Kees Cook | 3 | 0.06% | 1 | 1.41% |
Adrian Bunk | 3 | 0.06% | 1 | 1.41% |
Pierre-Louis Bossart | 1 | 0.02% | 1 | 1.41% |
Robin H. Johnson | 1 | 0.02% | 1 | 1.41% |
Total | 5099 | 71 |
/* * Universal Interface for Intel High Definition Audio Codec * * Generic proc interface * * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> #include <linux/slab.h> #include <sound/core.h> #include <linux/module.h> #include <sound/hda_codec.h> #include "hda_local.h" static int dump_coef = -1; module_param(dump_coef, int, 0644); MODULE_PARM_DESC(dump_coef, "Dump processing coefficients in codec proc file (-1=auto, 0=disable, 1=enable)"); /* always use noncached version */ #define param_read(codec, nid, parm) \ snd_hdac_read_parm_uncached(&(codec)->core, nid, parm) static const char *get_wid_type_name(unsigned int wid_value) { static const char * const names[16] = { [AC_WID_AUD_OUT] = "Audio Output", [AC_WID_AUD_IN] = "Audio Input", [AC_WID_AUD_MIX] = "Audio Mixer", [AC_WID_AUD_SEL] = "Audio Selector", [AC_WID_PIN] = "Pin Complex", [AC_WID_POWER] = "Power Widget", [AC_WID_VOL_KNB] = "Volume Knob Widget", [AC_WID_BEEP] = "Beep Generator Widget", [AC_WID_VENDOR] = "Vendor Defined Widget", }; if (wid_value == -1) return "UNKNOWN Widget"; wid_value &= 0xf; if (names[wid_value]) return names[wid_value]; else return "UNKNOWN Widget"; } static void print_nid_array(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, struct snd_array *array) { int i; struct hda_nid_item *items = array->list, *item; struct snd_kcontrol *kctl; for (i = 0; i < array->used; i++) { item = &items[i]; if (item->nid == nid) { kctl = item->kctl; snd_iprintf(buffer, " Control: name=\"%s\", index=%i, device=%i\n", kctl->id.name, kctl->id.index + item->index, kctl->id.device); if (item->flags & HDA_NID_ITEM_AMP) snd_iprintf(buffer, " ControlAmp: chs=%lu, dir=%s, " "idx=%lu, ofs=%lu\n", get_amp_channels(kctl), get_amp_direction(kctl) ? "Out" : "In", get_amp_index(kctl), get_amp_offset(kctl)); } } } static void print_nid_pcms(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { int type; struct hda_pcm *cpcm; list_for_each_entry(cpcm, &codec->pcm_list_head, list) { for (type = 0; type < 2; type++) { if (cpcm->stream[type].nid != nid || cpcm->pcm == NULL) continue; snd_iprintf(buffer, " Device: name=\"%s\", " "type=\"%s\", device=%i\n", cpcm->name, snd_hda_pcm_type_name[cpcm->pcm_type], cpcm->pcm->device); } } } static void print_amp_caps(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, int dir) { unsigned int caps; caps = param_read(codec, nid, dir == HDA_OUTPUT ? AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP); if (caps == -1 || caps == 0) { snd_iprintf(buffer, "N/A\n"); return; } snd_iprintf(buffer, "ofs=0x%02x, nsteps=0x%02x, stepsize=0x%02x, " "mute=%x\n", caps & AC_AMPCAP_OFFSET, (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT, (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT, (caps & AC_AMPCAP_MUTE) >> AC_AMPCAP_MUTE_SHIFT); } /* is this a stereo widget or a stereo-to-mono mix? */ static bool is_stereo_amps(struct hda_codec *codec, hda_nid_t nid, int dir, unsigned int