Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maruthi Srinivas Bayyavarapu | 3611 | 57.99% | 3 | 6.38% |
Vijendar Mukunda | 1708 | 27.43% | 20 | 42.55% |
Akshu Agrawal | 749 | 12.03% | 11 | 23.40% |
Kuninori Morimoto | 69 | 1.11% | 1 | 2.13% |
Guenter Roeck | 45 | 0.72% | 3 | 6.38% |
Yu Zhao | 27 | 0.43% | 2 | 4.26% |
Daniel Kurtz | 10 | 0.16% | 3 | 6.38% |
Dan Carpenter | 5 | 0.08% | 1 | 2.13% |
Colin Ian King | 1 | 0.02% | 1 | 2.13% |
Masahiro Yamada | 1 | 0.02% | 1 | 2.13% |
Julia Lawall | 1 | 0.02% | 1 | 2.13% |
Total | 6227 | 47 |
/* * AMD ALSA SoC PCM Driver for ACP 2.x * * Copyright 2014-2015 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/module.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/sizes.h> #include <linux/pm_runtime.h> #include <sound/soc.h> #include <drm/amd_asic_type.h> #include "acp.h" #define DRV_NAME "acp_audio_dma" #define PLAYBACK_MIN_NUM_PERIODS 2 #define PLAYBACK_MAX_NUM_PERIODS 2 #define PLAYBACK_MAX_PERIOD_SIZE 16384 #define PLAYBACK_MIN_PERIOD_SIZE 1024 #define CAPTURE_MIN_NUM_PERIODS 2 #define CAPTURE_MAX_NUM_PERIODS 2 #define CAPTURE_MAX_PERIOD_SIZE 16384 #define CAPTURE_MIN_PERIOD_SIZE 1024 #define MAX_BUFFER (PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS) #define MIN_BUFFER MAX_BUFFER #define ST_PLAYBACK_MAX_PERIOD_SIZE 4096 #define ST_CAPTURE_MAX_PERIOD_SIZE ST_PLAYBACK_MAX_PERIOD_SIZE #define ST_MAX_BUFFER (ST_PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS) #define ST_MIN_BUFFER ST_MAX_BUFFER #define DRV_NAME "acp_audio_dma" bool bt_uart_enable = true; EXPORT_SYMBOL(bt_uart_enable); static const struct snd_pcm_hardware acp_pcm_hardware_playback = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_96000, .rate_min = 8000, .rate_max = 96000, .buffer_bytes_max = PLAYBACK_MAX_NUM_PERIODS * PLAYBACK_MAX_PERIOD_SIZE, .period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE, .period_bytes_max = PLAYBACK_MAX_PERIOD_SIZE, .periods_min = PLAYBACK_MIN_NUM_PERIODS, .periods_max = PLAYBACK_MAX_NUM_PERIODS, }; static const struct snd_pcm_hardware acp_pcm_hardware_capture = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .buffer_bytes_max = CAPTURE_MAX_NUM_PERIODS * CAPTURE_MAX_PERIOD_SIZE, .period_bytes_min = CAPTURE_MIN_PERIOD_SIZE, .period_bytes_max = CAPTURE_MAX_PERIOD_SIZE, .periods_min = CAPTURE_MIN_NUM_PERIODS, .periods_max = CAPTURE_MAX_NUM_PERIODS, }; static const struct snd_pcm_hardware acp_st_pcm_hardware_playback = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_96000, .rate_min = 8000, .rate_max = 96000, .buffer_bytes_max = ST_MAX_BUFFER, .period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE, .period_bytes_max = ST_PLAYBACK_MAX_PERIOD_SIZE, .periods_min = PLAYBACK_MIN_NUM_PERIODS, .periods_max = PLAYBACK_MAX_NUM_PERIODS, }; static const struct snd_pcm_hardware acp_st_pcm_hardware_capture = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .buffer_bytes_max = ST_MAX_BUFFER, .period_bytes_min = CAPTURE_MIN_PERIOD_SIZE, .period_bytes_max = ST_CAPTURE_MAX_PERIOD_SIZE, .periods_min = CAPTURE_MIN_NUM_PERIODS, .periods_max = CAPTURE_MAX_NUM_PERIODS, }; static u32 acp_reg_read(void __iomem *acp_mmio, u32 reg) { return readl(acp_mmio + (reg * 4)); } static void acp_reg_write(u32 val, void __iomem *acp_mmio, u32 reg) { writel(val, acp_mmio + (reg * 4)); } /* * Configure a given dma channel parameters - enable/disable, * number of descriptors, priority */ static void config_acp_dma_channel(void __iomem *acp_mmio, u8 ch_num, u16 dscr_strt_idx, u16 num_dscrs, enum acp_dma_priority_level priority_level) { u32 dma_ctrl; /* disable the channel run field */ dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num); dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); /* program a DMA channel with first descriptor to be processed. */ acp_reg_write((ACP_DMA_DSCR_STRT_IDX_0__DMAChDscrStrtIdx_MASK & dscr_strt_idx), acp_mmio, mmACP_DMA_DSCR_STRT_IDX_0 + ch_num); /* * program a DMA channel with the number of descriptors to be * processed in the transfer */ acp_reg_write(ACP_DMA_DSCR_CNT_0__DMAChDscrCnt_MASK & num_dscrs, acp_mmio, mmACP_DMA_DSCR_CNT_0 + ch_num); /* set DMA channel priority */ acp_reg_write(priority_level, acp_mmio, mmACP_DMA_PRIO_0 + ch_num); } /* Initialize a dma descriptor in SRAM based on descritor information passed */ static void config_dma_descriptor_in_sram(void __iomem *acp_mmio, u16 descr_idx, acp_dma_dscr_transfer_t *descr_info) { u32 sram_offset; sram_offset = (descr_idx * sizeof(acp_dma_dscr_transfer_t)); /* program the source base address. */ acp_reg_write(sram_offset, acp_mmio, mmACP_SRBM_Targ_Idx_Addr); acp_reg_write(descr_info->src, acp_mmio, mmACP_SRBM_Targ_Idx_Data); /* program the destination base address. */ acp_reg_write(sram_offset + 