Contributors: 15
Author Tokens Token Proportion Commits Commit Proportion
Peter Ujfalusi 5795 86.35% 45 62.50%
Kuninori Morimoto 414 6.17% 4 5.56%
Ilkka Koskinen 215 3.20% 1 1.39%
Liam Girdwood 164 2.44% 1 1.39%
Mark Brown 48 0.72% 4 5.56%
Takashi Iwai 27 0.40% 2 2.78%
Lars-Peter Clausen 17 0.25% 5 6.94%
Axel Lin 16 0.24% 3 4.17%
Bhaktipriya Shridhar 6 0.09% 1 1.39%
Tejun Heo 3 0.04% 1 1.39%
Fabio Estevam 2 0.03% 1 1.39%
Bhumika Goyal 1 0.01% 1 1.39%
Felipe Balbi 1 0.01% 1 1.39%
Sachin Kamat 1 0.01% 1 1.39%
Lucas De Marchi 1 0.01% 1 1.39%
Total 6711 72


/*
 * ALSA SoC Texas Instruments TLV320DAC33 codec driver
 *
 * Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
 *
 * Copyright:   (C) 2009 Nokia Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA
 *
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>

#include <sound/tlv320dac33-plat.h>
#include "tlv320dac33.h"

/*
 * The internal FIFO is 24576 bytes long
 * It can be configured to hold 16bit or 24bit samples
 * In 16bit configuration the FIFO can hold 6144 stereo samples
 * In 24bit configuration the FIFO can hold 4096 stereo samples
 */
#define DAC33_FIFO_SIZE_16BIT	6144
#define DAC33_FIFO_SIZE_24BIT	4096
#define DAC33_MODE7_MARGIN	10	/* Safety margin for FIFO in Mode7 */

#define BURST_BASEFREQ_HZ	49152000

#define SAMPLES_TO_US(rate, samples) \
	(1000000000 / (((rate) * 1000) / (samples)))

#define US_TO_SAMPLES(rate, us) \
	((rate) / (1000000 / ((us) < 1000000 ? (us) : 1000000)))

#define UTHR_FROM_PERIOD_SIZE(samples, playrate, burstrate) \
	(((samples)*5000) / (((burstrate)*5000) / ((burstrate) - (playrate))))

static void dac33_calculate_times(struct snd_pcm_substream *substream,
				  struct snd_soc_component *component);
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
			      struct snd_soc_component *component);

enum dac33_state {
	DAC33_IDLE = 0,
	DAC33_PREFILL,
	DAC33_PLAYBACK,
	DAC33_FLUSH,
};

enum dac33_fifo_modes {
	DAC33_FIFO_BYPASS = 0,
	DAC33_FIFO_MODE1,
	DAC33_FIFO_MODE7,
	DAC33_FIFO_LAST_MODE,
};

#define DAC33_NUM_SUPPLIES 3
static const char *dac33_supply_names[DAC33_NUM_SUPPLIES] = {
	"AVDD",
	"DVDD",
	"IOVDD",
};

struct tlv320dac33_priv {
	struct mutex mutex;
	struct work_struct work;
	struct snd_soc_component *component;
	struct regulator_bulk_data supplies[DAC33_NUM_SUPPLIES];
	struct snd_pcm_substream *substream;
	int power_gpio;
	int chip_power;
	int irq;
	unsigned int refclk;

	unsigned int alarm_threshold;	/* set to be half of LATENCY_TIME_MS */
	enum dac33_fifo_modes fifo_mode;/* FIFO mode selection */
	unsigned int fifo_size;		/* Size of the FIFO in samples */
	unsigned int nsample;		/* burst read amount from host */
	int mode1_latency;		/* latency caused by the i2c writes in
					 * us */
	u8 burst_bclkdiv;		/* BCLK divider value in burst mode */
	u8 *reg_cache;
	unsigned int burst_rate;	/* Interface speed in Burst modes */