wcaps, int indices) { hda_nid_t conn; if (wcaps & AC_WCAP_STEREO) return true; /* check for a stereo-to-mono mix; it must be: * only a single connection, only for input, and only a mixer widget */ if (indices != 1 || dir != HDA_INPUT || get_wcaps_type(wcaps) != AC_WID_AUD_MIX) return false; if (snd_hda_get_raw_connections(codec, nid, &conn, 1) < 0) return false; /* the connection source is a stereo? */ wcaps = snd_hda_param_read(codec, conn, AC_PAR_AUDIO_WIDGET_CAP); return !!(wcaps & AC_WCAP_STEREO); } static void print_amp_vals(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, int dir, unsigned int wcaps, int indices) { unsigned int val; bool stereo; int i; stereo = is_stereo_amps(codec, nid, dir, wcaps, indices); dir = dir == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT; for (i = 0; i < indices; i++) { snd_iprintf(buffer, " ["); val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, AC_AMP_GET_LEFT | dir | i); snd_iprintf(buffer, "0x%02x", val); if (stereo) { val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, AC_AMP_GET_RIGHT | dir | i); snd_iprintf(buffer, " 0x%02x", val); } snd_iprintf(buffer, "]"); } snd_iprintf(buffer, "\n"); } static void print_pcm_rates(struct snd_info_buffer *buffer, unsigned int pcm) { static unsigned int rates[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, 384000 }; int i; pcm &= AC_SUPPCM_RATES; snd_iprintf(buffer, " rates [0x%x]:", pcm); for (i = 0; i < ARRAY_SIZE(rates); i++) if (pcm & (1 << i)) snd_iprintf(buffer, " %d", rates[i]); snd_iprintf(buffer, "\n"); } static void print_pcm_bits(struct snd_info_buffer *buffer, unsigned int pcm) { char buf[SND_PRINT_BITS_ADVISED_BUFSIZE]; snd_iprintf(buffer, " bits [0x%x]:", (pcm >> 16) & 0xff); snd_print_pcm_bits(pcm, buf, sizeof(buf)); snd_iprintf(buffer, "%s\n", buf); } static void print_pcm_formats(struct snd_info_buffer *buffer, unsigned int streams) { snd_iprintf(buffer, " formats [0x%x]:", streams & 0xf); if (streams & AC_SUPFMT_PCM) snd_iprintf(buffer, " PCM"); if (streams & AC_SUPFMT_FLOAT32) snd_iprintf(buffer, " FLOAT"); if (streams & AC_SUPFMT_AC3) snd_iprintf(buffer, " AC3"); snd_iprintf(buffer, "\n"); } static void print_pcm_caps(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { unsigned int pcm = param_read(codec, nid, AC_PAR_PCM); unsigned int stream = param_read(codec, nid, AC_PAR_STREAM); if (pcm == -1 || stream == -1) { snd_iprintf(buffer, "N/A\n"); return; } print_pcm_rates(buffer, pcm); print_pcm_bits(buffer, pcm); print_pcm_formats(buffer, stream); } static const char *get_jack_connection(u32 cfg) { static const char * const names[16] = { "Unknown", "1/8", "1/4", "ATAPI", "RCA", "Optical","Digital", "Analog", "DIN", "XLR", "RJ11", "Comb", NULL, NULL, NULL, "Other" }; cfg = (cfg & AC_DEFCFG_CONN_TYPE) >> AC_DEFCFG_CONN_TYPE_SHIFT; if (names[cfg]) return names[cfg]; else return "UNKNOWN"; } static const char *get_jack_color(u32 cfg) { static const char * const names[16] = { "Unknown", "Black", "Grey", "Blue", "Green", "Red", "Orange", "Yellow", "Purple", "Pink", NULL, NULL, NULL, NULL, "White", "Other", }; cfg = (cfg & AC_DEFCFG_COLOR) >> AC_DEFCFG_COLOR_SHIFT; if (names[cfg]) return names[cfg]; else return "UNKNOWN"; } /* * Parse the pin default config value and returns the string of the * jack location, e.g. "Rear", "Front", etc. */ static const char *get_jack_location(u32 cfg) { static const char * const bases[7] = { "N/A", "Rear", "Front", "Left", "Right", "Top", "Bottom", }; static const unsigned char specials_idx[] = { 0x07, 0x08, 0x17, 0x18, 0x19, 0x37, 0x38 }; static const char * const specials[] = { "Rear Panel", "Drive Bar", "Riser", "HDMI", "ATAPI", "Mobile-In", "Mobile-Out" }; int i; cfg = (cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT; if ((cfg & 0x0f) < 7) return bases[cfg & 0x0f]; for (i = 0; i < ARRAY_SIZE(specials_idx); i++) { if (cfg == specials_idx[i]) return specials[i]; } return "UNKNOWN"; } /* * Parse the pin default config value and returns the string of the * jack connectivity, i.e. external or internal connection. */ static const char *get_jack_connectivity(u32 cfg) { static const char * const jack_locations[4] = { "Ext", "Int", "Sep", "Oth" }; return jack_locations[(cfg >> (AC_DEFCFG_LOCATION_SHIFT + 4)) & 3]; } /* * Parse the pin default config value and returns the string of the * jack type, i.e. the purpose of the jack, such as Line-Out or CD. */ static const char *get_jack_type(u32 cfg) { static const char * const jack_types[16] = { "Line Out", "Speaker", "HP Out", "CD", "SPDIF Out", "Digital Out", "Modem Line", "Modem Hand", "Line In", "Aux", "Mic", "Telephony", "SPDIF In", "Digital In", "Reserved", "Other" }; return jack_types[(cfg & AC_DEFCFG_DEVICE) >> AC_DEFCFG_DEVICE_SHIFT]; } static void print_pin_caps(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, int *supports_vref) { static const char * const jack_conns[4] = { "Jack", "N/A", "Fixed", "Both" }; unsigned int caps, val; caps = param_read(codec, nid, AC_PAR_PIN_CAP); snd_iprintf(buffer, " Pincap 0x%08x:", caps); if (caps & AC_PINCAP_IN) snd_iprintf(buffer, " IN"); if (caps & AC_PINCAP_OUT) snd_iprintf(buffer, " OUT"); if (caps & AC_PINCAP_HP_DRV) snd_iprintf(buffer, " HP"); if (caps & AC_PINCAP_EAPD) snd_iprintf(buffer, " EAPD"); if (caps & AC_PINCAP_PRES_DETECT) snd_iprintf(buffer, " Detect"); if (caps & AC_PINCAP_BALANCE) snd_iprintf(buffer, " Balanced"); if (caps & AC_PINCAP_HDMI) { /* Realtek uses this bit as a different meaning */ if ((codec->core.vendor_id >> 16) == 0x10ec) snd_iprintf(buffer, " R/L"); else { if (caps & AC_PINCAP_HBR) snd_iprintf(buffer, " HBR"); snd_iprintf(buffer, " HDMI"); } } if (caps & AC_PINCAP_DP) snd_iprintf(buffer, " DP"); if (caps & AC_PINCAP_TRIG_REQ) snd_iprintf(buffer, " Trigger"); if (caps & AC_PINCAP_IMP_SENSE) snd_iprintf(buffer, " ImpSense"); snd_iprintf(buffer, "\n"); if (caps & AC_PINCAP_VREF) { unsigned int vref = (caps & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT; snd_iprintf(buffer, " Vref caps:"); if (vref & AC_PINCAP_VREF_HIZ) snd_iprintf(buffer, " HIZ"); if (vref & AC_PINCAP_VREF_50) snd_iprintf(buffer, " 50"); if (vref & AC_PINCAP_VREF_GRD) snd_iprintf(buffer, " GRD"); if (vref & AC_PINCAP_VREF_80) snd_iprintf(buffer, " 