4, acp_mmio, mmACP_SRBM_Targ_Idx_Addr); acp_reg_write(descr_info->dest, acp_mmio, mmACP_SRBM_Targ_Idx_Data); /* program the number of bytes to be transferred for this descriptor. */ acp_reg_write(sram_offset + 8, acp_mmio, mmACP_SRBM_Targ_Idx_Addr); acp_reg_write(descr_info->xfer_val, acp_mmio, mmACP_SRBM_Targ_Idx_Data); } static void pre_config_reset(void __iomem *acp_mmio, u16 ch_num) { u32 dma_ctrl; int ret; /* clear the reset bit */ dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num); dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRst_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); /* check the reset bit before programming configuration registers */ ret = readl_poll_timeout(acp_mmio + ((mmACP_DMA_CNTL_0 + ch_num) * 4), dma_ctrl, !(dma_ctrl & ACP_DMA_CNTL_0__DMAChRst_MASK), 100, ACP_DMA_RESET_TIME); if (ret < 0) pr_err("Failed to clear reset of channel : %d\n", ch_num); } /* * Initialize the DMA descriptor information for transfer between * system memory <-> ACP SRAM */ static void set_acp_sysmem_dma_descriptors(void __iomem *acp_mmio, u32 size, int direction, u32 pte_offset, u16 ch, u32 sram_bank, u16 dma_dscr_idx, u32 asic_type) { u16 i; acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL]; for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) { dmadscr[i].xfer_val = 0; if (direction == SNDRV_PCM_STREAM_PLAYBACK) { dma_dscr_idx = dma_dscr_idx + i; dmadscr[i].dest = sram_bank + (i * (size / 2)); dmadscr[i].src = ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS + (pte_offset * SZ_4K) + (i * (size / 2)); switch (asic_type) { case CHIP_STONEY: dmadscr[i].xfer_val |= (ACP_DMA_ATTR_DAGB_GARLIC_TO_SHAREDMEM << 16) | (size / 2); break; default: dmadscr[i].xfer_val |= (ACP_DMA_ATTR_DAGB_ONION_TO_SHAREDMEM << 16) | (size / 2); } } else { dma_dscr_idx = dma_dscr_idx + i; dmadscr[i].src = sram_bank + (i * (size / 2)); dmadscr[i].dest = ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS + (pte_offset * SZ_4K) + (i * (size / 2)); switch (asic_type) { case CHIP_STONEY: dmadscr[i].xfer_val |= (ACP_DMA_ATTR_SHARED_MEM_TO_DAGB_GARLIC << 16) | (size / 2); break; default: dmadscr[i].xfer_val |= (ACP_DMA_ATTR_SHAREDMEM_TO_DAGB_ONION << 16) | (size / 2); } } config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx, &dmadscr[i]); } pre_config_reset(acp_mmio, ch); config_acp_dma_channel(acp_mmio, ch, dma_dscr_idx - 1, NUM_DSCRS_PER_CHANNEL, ACP_DMA_PRIORITY_LEVEL_NORMAL); } /* * Initialize the DMA descriptor information for transfer between * ACP SRAM <-> I2S */ static void set_acp_to_i2s_dma_descriptors(void __iomem *acp_mmio, u32 size, int direction, u32 sram_bank, u16 destination, u16 ch, u16 dma_dscr_idx, u32 asic_type) { u16 i; acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL]; for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) { dmadscr[i].xfer_val = 0; if (direction == SNDRV_PCM_STREAM_PLAYBACK) { dma_dscr_idx = dma_dscr_idx + i; dmadscr[i].src = sram_bank + (i * (size / 2)); /* dmadscr[i].dest is unused by hardware. */ dmadscr[i].dest = 0; dmadscr[i].xfer_val |= BIT(22) | (destination << 16) | (size / 2); } else { dma_dscr_idx = dma_dscr_idx + i; /* dmadscr[i].src is unused by hardware. */ dmadscr[i].src = 0; dmadscr[i].dest = sram_bank + (i * (size / 2)); dmadscr[i].xfer_val |= BIT(22) | (destination << 16) | (size / 2); } config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx, &dmadscr[i]); } pre_config_reset(acp_mmio, ch); /* Configure the DMA channel with the above descriptore */ config_acp_dma_channel(acp_mmio, ch, dma_dscr_idx - 1, NUM_DSCRS_PER_CHANNEL, ACP_DMA_PRIORITY_LEVEL_NORMAL); } /* Create page table entries in ACP SRAM for the allocated memory */ static void acp_pte_config(void __iomem *acp_mmio, dma_addr_t addr, u16 num_of_pages, u32 pte_offset) { u16 page_idx; u32 low; u32 high; u32 offset; offset = ACP_DAGB_GRP_SRBM_SRAM_BASE_OFFSET + (pte_offset * 8); for (page_idx = 0; page_idx < (num_of_pages); page_idx++) { /* Load the low address of page int ACP SRAM through SRBM */ acp_reg_write((offset + (page_idx * 8)), acp_mmio, mmACP_SRBM_Targ_Idx_Addr); low = lower_32_bits(addr); high = upper_32_bits(addr); acp_reg_write(low, acp_mmio, mmACP_SRBM_Targ_Idx_Data); /* Load the High address of page int ACP SRAM through SRBM */ acp_reg_write((offset + (page_idx * 8) + 4), acp_mmio, mmACP_SRBM_Targ_Idx_Addr); /* page enable in ACP */ high |= BIT(31); acp_reg_write(high, acp_mmio, mmACP_SRBM_Targ_Idx_Data); /* Move to next physically contiguos page */ addr += PAGE_SIZE; } } static void config_acp_dma(void __iomem *acp_mmio, struct audio_substream_data *rtd, u32 asic_type) { u16 ch_acp_sysmem, ch_acp_i2s; acp_pte_config(acp_mmio, rtd->dma_addr, rtd->num_of_pages, rtd->pte_offset); if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) { ch_acp_sysmem = rtd->ch1; ch_acp_i2s = rtd->ch2; } else { ch_acp_i2s = rtd->ch1; ch_acp_sysmem = rtd->ch2; } /* Configure System memory <-> ACP SRAM DMA descriptors */ set_acp_sysmem_dma_descriptors(acp_mmio, rtd->size, rtd->direction, rtd->pte_offset, ch_acp_sysmem, rtd->sram_bank, rtd->dma_dscr_idx_1, asic_type); /* Configure ACP SRAM <-> I2S DMA descriptors */ set_acp_to_i2s_dma_descriptors(acp_mmio, rtd->size, rtd->direction, rtd->sram_bank, rtd->destination, ch_acp_i2s, rtd->dma_dscr_idx_2, asic_type); } static void acp_dma_cap_channel_enable(void __iomem *acp_mmio, u16 cap_channel) { u32 val, ch_reg, imr_reg, res_reg; switch (cap_channel) { case CAP_CHANNEL1: ch_reg = mmACP_I2SMICSP_RER1; res_reg = mmACP_I2SMICSP_RCR1; imr_reg = mmACP_I2SMICSP_IMR1; break; case CAP_CHANNEL0: default: ch_reg = mmACP_I2SMICSP_RER0; res_reg = mmACP_I2SMICSP_RCR0; imr_reg = mmACP_I2SMICSP_IMR0; break; } val = acp_reg_read(acp_mmio, mmACP_I2S_16BIT_RESOLUTION_EN); if (val & ACP_I2S_MIC_16BIT_RESOLUTION_EN) { acp_reg_write(0x0, acp_mmio, ch_reg); /* Set 16bit resolution on capture */ acp_reg_write(0x2, acp_mmio, res_reg); } val = acp_reg_read(acp_mmio, imr_reg); val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK; val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK; acp_reg_write(val, acp_mmio, imr_reg); acp_reg_write(0x1, acp_mmio, ch_reg); } static void acp_dma_cap_channel_disable(void __iomem *acp_mmio, u16 cap_channel) { u32 val, ch_reg, imr_reg; switch (cap_channel) { case CAP_CHANNEL1: imr_reg = mmACP_I2SMICSP_IMR1; ch_reg = mmACP_I2SMICSP_RER1; break; case CAP_CHANNEL0: default: imr_reg = mmACP_I2SMICSP_IMR0; ch_reg = mmACP_I2SMICSP_RER0; break; } val = acp_reg_read(acp_mmio, imr_reg); val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK; val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK; acp_reg_write(val, acp_mmio, imr_reg); acp_reg_write(0x0, acp_mmio, ch_reg); } /* Start a given DMA channel transfer */ static void acp_dma_start(void __iomem *acp_mmio, u16 ch_num, bool is_circular) { u32 dma_ctrl; /* read the dma control register and disable the channel run field */ dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num); /* Invalidating the DAGB cache */ acp_reg_write(1, acp_mmio, mmACP_DAGB_ATU_CTRL); /* * configure the DMA channel and start the DMA transfer * set dmachrun bit to start the transfer and enable the * interrupt on completion of the dma transfer */ dma_ctrl |= ACP_DMA_CNTL_0__DMAChRun_MASK; switch (ch_num) { case ACP_TO_I2S_DMA_CH_NUM: case I2S_TO_ACP_DMA_CH_NUM: case ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM: case I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM: dma_ctrl |= ACP_DMA_CNTL_0__DMAChIOCEn_MASK; break; default: dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK; break; } /* enable for ACP to SRAM DMA channel */ if (is_circular == true) dma_ctrl |= ACP_DMA_CNTL_0__Circular_DMA_En_MASK; else dma_ctrl &= ~ACP_DMA_CNTL_0__Circular_DMA_En_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); } /* Stop a given DMA channel transfer */ static int acp_dma_stop(void __iomem *acp_mmio, u8 ch_num) { u32 dma_ctrl; u32 dma_ch_sts; u32 count = ACP_DMA_RESET_TIME; dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num); /* * clear the dma control register fields before writing zero * in reset bit */ dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK; dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS); if (dma_ch_sts & BIT(ch_num)) { /* * set the reset bit for this channel to stop the dma * transfer */ dma_ctrl |= ACP_DMA_CNTL_0__DMAChRst_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); } /* check the channel status bit for some time and return the status */ while (true) { dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS); if (!(dma_ch_sts & BIT(ch_num))) { /* * clear the reset flag after successfully stopping * the dma transfer and break from the loop */ dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRst_MASK; acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num); break; } if (--count == 0) { pr_err("Failed to stop ACP DMA channel : %d\n", ch_num); return -ETIMEDOUT; } udelay(100); } return 0; } static void acp_set_sram_bank_state(void __iomem *acp_mmio, u16 bank, bool power_on) { u32 val, req_reg, sts_reg, sts_reg_mask; u32 loops = 1000; if (bank < 32) { req_reg = mmACP_MEM_SHUT_DOWN_REQ_LO; sts_reg = mmACP_MEM_SHUT_DOWN_STS_LO; sts_reg_mask = 0xFFFFFFFF; } else { bank -= 32; req_reg = mmACP_MEM_SHUT_DOWN_REQ_HI; sts_reg = mmACP_MEM_SHUT_DOWN_STS_HI; sts_reg_mask = 0x0000FFFF; } val = acp_reg_read(acp_mmio, req_reg); if (val & (1 << bank)) { /* bank is in off state */ if (power_on == true) /* request to on */ val &= ~(1 << bank); else /* request to off */ return; } else { /* bank is in on state */ if (power_on == false) /* request to off */ val |= 1 << bank; else /* request to on */ return; } acp_reg_write(val, acp_mmio, req_reg); while (acp_reg_read(acp_mmio, sts_reg) != sts_reg_mask) { if (!loops--) { pr_err("ACP SRAM bank %d state change failed\n", bank); break; } cpu_relax(); } } /* Initialize and bring ACP hardware to default state. */ static int acp_init(void __iomem *acp_mmio, u32 asic_type) { u16 bank; u32 val, count, sram_pte_offset; /* Assert Soft reset of ACP */ val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET); val |= ACP_SOFT_RESET__SoftResetAud_MASK; acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET); count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE; while (true) { val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET); if (ACP_SOFT_RESET__SoftResetAudDone_MASK == (val & ACP_SOFT_RESET__SoftResetAudDone_MASK)) break; if (--count == 0) { pr_err("Failed to reset ACP\n"); return -ETIMEDOUT; } udelay(100); } /* Enable clock to ACP and wait until the clock is enabled */ val = acp_reg_read(acp_mmio, mmACP_CONTROL); val = val | ACP_CONTROL__ClkEn_MASK; acp_reg_write(val, acp_mmio, mmACP_CONTROL); count = ACP_CLOCK_EN_TIME_OUT_VALUE; while (true) { val = acp_reg_read(acp_mmio, mmACP_STATUS); if (val & (u32)0x1) break; if (--count == 0) { pr_err("Failed to reset ACP\n"); return -ETIMEDOUT; } udelay(100); } /* Deassert the SOFT RESET flags */ val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET); val &= ~ACP_SOFT_RESET__SoftResetAud_MASK; acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET); /* For BT instance change pins from UART to BT */ if (!bt_uart_enable) { val = acp_reg_read(acp_mmio, mmACP_BT_UART_PAD_SEL); val |= ACP_BT_UART_PAD_SELECT_MASK; acp_reg_write(val, acp_mmio, mmACP_BT_UART_PAD_SEL); } /* initiailize Onion control DAGB register */ acp_reg_write(ACP_ONION_CNTL_DEFAULT, acp_mmio, mmACP_AXI2DAGB_ONION_CNTL); /* initiailize Garlic control DAGB registers */ acp_reg_write(ACP_GARLIC_CNTL_DEFAULT, acp_mmio, mmACP_AXI2DAGB_GARLIC_CNTL); sram_pte_offset = ACP_DAGB_GRP_SRAM_BASE_ADDRESS | ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBSnoopSel_MASK | ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBTargetMemSel_MASK | ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBGrpEnable_MASK; acp_reg_write(sram_pte_offset, acp_mmio, mmACP_DAGB_BASE_ADDR_GRP_1); acp_reg_write(ACP_PAGE_SIZE_4K_ENABLE, acp_mmio, mmACP_DAGB_PAGE_SIZE_GRP_1); acp_reg_write(ACP_SRAM_BASE_ADDRESS, acp_mmio, mmACP_DMA_DESC_BASE_ADDR); /* Num of descriptiors in SRAM 0x4, means 256 descriptors;(64 * 4) */ acp_reg_write(0x4, acp_mmio, mmACP_DMA_DESC_MAX_NUM_DSCR); acp_reg_write(ACP_EXTERNAL_INTR_CNTL__DMAIOCMask_MASK, acp_mmio, mmACP_EXTERNAL_INTR_CNTL); /* * When ACP_TILE_P1 is turned on, all SRAM banks get turned on. * Now, turn off all of them. This can't be done in 'poweron' of * ACP pm domain, as this requires ACP to be initialized. * For Stoney, Memory gating is disabled,i.e SRAM Banks * won't be turned off. The default state for SRAM banks is ON. * Setting SRAM bank state code skipped for STONEY platform. */ if (asic_type != CHIP_STONEY) { for (bank = 1; bank < 48; bank++) acp_set_sram_bank_state(acp_mmio, bank, false); } return 0; } /* Deinitialize ACP */ static int acp_deinit(void __iomem *acp_mmio) { u32 val; u32 count; /* Assert Soft reset of ACP */ val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET); val |= ACP_SOFT_RESET__SoftResetAud_MASK; acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET); count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE; while (true) { val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET); if (ACP_SOFT_RESET__SoftResetAudDone_MASK == (val & ACP_SOFT_RESET__SoftResetAudDone_MASK)) break; if (--count == 0) { pr_err("Failed to reset ACP\n"); return -ETIMEDOUT; } udelay(100); } /* Disable ACP clock */ val = acp_reg_read(acp_mmio, mmACP_CONTROL); val &= ~ACP_CONTROL__ClkEn_MASK; acp_reg_write(val, acp_mmio, mmACP_CONTROL); count = ACP_CLOCK_EN_TIME_OUT_VALUE; while (true) { val = acp_reg_read(acp_mmio, mmACP_STATUS); if (!