	int keep_bclk;			/* Keep the BCLK continuously running
					 * in FIFO modes */
	spinlock_t lock;
	unsigned long long t_stamp1;	/* Time stamp for FIFO modes to */
	unsigned long long t_stamp2;	/* calculate the FIFO caused delay */

	unsigned int mode1_us_burst;	/* Time to burst read n number of
					 * samples */
	unsigned int mode7_us_to_lthr;	/* Time to reach lthr from uthr */

	unsigned int uthr;

	enum dac33_state state;
	struct i2c_client *i2c;
};

static const u8 dac33_reg[DAC33_CACHEREGNUM] = {
0x00, 0x00, 0x00, 0x00, /* 0x00 - 0x03 */
0x00, 0x00, 0x00, 0x00, /* 0x04 - 0x07 */
0x00, 0x00, 0x00, 0x00, /* 0x08 - 0x0b */
0x00, 0x00, 0x00, 0x00, /* 0x0c - 0x0f */
0x00, 0x00, 0x00, 0x00, /* 0x10 - 0x13 */
0x00, 0x00, 0x00, 0x00, /* 0x14 - 0x17 */
0x00, 0x00, 0x00, 0x00, /* 0x18 - 0x1b */
0x00, 0x00, 0x00, 0x00, /* 0x1c - 0x1f */
0x00, 0x00, 0x00, 0x00, /* 0x20 - 0x23 */
0x00, 0x00, 0x00, 0x00, /* 0x24 - 0x27 */
0x00, 0x00, 0x00, 0x00, /* 0x28 - 0x2b */
0x00, 0x00, 0x00, 0x80, /* 0x2c - 0x2f */
0x80, 0x00, 0x00, 0x00, /* 0x30 - 0x33 */
0x00, 0x00, 0x00, 0x00, /* 0x34 - 0x37 */
0x00, 0x00,             /* 0x38 - 0x39 */
/* Registers 0x3a - 0x3f are reserved  */
            0x00, 0x00, /* 0x3a - 0x3b */
0x00, 0x00, 0x00, 0x00, /* 0x3c - 0x3f */

0x00, 0x00, 0x00, 0x00, /* 0x40 - 0x43 */
0x00, 0x80,             /* 0x44 - 0x45 */
/* Registers 0x46 - 0x47 are reserved  */
            0x80, 0x80, /* 0x46 - 0x47 */

0x80, 0x00, 0x00,       /* 0x48 - 0x4a */
/* Registers 0x4b - 0x7c are reserved  */
                  0x00, /* 0x4b        */
0x00, 0x00, 0x00, 0x00, /* 0x4c - 0x4f */
0x00, 0x00, 0x00, 0x00, /* 0x50 - 0x53 */
0x00, 0x00, 0x00, 0x00, /* 0x54 - 0x57 */
0x00, 0x00, 0x00, 0x00, /* 0x58 - 0x5b */
0x00, 0x00, 0x00, 0x00, /* 0x5c - 0x5f */
0x00, 0x00, 0x00, 0x00, /* 0x60 - 0x63 */
0x00, 0x00, 0x00, 0x00, /* 0x64 - 0x67 */
0x00, 0x00, 0x00, 0x00, /* 0x68 - 0x6b */
0x00, 0x00, 0x00, 0x00, /* 0x6c - 0x6f */
0x00, 0x00, 0x00, 0x00, /* 0x70 - 0x73 */
0x00, 0x00, 0x00, 0x00, /* 0x74 - 0x77 */
0x00, 0x00, 0x00, 0x00, /* 0x78 - 0x7b */
0x00,                   /* 0x7c        */

      0xda, 0x33, 0x03, /* 0x7d - 0x7f */
};

/* Register read and write */
static inline unsigned int dac33_read_reg_cache(struct snd_soc_component *component,
						unsigned reg)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 *cache = dac33->reg_cache;
	if (reg >= DAC33_CACHEREGNUM)
		return 0;

	return cache[reg];
}

static inline void dac33_write_reg_cache(struct snd_soc_component *component,
					 u8 reg, u8 value)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 *cache = dac33->reg_cache;
	if (reg >= DAC33_CACHEREGNUM)
		return;

	cache[reg] = value;
}

static int dac33_read(struct snd_soc_component *component, unsigned int reg,
		      u8 *value)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int val, ret = 0;