80"); if (vref & AC_PINCAP_VREF_100) snd_iprintf(buffer, " 100"); snd_iprintf(buffer, "\n"); *supports_vref = 1; } else *supports_vref = 0; if (caps & AC_PINCAP_EAPD) { val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_EAPD_BTLENABLE, 0); snd_iprintf(buffer, " EAPD 0x%x:", val); if (val & AC_EAPDBTL_BALANCED) snd_iprintf(buffer, " BALANCED"); if (val & AC_EAPDBTL_EAPD) snd_iprintf(buffer, " EAPD"); if (val & AC_EAPDBTL_LR_SWAP) snd_iprintf(buffer, " R/L"); snd_iprintf(buffer, "\n"); } caps = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0); snd_iprintf(buffer, " Pin Default 0x%08x: [%s] %s at %s %s\n", caps, jack_conns[(caps & AC_DEFCFG_PORT_CONN) >> AC_DEFCFG_PORT_CONN_SHIFT], get_jack_type(caps), get_jack_connectivity(caps), get_jack_location(caps)); snd_iprintf(buffer, " Conn = %s, Color = %s\n", get_jack_connection(caps), get_jack_color(caps)); /* Default association and sequence values refer to default grouping * of pin complexes and their sequence within the group. This is used * for priority and resource allocation. */ snd_iprintf(buffer, " DefAssociation = 0x%x, Sequence = 0x%x\n", (caps & AC_DEFCFG_DEF_ASSOC) >> AC_DEFCFG_ASSOC_SHIFT, caps & AC_DEFCFG_SEQUENCE); if (((caps & AC_DEFCFG_MISC) >> AC_DEFCFG_MISC_SHIFT) & AC_DEFCFG_MISC_NO_PRESENCE) { /* Miscellaneous bit indicates external hardware does not * support presence detection even if the pin complex * indicates it is supported. */ snd_iprintf(buffer, " Misc = NO_PRESENCE\n"); } } static void print_pin_ctls(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, int supports_vref) { unsigned int pinctls; pinctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); snd_iprintf(buffer, " Pin-ctls: 0x%02x:", pinctls); if (pinctls & AC_PINCTL_IN_EN) snd_iprintf(buffer, " IN"); if (pinctls & AC_PINCTL_OUT_EN) snd_iprintf(buffer, " OUT"); if (pinctls & AC_PINCTL_HP_EN) snd_iprintf(buffer, " HP"); if (supports_vref) { int vref = pinctls & AC_PINCTL_VREFEN; switch (vref) { case AC_PINCTL_VREF_HIZ: snd_iprintf(buffer, " VREF_HIZ"); break; case AC_PINCTL_VREF_50: snd_iprintf(buffer, " VREF_50"); break; case AC_PINCTL_VREF_GRD: snd_iprintf(buffer, " VREF_GRD"); break; case AC_PINCTL_VREF_80: snd_iprintf(buffer, " VREF_80"); break; case AC_PINCTL_VREF_100: snd_iprintf(buffer, " VREF_100"); break; } } snd_iprintf(buffer, "\n"); } static void print_vol_knob(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { unsigned int cap = param_read(codec, nid, AC_PAR_VOL_KNB_CAP); snd_iprintf(buffer, " Volume-Knob: delta=%d, steps=%d, ", (cap >> 7) & 1, cap & 0x7f); cap = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_VOLUME_KNOB_CONTROL, 0); snd_iprintf(buffer, "direct=%d, val=%d\n", (cap >> 7) & 1, cap & 0x7f); } static void print_audio_io(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, unsigned int wid_type) { int conv = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONV, 0); snd_iprintf(buffer, " Converter: stream=%d, channel=%d\n", (conv & AC_CONV_STREAM) >> AC_CONV_STREAM_SHIFT, conv & AC_CONV_CHANNEL); if (wid_type == AC_WID_AUD_IN && (conv & AC_CONV_CHANNEL) == 