(val & (u32)0x1)) break; if (--count == 0) { pr_err("Failed to reset ACP\n"); return -ETIMEDOUT; } udelay(100); } return 0; } /* ACP DMA irq handler routine for playback, capture usecases */ static irqreturn_t dma_irq_handler(int irq, void *arg) { u16 dscr_idx; u32 intr_flag, ext_intr_status; struct audio_drv_data *irq_data; void __iomem *acp_mmio; struct device *dev = arg; bool valid_irq = false; irq_data = dev_get_drvdata(dev); acp_mmio = irq_data->acp_mmio; ext_intr_status = acp_reg_read(acp_mmio, mmACP_EXTERNAL_INTR_STAT); intr_flag = (((ext_intr_status & ACP_EXTERNAL_INTR_STAT__DMAIOCStat_MASK) >> ACP_EXTERNAL_INTR_STAT__DMAIOCStat__SHIFT)); if ((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) != 0) { valid_irq = true; snd_pcm_period_elapsed(irq_data->play_i2ssp_stream); acp_reg_write((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) << 16, acp_mmio, mmACP_EXTERNAL_INTR_STAT); } if ((intr_flag & BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) != 0) { valid_irq = true; snd_pcm_period_elapsed(irq_data->play_i2sbt_stream); acp_reg_write((intr_flag & BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) << 16, acp_mmio, mmACP_EXTERNAL_INTR_STAT); } if ((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) != 0) { valid_irq = true; if (acp_reg_read(acp_mmio, mmACP_DMA_CUR_DSCR_14) == CAPTURE_START_DMA_DESCR_CH15) dscr_idx = CAPTURE_END_DMA_DESCR_CH14; else dscr_idx = CAPTURE_START_DMA_DESCR_CH14; config_acp_dma_channel(acp_mmio, ACP_TO_SYSRAM_CH_NUM, dscr_idx, 1, 0); acp_dma_start(acp_mmio, ACP_TO_SYSRAM_CH_NUM, false); snd_pcm_period_elapsed(irq_data->capture_i2ssp_stream); acp_reg_write((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) << 16, acp_mmio, mmACP_EXTERNAL_INTR_STAT); } if ((intr_flag & BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) != 0) { valid_irq = true; if (acp_reg_read(acp_mmio, mmACP_DMA_CUR_DSCR_10) == CAPTURE_START_DMA_DESCR_CH11) dscr_idx = CAPTURE_END_DMA_DESCR_CH10; else dscr_idx = CAPTURE_START_DMA_DESCR_CH10; config_acp_dma_channel(acp_mmio, ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM, dscr_idx, 1, 0); acp_dma_start(acp_mmio, ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM, false); snd_pcm_period_elapsed(irq_data->capture_i2sbt_stream); acp_reg_write((intr_flag & BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) << 16, acp_mmio, mmACP_EXTERNAL_INTR_STAT); } if (valid_irq) return IRQ_HANDLED; else return IRQ_NONE; } static int acp_dma_open(struct snd_pcm_substream *substream) { u16 bank; int ret = 0; struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_pcm_runtime *prtd = substream->private_data; struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd, DRV_NAME); struct audio_drv_data *intr_data = dev_get_drvdata(component->dev); struct audio_substream_data *adata = kzalloc(sizeof(struct audio_substream_data), GFP_KERNEL); if (!adata) return -ENOMEM; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (intr_data->asic_type) { case CHIP_STONEY: runtime->hw = acp_st_pcm_hardware_playback; break; default: runtime->hw = acp_pcm_hardware_playback; } } else { switch (intr_data->asic_type) { case CHIP_STONEY: runtime->hw = acp_st_pcm_hardware_capture; break; default: runtime->hw = acp_pcm_hardware_capture; } } ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) { dev_err(component->dev, "set integer constraint failed\n"); kfree(adata); return ret; } adata->acp_mmio = intr_data->acp_mmio; runtime->private_data = adata; /* * Enable ACP irq, when neither playback or capture streams are * active by the time when a new stream is being opened. * This enablement is not required for another stream, if current * stream is not closed */ if (!intr_data->play_i2ssp_stream && !intr_data->capture_i2ssp_stream && !intr_data->play_i2sbt_stream && !intr_data->capture_i2sbt_stream) acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* * For Stoney, Memory gating is disabled,i.e SRAM Banks * won't be turned off. The default state for SRAM banks is ON. * Setting SRAM bank state code skipped for STONEY platform. */ if (intr_data->asic_type != CHIP_STONEY) { for (bank = 1; bank <= 4; bank++) acp_set_sram_bank_state(intr_data->acp_mmio, bank, true); } } else { if (intr_data->asic_type != CHIP_STONEY) { for (bank = 5; bank <= 8; bank++) acp_set_sram_bank_state(intr_data->acp_mmio, bank, true); } } return 0; } static int acp_dma_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { int status; uint64_t size; u32 val = 0; struct snd_pcm_runtime *runtime; struct audio_substream_data *rtd; struct snd_soc_pcm_runtime *prtd = substream->private_data; struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd, DRV_NAME); struct audio_drv_data *adata = dev_get_drvdata(component->dev); struct snd_soc_card *card = prtd->card; struct acp_platform_info *pinfo = snd_soc_card_get_drvdata(card); runtime = substream->runtime; rtd = runtime->private_data; if (WARN_ON(!rtd)) return -EINVAL; if (pinfo) { if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { rtd->i2s_instance = pinfo->play_i2s_instance; } else { rtd->i2s_instance = pinfo->cap_i2s_instance; rtd->capture_channel = pinfo->capture_channel; } } if (adata->asic_type == CHIP_STONEY) { val = acp_reg_read(adata->acp_mmio, mmACP_I2S_16BIT_RESOLUTION_EN); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: val |= ACP_I2S_BT_16BIT_RESOLUTION_EN; break; case I2S_SP_INSTANCE: default: val |= ACP_I2S_SP_16BIT_RESOLUTION_EN; } } else { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: val |= ACP_I2S_BT_16BIT_RESOLUTION_EN; break; case I2S_SP_INSTANCE: default: val |= ACP_I2S_MIC_16BIT_RESOLUTION_EN; } } acp_reg_write(val, adata->acp_mmio, mmACP_I2S_16BIT_RESOLUTION_EN); } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: rtd->pte_offset = ACP_ST_BT_PLAYBACK_PTE_OFFSET; rtd->ch1 = SYSRAM_TO_ACP_BT_INSTANCE_CH_NUM; rtd->ch2 = ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM; rtd->sram_bank = ACP_SRAM_BANK_3_ADDRESS; rtd->destination = TO_BLUETOOTH; rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH8; rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH9; rtd->byte_cnt_high_reg_offset = mmACP_I2S_BT_TRANSMIT_BYTE_CNT_HIGH; rtd->byte_cnt_low_reg_offset = mmACP_I2S_BT_TRANSMIT_BYTE_CNT_LOW; adata->play_i2sbt_stream = substream; break; case I2S_SP_INSTANCE: default: switch (adata->asic_type) { case CHIP_STONEY: rtd->pte_offset = ACP_ST_PLAYBACK_PTE_OFFSET; break; default: rtd->pte_offset = ACP_PLAYBACK_PTE_OFFSET; } rtd->ch1 = SYSRAM_TO_ACP_CH_NUM; rtd->ch2 = ACP_TO_I2S_DMA_CH_NUM; rtd->sram_bank = ACP_SRAM_BANK_1_ADDRESS; rtd->destination = TO_ACP_I2S_1; rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH12; rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH13; rtd->byte_cnt_high_reg_offset = mmACP_I2S_TRANSMIT_BYTE_CNT_HIGH; rtd->byte_cnt_low_reg_offset = mmACP_I2S_TRANSMIT_BYTE_CNT_LOW; adata->play_i2ssp_stream = substream; } } else { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: rtd->pte_offset = ACP_ST_BT_CAPTURE_PTE_OFFSET; rtd->ch1 = I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM; rtd->ch2 = ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM; rtd->sram_bank = ACP_SRAM_BANK_4_ADDRESS; rtd->destination = FROM_BLUETOOTH; rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH10; rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH11; rtd->byte_cnt_high_reg_offset = mmACP_I2S_BT_RECEIVE_BYTE_CNT_HIGH; rtd->byte_cnt_low_reg_offset = mmACP_I2S_BT_RECEIVE_BYTE_CNT_LOW; rtd->dma_curr_dscr = mmACP_DMA_CUR_DSCR_11; adata->capture_i2sbt_stream = substream; break; case I2S_SP_INSTANCE: default: rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET; rtd->ch1 = I2S_TO_ACP_DMA_CH_NUM; rtd->ch2 = ACP_TO_SYSRAM_CH_NUM; switch (adata->asic_type) { case CHIP_STONEY: rtd->pte_offset = ACP_ST_CAPTURE_PTE_OFFSET; rtd->sram_bank = ACP_SRAM_BANK_2_ADDRESS; break; default: rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET; rtd->sram_bank = ACP_SRAM_BANK_5_ADDRESS; } rtd->destination = FROM_ACP_I2S_1; rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH14; rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH15; rtd->byte_cnt_high_reg_offset = mmACP_I2S_RECEIVED_BYTE_CNT_HIGH; rtd->byte_cnt_low_reg_offset = mmACP_I2S_RECEIVED_BYTE_CNT_LOW; rtd->dma_curr_dscr = mmACP_DMA_CUR_DSCR_15; adata->capture_i2ssp_stream = substream; } } size = params_buffer_bytes(params); status = snd_pcm_lib_malloc_pages(substream, size); if (status < 0) return status; memset(substream->runtime->dma_area, 0, params_buffer_bytes(params)); if (substream->dma_buffer.area) { acp_set_sram_bank_state(rtd->acp_mmio, 0, true); /* Save for runtime private data */ rtd->dma_addr = substream->dma_buffer.addr; rtd->order = get_order(size); /* Fill the page table entries in ACP SRAM */ rtd->size = size; rtd->num_of_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; rtd->direction = substream->stream; config_acp_dma(rtd->acp_mmio, rtd, adata->asic_type); status = 0; } else { status = -ENOMEM; } return status; } static int acp_dma_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static u64 acp_get_byte_count(struct audio_substream_data *rtd) { union acp_dma_count byte_count; byte_count.bcount.high = acp_reg_read(rtd->acp_mmio, rtd->byte_cnt_high_reg_offset); byte_count.bcount.low = acp_reg_read(rtd->acp_mmio, rtd->byte_cnt_low_reg_offset); return byte_count.bytescount; } static snd_pcm_uframes_t acp_dma_pointer(struct snd_pcm_substream *substream) { u32 buffersize; u32 pos = 0; u64 bytescount = 0; u16 dscr; u32 period_bytes, delay; struct snd_pcm_runtime *runtime = substream->runtime; struct audio_substream_data *rtd = runtime->private_data; if (!rtd) return -EINVAL; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { period_bytes = frames_to_bytes(runtime, runtime->period_size); bytescount = acp_get_byte_count(rtd); if (bytescount >= rtd->bytescount) bytescount -= rtd->bytescount; if (bytescount < period_bytes) { pos = 0; } else { dscr = acp_reg_read(rtd->acp_mmio, rtd->dma_curr_dscr); if (dscr == rtd->dma_dscr_idx_1) pos = period_bytes; else pos = 0; } if (bytescount > 0) { delay = do_div(bytescount, period_bytes); runtime->delay = bytes_to_frames(runtime, delay); } } else { buffersize = frames_to_bytes(runtime, runtime->buffer_size); bytescount = acp_get_byte_count(rtd); if (bytescount > rtd->bytescount) bytescount -= rtd->bytescount; pos = do_div(bytescount, buffersize); } return bytes_to_frames(runtime, pos); } static int acp_dma_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { return snd_pcm_lib_default_mmap(substream, vma); } static int acp_dma_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct audio_substream_data *rtd = runtime->private_data; u16 ch_acp_sysmem, ch_acp_i2s; if (!rtd) return -EINVAL; if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) { ch_acp_sysmem = rtd->ch1; ch_acp_i2s = rtd->ch2; } else { ch_acp_i2s = rtd->ch1; ch_acp_sysmem = rtd->ch2; } config_acp_dma_channel(rtd->acp_mmio, ch_acp_sysmem, rtd->dma_dscr_idx_1, NUM_DSCRS_PER_CHANNEL, 0); config_acp_dma_channel(rtd->acp_mmio, ch_acp_i2s, rtd->dma_dscr_idx_2, NUM_DSCRS_PER_CHANNEL, 0); return 0; } static int acp_dma_trigger(struct snd_pcm_substream *substream, int cmd) { int ret; struct snd_pcm_runtime *runtime = substream->runtime; struct audio_substream_data *rtd = runtime->private_data; if (!rtd) return -EINVAL; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: rtd->bytescount = acp_get_byte_count(rtd); if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { if (rtd->capture_channel == CAP_CHANNEL0) { acp_dma_cap_channel_disable(rtd->acp_mmio, CAP_CHANNEL1); acp_dma_cap_channel_enable(rtd->acp_mmio, CAP_CHANNEL0); } if (rtd->capture_channel == CAP_CHANNEL1) { acp_dma_cap_channel_disable(rtd->acp_mmio, CAP_CHANNEL0); acp_dma_cap_channel_enable(rtd->acp_mmio, CAP_CHANNEL1); } acp_dma_start(rtd->acp_mmio, rtd->ch1, true); } else { acp_dma_start(rtd->acp_mmio, rtd->ch1, true); acp_dma_start(rtd->acp_mmio, rtd->ch2, true); } ret = 0; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: acp_dma_stop(rtd->acp_mmio, rtd->ch2); ret = acp_dma_stop(rtd->acp_mmio, rtd->ch1); break; default: ret = -EINVAL; } return ret; } static int acp_dma_new(struct snd_soc_pcm_runtime *rtd) { int ret; struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME); struct audio_drv_data *adata = dev_get_drvdata(component->dev); struct device *parent = component->dev->parent; switch (adata->asic_type) { case CHIP_STONEY: ret = snd_pcm_lib_preallocate_pages_for_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, parent, ST_MIN_BUFFER, ST_MAX_BUFFER); break; default: ret = snd_pcm_lib_preallocate_pages_for_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, parent, MIN_BUFFER, MAX_BUFFER); break; } if (ret < 0) dev_err(component->dev, "buffer preallocation failure error:%d\n", ret); return ret; } static int acp_dma_close(struct snd_pcm_substream *substream) { u16 bank; struct snd_pcm_runtime *runtime = substream->runtime; struct audio_substream_data *rtd = runtime->private_data; struct snd_soc_pcm_runtime *prtd = substream->private_data; struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd, DRV_NAME); struct audio_drv_data *adata = dev_get_drvdata(component->dev); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: adata->play_i2sbt_stream = NULL; break; case I2S_SP_INSTANCE: default: adata->play_i2ssp_stream = NULL; /* * For Stoney, Memory gating is disabled,i.e SRAM Banks * won't be turned off. The default state for SRAM banks * is ON.Setting SRAM bank state code skipped for STONEY * platform. Added condition checks for Carrizo platform * only. */ if (adata->asic_type != CHIP_STONEY) { for (bank = 1; bank <= 4; bank++) acp_set_sram_bank_state(adata->acp_mmio, bank, false); } } } else { switch (rtd->i2s_instance) { case I2S_BT_INSTANCE: adata->capture_i2sbt_stream = NULL; break; case I2S_SP_INSTANCE: default: adata->capture_i2ssp_stream = NULL; if (adata->asic_type != CHIP_STONEY) { for (bank = 5; bank <= 8; bank++) acp_set_sram_bank_state(adata->acp_mmio, bank, false); } } } /* * Disable ACP irq, when the current stream is being closed and * another stream is also not active. */ if (!adata->play_i2ssp_stream && !adata->capture_i2ssp_stream && !adata->play_i2sbt_stream && !adata->capture_i2sbt_stream) acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB); kfree(rtd); return 0; } static const struct snd_pcm_ops acp_dma_ops = { .open = acp_dma_open, .close = acp_dma_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = acp_dma_hw_params, .hw_free = acp_dma_hw_free, .trigger = acp_dma_trigger, .pointer = acp_dma_pointer, .mmap = acp_dma_mmap, .prepare = acp_dma_prepare, }; static const struct snd_soc_component_driver acp_asoc_platform = { .name = DRV_NAME, .ops = &acp_dma_ops, .pcm_new = acp_dma_new, }; static int acp_audio_probe(struct platform_device *pdev) { int status; struct audio_drv_data *audio_drv_data; struct resource *res; const u32 *pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "Missing platform data\n"); return -ENODEV; } audio_drv_data = devm_kzalloc(&pdev->dev, sizeof(struct audio_drv_data), GFP_KERNEL); if (!audio_drv_data) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); audio_drv_data->acp_mmio = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(audio_drv_data->acp_mmio)) return PTR_ERR(audio_drv_data->acp_mmio); /* * The following members gets populated in device 'open' * function. Till then interrupts are disabled in 'acp_init' * and device doesn't generate any interrupts. */ audio_drv_data->play_i2ssp_stream = NULL; audio_drv_data->capture_i2ssp_stream = NULL; audio_drv_data->play_i2sbt_stream = NULL; audio_drv_data->capture_i2sbt_stream = NULL; audio_drv_data->asic_type = *pdata; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(&pdev->dev, "IORESOURCE_IRQ FAILED\n"); return -ENODEV; } status = devm_request_irq(&pdev->dev, res->start, dma_irq_handler, 0, "ACP_IRQ", &pdev->dev); if (status) { dev_err(&pdev->dev, "ACP IRQ request failed\n"); return status; } dev_set_drvdata(&pdev->dev, audio_drv_data); /* Initialize the ACP */ status = acp_init(audio_drv_data->acp_mmio, audio_drv_data->asic_type); if (status) { dev_err(&pdev->dev, "ACP Init failed status:%d\n", status); return status; } status = devm_snd_soc_register_component(&pdev->dev, &acp_asoc_platform, NULL, 0); if (status != 0) { dev_err(&pdev->dev, "Fail to register ALSA platform device\n"); return status; } pm_runtime_set_autosuspend_delay(&pdev->dev, 10000); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); return status; } static int acp_audio_remove(struct platform_device *pdev) { int status; struct audio_drv_data *adata = dev_get_drvdata(&pdev->dev); status = acp_deinit(adata->acp_mmio); if (status) dev_err(&pdev->dev, "ACP Deinit failed status:%d\n", status); pm_runtime_disable(&pdev->dev); return 0; } static int acp_pcm_resume(struct device *dev) { u16 bank; int status; struct audio_substream_data *rtd; struct audio_drv_data *adata = dev_get_drvdata(dev); status = acp_init(adata->acp_mmio, adata->asic_type); if (status) { dev_err(dev, "ACP Init failed status:%d\n", status); return status; } if (adata->play_i2ssp_stream && adata->play_i2ssp_stream->runtime) { /* * For Stoney, Memory gating is disabled,i.e SRAM Banks * won't be turned off. The default state for SRAM banks is ON. * Setting SRAM bank state code skipped for STONEY platform. */ if (adata->asic_type != CHIP_STONEY) { for (bank = 1; bank <= 4; bank++) acp_set_sram_bank_state(adata->acp_mmio, bank, true); } rtd = adata->play_i2ssp_stream->runtime->private_data; config_acp_dma(adata->acp_mmio, rtd, adata->asic_type); } if (adata->capture_i2ssp_stream && adata->capture_i2ssp_stream->runtime) { if (adata->asic_type != CHIP_STONEY) { for (bank = 5; bank <= 8; bank++) acp_set_sram_bank_state(adata->acp_mmio, bank, true); } rtd = adata->capture_i2ssp_stream->runtime->private_data; config_acp_dma(adata->acp_mmio, rtd, adata->asic_type); } if (adata->asic_type != CHIP_CARRIZO) { if (adata->play_i2sbt_stream && adata->play_i2sbt_stream->runtime) { rtd = adata->play_i2sbt_stream->runtime->private_data; config_acp_dma(adata->acp_mmio, rtd, adata->asic_type); } if (adata->capture_i2sbt_stream && adata->capture_i2sbt_stream->runtime) { rtd = adata->capture_i2sbt_stream->runtime->private_data; config_acp_dma(adata->acp_mmio, rtd, adata->asic_type); } } acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB); return 0; } static int acp_pcm_runtime_suspend(struct device *dev) { int status; struct audio_drv_data *adata = dev_get_drvdata(dev); status = acp_deinit(adata->acp_mmio); if (status) dev_err(dev, "ACP Deinit failed status:%d\n", status); acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB); return 0; } static int acp_pcm_runtime_resume(struct device *dev) { int status; struct audio_drv_data *adata = dev_get_drvdata(dev); status = acp_init(adata->acp_mmio, adata->asic_type); if (status) { dev_err(dev, "ACP Init failed status:%d\n", status); return status; } acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB); return 0; } static const struct dev_pm_ops acp_pm_ops = { .resume = acp_pcm_resume, .runtime_suspend = acp_pcm_runtime_suspend, .runtime_resume = acp_pcm_runtime_resume, }; static struct platform_driver acp_dma_driver = { .probe = acp_audio_probe, .remove = acp_audio_remove, .driver = { .name = DRV_NAME, .pm = &acp_pm_ops, }, }; module_platform_driver(acp_dma_driver); MODULE_AUTHOR("Vijendar.Mukunda@amd.com"); MODULE_AUTHOR("Maruthi.Bayyavarapu@amd.com"); MODULE_DESCRIPTION("AMD ACP PCM Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:"DRV_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1