	*value = reg & 0xff;

	/* If powered off, return the cached value */
	if (dac33->chip_power) {
		val = i2c_smbus_read_byte_data(dac33->i2c, value[0]);
		if (val < 0) {
			dev_err(component->dev, "Read failed (%d)\n", val);
			value[0] = dac33_read_reg_cache(component, reg);
			ret = val;
		} else {
			value[0] = val;
			dac33_write_reg_cache(component, reg, val);
		}
	} else {
		value[0] = dac33_read_reg_cache(component, reg);
	}

	return ret;
}

static int dac33_write(struct snd_soc_component *component, unsigned int reg,
		       unsigned int value)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 data[2];
	int ret = 0;

	/*
	 * data is
	 *   D15..D8 dac33 register offset
	 *   D7...D0 register data
	 */
	data[0] = reg & 0xff;
	data[1] = value & 0xff;

	dac33_write_reg_cache(component, data[0], data[1]);
	if (dac33->chip_power) {
		ret = i2c_master_send(dac33->i2c, data, 2);
		if (ret != 2)
			dev_err(component->dev, "Write failed (%d)\n", ret);
		else
			ret = 0;
	}

	return ret;
}

static int dac33_write_locked(struct snd_soc_component *component, unsigned int reg,
			      unsigned int value)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int ret;

	mutex_lock(&dac33->mutex);
	ret = dac33_write(component, reg, value);
	mutex_unlock(&dac33->mutex);

	return ret;
}

#define DAC33_I2C_ADDR_AUTOINC	0x80
static int dac33_write16(struct snd_soc_component *component, unsigned int reg,
		       unsigned int value)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 data[3];
	int ret = 0;

	/*
	 * data is
	 *   D23..D16 dac33 register offset
	 *   D15..D8  register data MSB
	 *   D7...D0  register data LSB
	 */
	data[0] = reg & 0xff;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

	dac33_write_reg_cache(component, data[0], data[1]);
	dac33_write_reg_cache(component, data[0] + 1, data[2]);

	if (dac33->chip_power) {
		/* We need to set autoincrement mode for 16 bit writes */
		data[0] |= DAC33_I2C_ADDR_AUTOINC;
		ret = i2c_master_send(dac33->i2c, data, 3);
		if (ret != 3)
			dev_err(component->dev, "Write failed (%d)\n", ret);
		else
			ret = 0;
	}

	return ret;
}

static void dac33_init_chip(struct snd_soc_component *component)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	if (unlikely(!dac33->chip_power))
		return;

	/* A : DAC sample rate Fsref/1.5 */
	dac33_write(component, DAC33_DAC_CTRL_A, DAC33_DACRATE(0));
	/* B : DAC src=normal, not muted */
	dac33_write(component, DAC33_DAC_CTRL_B, DAC33_DACSRCR_RIGHT |
					     DAC33_DACSRCL_LEFT);
	/* C : (defaults) */
	dac33_write(component, DAC33_DAC_CTRL_C, 0x00);

	/* 73 : volume soft stepping control,
	 clock source = internal osc (?) */
	dac33_write(component, DAC33_ANA_VOL_SOFT_STEP_CTRL, DAC33_VOLCLKEN);