0) { int sdi = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_SDI_SELECT, 0); snd_iprintf(buffer, " SDI-Select: %d\n", sdi & AC_SDI_SELECT); } } static void print_digital_conv(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { unsigned int digi1 = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0); unsigned char digi2 = digi1 >> 8; unsigned char digi3 = digi1 >> 16; snd_iprintf(buffer, " Digital:"); if (digi1 & AC_DIG1_ENABLE) snd_iprintf(buffer, " Enabled"); if (digi1 & AC_DIG1_V) snd_iprintf(buffer, " Validity"); if (digi1 & AC_DIG1_VCFG) snd_iprintf(buffer, " ValidityCfg"); if (digi1 & AC_DIG1_EMPHASIS) snd_iprintf(buffer, " Preemphasis"); if (digi1 & AC_DIG1_COPYRIGHT) snd_iprintf(buffer, " Non-Copyright"); if (digi1 & AC_DIG1_NONAUDIO) snd_iprintf(buffer, " Non-Audio"); if (digi1 & AC_DIG1_PROFESSIONAL) snd_iprintf(buffer, " Pro"); if (digi1 & AC_DIG1_LEVEL) snd_iprintf(buffer, " GenLevel"); if (digi3 & AC_DIG3_KAE) snd_iprintf(buffer, " KAE"); snd_iprintf(buffer, "\n"); snd_iprintf(buffer, " Digital category: 0x%x\n", digi2 & AC_DIG2_CC); snd_iprintf(buffer, " IEC Coding Type: 0x%x\n", digi3 & AC_DIG3_ICT); } static const char *get_pwr_state(u32 state) { static const char * const buf[] = { "D0", "D1", "D2", "D3", "D3cold" }; if (state < ARRAY_SIZE(buf)) return buf[state]; return "UNKNOWN"; } static void print_power_state(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { static const char * const names[] = { [ilog2(AC_PWRST_D0SUP)] = "D0", [ilog2(AC_PWRST_D1SUP)] = "D1", [ilog2(AC_PWRST_D2SUP)] = "D2", [ilog2(AC_PWRST_D3SUP)] = "D3", [ilog2(AC_PWRST_D3COLDSUP)] = "D3cold", [ilog2(AC_PWRST_S3D3COLDSUP)] = "S3D3cold", [ilog2(AC_PWRST_CLKSTOP)] = "CLKSTOP", [ilog2(AC_PWRST_EPSS)] = "EPSS", }; int sup = param_read(codec, nid, AC_PAR_POWER_STATE); int pwr = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_POWER_STATE, 0); if (sup != -1) { int i; snd_iprintf(buffer, " Power states: "); for (i = 0; i < ARRAY_SIZE(names); i++) { if (sup & (1U << i)) snd_iprintf(buffer, " %s", names[i]); } snd_iprintf(buffer, "\n"); } snd_iprintf(buffer, " Power: setting=%s, actual=%s", get_pwr_state(pwr & AC_PWRST_SETTING), get_pwr_state((pwr & AC_PWRST_ACTUAL) >> AC_PWRST_ACTUAL_SHIFT)); if (pwr & AC_PWRST_ERROR) snd_iprintf(buffer, ", Error"); if (pwr & AC_PWRST_CLK_STOP_OK) snd_iprintf(buffer, ", Clock-stop-OK"); if (pwr & AC_PWRST_SETTING_RESET) snd_iprintf(buffer, ", Setting-reset"); snd_iprintf(buffer, "\n"); } static void print_unsol_cap(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { int unsol = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_UNSOLICITED_RESPONSE, 0); snd_iprintf(buffer, " Unsolicited: tag=%02x, enabled=%d\n", unsol & AC_UNSOL_TAG, (unsol & AC_UNSOL_ENABLED) ? 1 : 0); } static inline bool can_dump_coef(struct hda_codec *codec) { switch (dump_coef) { case 0: return false; case 1: return true; default: return codec->dump_coef; } } static void print_proc_caps(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { unsigned int i, ncoeff, oldindex; unsigned int proc_caps = param_read(codec, nid, AC_PAR_PROC_CAP); ncoeff = (proc_caps & AC_PCAP_NUM_COEF) >> AC_PCAP_NUM_COEF_SHIFT; snd_iprintf(buffer, " Processing caps: benign=%d, ncoeff=%d\n", proc_caps & AC_PCAP_BENIGN, ncoeff); if (!can_dump_coef(codec)) return; /* Note: This is racy - another process could run in parallel and change the coef index too. */ oldindex = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_COEF_INDEX, 0); for (i = 0; i < ncoeff; i++) { unsigned int val; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, i); val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PROC_COEF, 0); snd_iprintf(buffer, " Coeff 0x%02x: 0x%04x\n", i, val); } snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, oldindex); } static void print_conn_list(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid, unsigned int wid_type, hda_nid_t *conn, int conn_len) { int c, curr = -1; const hda_nid_t *list; int cache_len; if (conn_len > 1 && wid_type != AC_WID_AUD_MIX && wid_type != AC_WID_VOL_KNB && wid_type != AC_WID_POWER) curr = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_SEL, 0); snd_iprintf(buffer, " Connection: %d\n", conn_len); if (conn_len > 0) { snd_iprintf(buffer, " "); for (c = 0; c < conn_len; c++) { snd_iprintf(buffer, " 0x%02x", conn[c]); if (c == curr) snd_iprintf(buffer, "*"); } snd_iprintf(buffer, "\n"); } /* Get Cache connections info */ cache_len = snd_hda_get_conn_list(codec, nid, &list); if (cache_len >= 0 && (cache_len != conn_len || memcmp(list, conn, conn_len) != 0)) { snd_iprintf(buffer, " In-driver Connection: %d\n", cache_len); if (cache_len > 0) { snd_iprintf(buffer, " "); for (c = 0; c < cache_len; c++) snd_iprintf(buffer, " 0x%02x", list[c]); snd_iprintf(buffer, "\n"); } } } static void print_gpio(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { unsigned int gpio = param_read(codec, codec->core.afg, AC_PAR_GPIO_CAP); unsigned int enable, direction, wake, unsol, sticky, data; int i, max; snd_iprintf(buffer, "GPIO: io=%d, o=%d, i=%d, " "unsolicited=%d, wake=%d\n", gpio & AC_GPIO_IO_COUNT, (gpio & AC_GPIO_O_COUNT) >> AC_GPIO_O_COUNT_SHIFT, (gpio & AC_GPIO_I_COUNT) >> AC_GPIO_I_COUNT_SHIFT, (gpio & AC_GPIO_UNSOLICITED) ? 1 : 0, (gpio & AC_GPIO_WAKE) ? 1 : 0); max = gpio & AC_GPIO_IO_COUNT; if (!max || max > 8) return; enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_MASK, 0); direction = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_DIRECTION, 0); wake = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_WAKE_MASK, 0); unsol = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_UNSOLICITED_RSP_MASK, 0); sticky = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_STICKY_MASK, 0); data = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_GPIO_DATA, 0); for (i = 0; i < max; ++i) snd_iprintf(buffer, " IO[%d]: enable=%d, dir=%d, wake=%d, " "sticky=%d, data=%d, unsol=%d\n", i, (enable & (1<<i)) ? 1 : 0, (direction & (1<<i)) ? 1 : 0, (wake & (1<<i)) ? 1 : 0, (sticky & (1<<i)) ? 1 : 0, (data & (1<<i)) ? 1 : 0, (unsol & (1<<i)) ? 