	/* Restore only selected registers (gains mostly) */
	dac33_write(component, DAC33_LDAC_DIG_VOL_CTRL,
		    dac33_read_reg_cache(component, DAC33_LDAC_DIG_VOL_CTRL));
	dac33_write(component, DAC33_RDAC_DIG_VOL_CTRL,
		    dac33_read_reg_cache(component, DAC33_RDAC_DIG_VOL_CTRL));

	dac33_write(component, DAC33_LINEL_TO_LLO_VOL,
		    dac33_read_reg_cache(component, DAC33_LINEL_TO_LLO_VOL));
	dac33_write(component, DAC33_LINER_TO_RLO_VOL,
		    dac33_read_reg_cache(component, DAC33_LINER_TO_RLO_VOL));

	dac33_write(component, DAC33_OUT_AMP_CTRL,
		    dac33_read_reg_cache(component, DAC33_OUT_AMP_CTRL));

	dac33_write(component, DAC33_LDAC_PWR_CTRL,
		    dac33_read_reg_cache(component, DAC33_LDAC_PWR_CTRL));
	dac33_write(component, DAC33_RDAC_PWR_CTRL,
		    dac33_read_reg_cache(component, DAC33_RDAC_PWR_CTRL));
}

static inline int dac33_read_id(struct snd_soc_component *component)
{
	int i, ret = 0;
	u8 reg;

	for (i = 0; i < 3; i++) {
		ret = dac33_read(component, DAC33_DEVICE_ID_MSB + i, &reg);
		if (ret < 0)
			break;
	}

	return ret;
}

static inline void dac33_soft_power(struct snd_soc_component *component, int power)
{
	u8 reg;

	reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
	if (power)
		reg |= DAC33_PDNALLB;
	else
		reg &= ~(DAC33_PDNALLB | DAC33_OSCPDNB |
			 DAC33_DACRPDNB | DAC33_DACLPDNB);
	dac33_write(component, DAC33_PWR_CTRL, reg);
}

static inline void dac33_disable_digital(struct snd_soc_component *component)
{
	u8 reg;

	/* Stop the DAI clock */
	reg = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);
	reg &= ~DAC33_BCLKON;
	dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, reg);

	/* Power down the Oscillator, and DACs */
	reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
	reg &= ~(DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB);
	dac33_write(component, DAC33_PWR_CTRL, reg);
}

static int dac33_hard_power(struct snd_soc_component *component, int power)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int ret = 0;

	mutex_lock(&dac33->mutex);

	/* Safety check */
	if (unlikely(power == dac33->chip_power)) {
		dev_dbg(component->dev, "Trying to set the same power state: %s\n",
			power ? "ON" : "OFF");
		goto exit;
	}

	if (power) {
		ret = regulator_bulk_enable(ARRAY_SIZE(dac33->supplies),
					  dac33->supplies);
		if (ret != 0) {
			dev_err(component->dev,
				"Failed to enable supplies: %d\n", ret);
			goto exit;
		}

		if (dac33->power_gpio >= 0)
			gpio_set_value(dac33->power_gpio, 1);

		dac33->chip_power = 1;
	} else {
		dac33_soft_power(component, 0);
		if (dac33->power_gpio >= 0)
			gpio_set_value(dac33->power_gpio, 0);

		ret = regulator_bulk_disable(ARRAY_SIZE(dac33->supplies),
					     dac33->supplies);
		if (ret != 0) {
			dev_err(component->dev,
				"Failed to disable supplies: %d\n", ret);
			goto exit;
		}

		dac33->chip_power = 0;
	}

exit:
	mutex_unlock(&dac33->mutex);
	return ret;
}

static int dac33_playback_event(struct snd_soc_dapm_widget *w,
		struct snd_kcontrol *kcontrol, int event)
{
	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	switch (event) {
	case SND_SOC_DAPM_PRE_PMU:
		if (likely(dac33->substream)) {
			dac33_calculate_times(dac33->substream, component);
			dac33_prepare_chip(dac33->substream, component);
		}
		break;
	case SND_SOC_DAPM_POST_PMD:
		dac33_disable_digital(component);
		break;
	}
	return 0;
}

static int dac33_get_fifo_mode(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	ucontrol->value.enumerated.item[0] = dac33->fifo_mode;

	return 0;
}

static int dac33_set_fifo_mode(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int ret = 0;

	if (dac33->fifo_mode == ucontrol->value.enumerated.item[0])
		return 0;
	/* Do not allow changes while stream is running*/
	if (snd_soc_component_is_active(component))
		return -EPERM;

	if (ucontrol->value.enumerated.item[0] >= DAC33_FIFO_LAST_MODE)
		ret = -EINVAL;
	else
		dac33->fifo_mode = ucontrol->value.enumerated.item[0];

	return ret;
}

/* Codec operation modes */
static const char *dac33_fifo_mode_texts[] = {
	"Bypass", "Mode 1", "Mode 7"
};

static SOC_ENUM_SINGLE_EXT_DECL(dac33_fifo_mode_enum, dac33_fifo_mode_texts);