1 : 0); /* FIXME: add GPO and GPI pin information */ print_nid_array(buffer, codec, nid, &codec->mixers); print_nid_array(buffer, codec, nid, &codec->nids); } static void print_device_list(struct snd_info_buffer *buffer, struct hda_codec *codec, hda_nid_t nid) { int i, curr = -1; u8 dev_list[AC_MAX_DEV_LIST_LEN]; int devlist_len; devlist_len = snd_hda_get_devices(codec, nid, dev_list, AC_MAX_DEV_LIST_LEN); snd_iprintf(buffer, " Devices: %d\n", devlist_len); if (devlist_len <= 0) return; curr = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DEVICE_SEL, 0); for (i = 0; i < devlist_len; i++) { if (i == curr) snd_iprintf(buffer, " *"); else snd_iprintf(buffer, " "); snd_iprintf(buffer, "Dev %02d: PD = %d, ELDV = %d, IA = %d\n", i, !!(dev_list[i] & AC_DE_PD), !!(dev_list[i] & AC_DE_ELDV), !!(dev_list[i] & AC_DE_IA)); } } static void print_codec_core_info(struct hdac_device *codec, struct snd_info_buffer *buffer) { snd_iprintf(buffer, "Codec: "); if (codec->vendor_name && codec->chip_name) snd_iprintf(buffer, "%s %s\n", codec->vendor_name, codec->chip_name); else snd_iprintf(buffer, "Not Set\n"); snd_iprintf(buffer, "Address: %d\n", codec->addr); if (codec->afg) snd_iprintf(buffer, "AFG Function Id: 0x%x (unsol %u)\n", codec->afg_function_id, codec->afg_unsol); if (codec->mfg) snd_iprintf(buffer, "MFG Function Id: 0x%x (unsol %u)\n", codec->mfg_function_id, codec->mfg_unsol); snd_iprintf(buffer, "Vendor Id: 0x%08x\n", codec->vendor_id); snd_iprintf(buffer, "Subsystem Id: 0x%08x\n", codec->subsystem_id); snd_iprintf(buffer, "Revision Id: 0x%x\n", codec->revision_id); if (codec->mfg) snd_iprintf(buffer, "Modem Function Group: 0x%x\n", codec->mfg); else snd_iprintf(buffer, "No Modem Function Group found\n"); } static void print_codec_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct hda_codec *codec = entry->private_data; hda_nid_t nid, fg; int i, nodes; print_codec_core_info(&codec->core, buffer); fg = codec->core.afg; if (!fg) return; snd_hda_power_up(codec); snd_iprintf(buffer, "Default PCM:\n"); print_pcm_caps(buffer, codec, fg); snd_iprintf(buffer, "Default Amp-In caps: "); print_amp_caps(buffer, codec, fg, HDA_INPUT); snd_iprintf(buffer, "Default Amp-Out caps: "); print_amp_caps(buffer, codec, fg, HDA_OUTPUT); snd_iprintf(buffer, "State of AFG node 0x%02x:\n", fg); print_power_state(buffer, codec, fg); nodes = snd_hda_get_sub_nodes(codec, fg, &nid); if (! nid || nodes < 0) { snd_iprintf(buffer, "Invalid AFG subtree\n"); snd_hda_power_down(codec); return; } print_gpio(buffer, codec, fg); if (codec->proc_widget_hook) codec->proc_widget_hook(buffer, codec, fg); for (i = 0; i < nodes; i++, nid++) { unsigned int wid_caps = param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP); unsigned int wid_type = get_wcaps_type(wid_caps); hda_nid_t *conn = NULL; int conn_len = 0; snd_iprintf(buffer, "Node 0x%02x [%s] wcaps 0x%x:", nid, get_wid_type_name(wid_type), wid_caps); if (wid_caps & AC_WCAP_STEREO) { unsigned int chans = get_wcaps_channels(wid_caps); if (chans == 2) snd_iprintf(buffer, " Stereo"); else snd_iprintf(buffer, " %d-Channels", chans); } else snd_iprintf(buffer, " Mono"); if (wid_caps & AC_WCAP_DIGITAL) snd_iprintf(buffer, " Digital"); if (wid_caps & AC_WCAP_IN_AMP) snd_iprintf(buffer, " Amp-In"); if (wid_caps & AC_WCAP_OUT_AMP) snd_iprintf(buffer, " Amp-Out"); if (wid_caps & AC_WCAP_STRIPE) snd_iprintf(buffer, " Stripe"); if (wid_caps & AC_WCAP_LR_SWAP) snd_iprintf(buffer, " R/L"); if (wid_caps & AC_WCAP_CP_CAPS) snd_iprintf(buffer, " CP"); snd_iprintf(buffer, "\n"); print_nid_array(buffer, codec, nid, &codec->mixers); print_nid_array(buffer, codec, nid, &codec->nids); print_nid_pcms(buffer, codec, nid); /* volume knob is a special widget that always have connection * list */ if (wid_type == AC_WID_VOL_KNB) wid_caps |= AC_WCAP_CONN_LIST; if (wid_caps & AC_WCAP_CONN_LIST) { conn_len = snd_hda_get_num_raw_conns(codec, nid); if (conn_len > 0) { conn = kmalloc_array(conn_len, sizeof(hda_nid_t), GFP_KERNEL); if (!conn) return; if (snd_hda_get_raw_connections(codec, nid, conn, conn_len) < 0) conn_len = 0; } } if (wid_caps & AC_WCAP_IN_AMP) { snd_iprintf(buffer, " Amp-In caps: "); print_amp_caps(buffer, codec, nid, HDA_INPUT); snd_iprintf(buffer, " Amp-In vals: "); if (wid_type == AC_WID_PIN || (codec->single_adc_amp && wid_type == AC_WID_AUD_IN)) print_amp_vals(buffer, codec, nid, HDA_INPUT, wid_caps, 1); else print_amp_vals(buffer, codec, nid, HDA_INPUT, wid_caps, conn_len); } if (wid_caps & AC_WCAP_OUT_AMP) { snd_iprintf(buffer, " Amp-Out caps: "); print_amp_caps(buffer, codec, nid, HDA_OUTPUT); snd_iprintf(buffer, " Amp-Out vals: "); if (wid_type == AC_WID_PIN && codec->pin_amp_workaround) print_amp_vals(buffer, codec, nid, HDA_OUTPUT, wid_caps, conn_len); else print_amp_vals(buffer, codec, nid, HDA_OUTPUT, wid_caps, 1); } switch (wid_type) { case AC_WID_PIN: { int supports_vref; print_pin_caps(buffer, codec, nid, &supports_vref); print_pin_ctls(buffer, codec, nid, supports_vref); break; } case AC_WID_VOL_KNB: print_vol_knob(buffer, codec, nid); break; case AC_WID_AUD_OUT: case AC_WID_AUD_IN: print_audio_io(buffer, codec, nid, wid_type); if (wid_caps & AC_WCAP_DIGITAL) print_digital_conv(buffer, codec, nid); if (wid_caps & AC_WCAP_FORMAT_OVRD) { snd_iprintf(buffer, " PCM:\n"); print_pcm_caps(buffer, codec, nid); } break; } if (wid_caps & AC_WCAP_UNSOL_CAP) print_unsol_cap(buffer, codec, nid); if (wid_caps & AC_WCAP_POWER) print_power_state(buffer, codec, nid); if (wid_caps & AC_WCAP_DELAY) snd_iprintf(buffer, " Delay: %d samples\n", (wid_caps & AC_WCAP_DELAY) >> AC_WCAP_DELAY_SHIFT); if (wid_type == AC_WID_PIN && codec->dp_mst) print_device_list(buffer, codec, nid); if (wid_caps & AC_WCAP_CONN_LIST) print_conn_list(buffer, codec, nid, wid_type, conn, conn_len); if (wid_caps & AC_WCAP_PROC_WID) print_proc_caps(buffer, codec, nid); if (codec->proc_widget_hook) codec->proc_widget_hook(buffer, codec, nid); kfree(conn); } snd_hda_power_down(codec); } /* * create a proc read */ int snd_hda_codec_proc_new(struct hda_codec *codec) { char name[32]; struct snd_info_entry *entry; int err; snprintf(name, sizeof(name), "codec#%d", codec->core.addr); err = snd_card_proc_new(codec->card, name, &entry); if (err < 0) return err; snd_info_set_text_ops(entry, codec, print_codec_info); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1