/* L/R Line Output Gain */
static const char *lr_lineout_gain_texts[] = {
	"Line -12dB DAC 0dB", "Line -6dB DAC 6dB",
	"Line 0dB DAC 12dB", "Line 6dB DAC 18dB",
};

static SOC_ENUM_SINGLE_DECL(l_lineout_gain_enum,
			    DAC33_LDAC_PWR_CTRL, 0,
			    lr_lineout_gain_texts);

static SOC_ENUM_SINGLE_DECL(r_lineout_gain_enum,
			    DAC33_RDAC_PWR_CTRL, 0,
			    lr_lineout_gain_texts);

/*
 * DACL/R digital volume control:
 * from 0 dB to -63.5 in 0.5 dB steps
 * Need to be inverted later on:
 * 0x00 == 0 dB
 * 0x7f == -63.5 dB
 */
static DECLARE_TLV_DB_SCALE(dac_digivol_tlv, -6350, 50, 0);

static const struct snd_kcontrol_new dac33_snd_controls[] = {
	SOC_DOUBLE_R_TLV("DAC Digital Playback Volume",
		DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL,
		0, 0x7f, 1, dac_digivol_tlv),
	SOC_DOUBLE_R("DAC Digital Playback Switch",
		 DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL, 7, 1, 1),
	SOC_DOUBLE_R("Line to Line Out Volume",
		 DAC33_LINEL_TO_LLO_VOL, DAC33_LINER_TO_RLO_VOL, 0, 127, 1),
	SOC_ENUM("Left Line Output Gain", l_lineout_gain_enum),
	SOC_ENUM("Right Line Output Gain", r_lineout_gain_enum),
};

static const struct snd_kcontrol_new dac33_mode_snd_controls[] = {
	SOC_ENUM_EXT("FIFO Mode", dac33_fifo_mode_enum,
		 dac33_get_fifo_mode, dac33_set_fifo_mode),
};

/* Analog bypass */
static const struct snd_kcontrol_new dac33_dapm_abypassl_control =
	SOC_DAPM_SINGLE("Switch", DAC33_LINEL_TO_LLO_VOL, 7, 1, 1);

static const struct snd_kcontrol_new dac33_dapm_abypassr_control =
	SOC_DAPM_SINGLE("Switch", DAC33_LINER_TO_RLO_VOL, 7, 1, 1);

/* LOP L/R invert selection */
static const char *dac33_lr_lom_texts[] = {"DAC", "LOP"};

static SOC_ENUM_SINGLE_DECL(dac33_left_lom_enum,
			    DAC33_OUT_AMP_CTRL, 3,
			    dac33_lr_lom_texts);

static const struct snd_kcontrol_new dac33_dapm_left_lom_control =
SOC_DAPM_ENUM("Route", dac33_left_lom_enum);

static SOC_ENUM_SINGLE_DECL(dac33_right_lom_enum,
			    DAC33_OUT_AMP_CTRL, 2,
			    dac33_lr_lom_texts);

static const struct snd_kcontrol_new dac33_dapm_right_lom_control =
SOC_DAPM_ENUM("Route", dac33_right_lom_enum);

static const struct snd_soc_dapm_widget dac33_dapm_widgets[] = {
	SND_SOC_DAPM_OUTPUT("LEFT_LO"),
	SND_SOC_DAPM_OUTPUT("RIGHT_LO"),

	SND_SOC_DAPM_INPUT("LINEL"),
	SND_SOC_DAPM_INPUT("LINER"),

	SND_SOC_DAPM_DAC("DACL", "Left Playback", SND_SOC_NOPM, 0, 0),
	SND_SOC_DAPM_DAC("DACR", "Right Playback", SND_SOC_NOPM, 0, 0),

	/* Analog bypass */
	SND_SOC_DAPM_SWITCH("Analog Left Bypass", SND_SOC_NOPM, 0, 0,
				&dac33_dapm_abypassl_control),
	SND_SOC_DAPM_SWITCH("Analog Right Bypass", SND_SOC_NOPM, 0, 0,
				&dac33_dapm_abypassr_control),

	SND_SOC_DAPM_MUX("Left LOM Inverted From", SND_SOC_NOPM, 0, 0,
		&dac33_dapm_left_lom_control),
	SND_SOC_DAPM_MUX("Right LOM Inverted From", SND_SOC_NOPM, 0, 0,
		&dac33_dapm_right_lom_control),
	/*
	 * For DAPM path, when only the anlog bypass path is enabled, and the
	 * LOP inverted from the corresponding DAC side.
	 * This is needed, so we can attach the DAC power supply in this case.
	 */
	SND_SOC_DAPM_PGA("Left Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),

	SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Left Amplifier",
			 DAC33_OUT_AMP_PWR_CTRL, 6, 3, 3, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Right Amplifier",
			 DAC33_OUT_AMP_PWR_CTRL, 4, 3, 3, 0),

	SND_SOC_DAPM_SUPPLY("Left DAC Power",
			    DAC33_LDAC_PWR_CTRL, 2, 0, NULL, 0),
	SND_SOC_DAPM_SUPPLY("Right DAC Power",
			    DAC33_RDAC_PWR_CTRL, 2, 0, NULL, 0),

	SND_SOC_DAPM_SUPPLY("Codec Power",
			    DAC33_PWR_CTRL, 4, 0, NULL, 0),

	SND_SOC_DAPM_PRE("Pre Playback", dac33_playback_event),
	SND_SOC_DAPM_POST("Post Playback", dac33_playback_event),
};

static const struct snd_soc_dapm_route audio_map[] = {
	/* Analog bypass */
	{"Analog Left Bypass", "Switch", "LINEL"},
	{"Analog Right Bypass", "Switch", "LINER"},

	{"Output Left Amplifier", NULL, "DACL"},
	{"Output Right Amplifier", NULL, "DACR"},

	{"Left Bypass PGA", NULL, "Analog Left Bypass"},
	{"Right Bypass PGA", NULL, "Analog Right Bypass"},

	{"Left LOM Inverted From", "DAC", "Left Bypass PGA"},
	{"Right LOM Inverted From", "DAC", "Right Bypass PGA"},
	{"Left LOM Inverted From", "LOP", "Analog Left Bypass"},
	{"Right LOM Inverted From", "LOP", "Analog Right Bypass"},

	{"Output Left Amplifier", NULL, "Left LOM Inverted From"},
	{"Output Right Amplifier", NULL, "Right LOM Inverted From"},

	{"DACL", NULL, "Left DAC Power"},
	{"DACR", NULL, "Right DAC Power"},

	{"Left Bypass PGA", NULL, "Left DAC Power"},
	{"Right Bypass PGA", NULL, "Right DAC Power"},

	/* output */
	{"LEFT_LO", NULL, "Output Left Amplifier"},
	{"RIGHT_LO", NULL, "Output Right Amplifier"},

	{"LEFT_LO", NULL, "Codec Power"},
	{"RIGHT_LO", NULL, "Codec Power"},
};

static int dac33_set_bias_level(struct snd_soc_component *component,
				enum snd_soc_bias_level level)
{
	int ret;

	switch (level) {
	case SND_SOC_BIAS_ON:
		break;
	case SND_SOC_BIAS_PREPARE:
		break;
	case SND_SOC_BIAS_STANDBY:
		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
			/* Coming from OFF, switch on the component */
			ret = dac33_hard_power(component, 1);
			if (ret != 0)
				return ret;

			dac33_init_chip(component);
		}
		break;
	case SND_SOC_BIAS_OFF:
		/* Do not power off, when the component is already off */
		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
			return 0;
		ret = dac33_hard_power(component, 0);
		if (ret != 0)
			return ret;
		break;
	}

	return 0;
}

static inline void dac33_prefill_handler(struct tlv320dac33_priv *dac33)
{
	struct snd_soc_component *component = dac33->component;
	unsigned int delay;
	unsigned long flags;

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		dac33_write16(component, DAC33_NSAMPLE_MSB,
			DAC33_THRREG(dac33->nsample));

		/* Take the timestamps */
		spin_lock_irqsave(&dac33->lock, flags);
		dac33->t_stamp2 = ktime_to_us(ktime_get());
		dac33->t_stamp1 = dac33->t_stamp2;
		spin_unlock_irqrestore(&dac33->lock, flags);

		dac33_write16(component, DAC33_PREFILL_MSB,
				DAC33_THRREG(dac33->alarm_threshold));
		/* Enable Alarm Threshold IRQ with a delay */
		delay = SAMPLES_TO_US(dac33->burst_rate,
				     dac33->alarm_threshold) + 1000;
		usleep_range(delay, delay + 500);
		dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MAT);
		break;
	case DAC33_FIFO_MODE7:
		/* Take the timestamp */
		spin_lock_irqsave(&dac33->lock, flags);
		dac33->t_stamp1 = ktime_to_us(ktime_get());
		/* Move back the timestamp with drain time */
		dac33->t_stamp1 -= dac33->mode7_us_to_lthr;
		spin_unlock_irqrestore(&dac33->lock, flags);

		dac33_write16(component, DAC33_PREFILL_MSB,
				DAC33_THRREG(DAC33_MODE7_MARGIN));

		/* Enable Upper Threshold IRQ */
		dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MUT);
		break;
	default:
		dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
							dac33->fifo_mode);
		break;
	}
}

static inline void dac33_playback_handler(struct tlv320dac33_priv *dac33)
{
	struct snd_soc_component *component = dac33->component;
	unsigned long flags;

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		/* Take the timestamp */
		spin_lock_irqsave(&dac33->lock, flags);
		dac33->t_stamp2 = ktime_to_us(ktime_get());
		spin_unlock_irqrestore(&dac33->lock, flags);

		dac33_write16(component, DAC33_NSAMPLE_MSB,
				DAC33_THRREG(dac33->nsample));
		break;
	case DAC33_FIFO_MODE7:
		/* At the moment we are not using interrupts in mode7 */
		break;
	default:
		dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
							dac33->fifo_mode);
		break;
	}
}

static void dac33_work(struct work_struct *work)
{
	struct snd_soc_component *component;
	struct tlv320dac33_priv *dac33;
	u8 reg;

	dac33 = container_of(work, struct tlv320dac33_priv, work);
	component = dac33->component;

	mutex_lock(&dac33->mutex);
	switch (dac33->state) {
	case DAC33_PREFILL:
		dac33->state = DAC33_PLAYBACK;
		dac33_prefill_handler(dac33);
		break;
	case DAC33_PLAYBACK:
		dac33_playback_handler(dac33);
		break;
	case DAC33_IDLE:
		break;
	case DAC33_FLUSH:
		dac33->state = DAC33_IDLE;
		/* Mask all interrupts from dac33 */
		dac33_write(component, DAC33_FIFO_IRQ_MASK, 0);

		/* flush fifo */
		reg = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A);
		reg |= DAC33_FIFOFLUSH;
		dac33_write(component, DAC33_FIFO_CTRL_A, reg);
		break;
	}
	mutex_unlock(&dac33->mutex);
}

static irqreturn_t dac33_interrupt_handler(int irq, void *dev)
{
	struct snd_soc_component *component = dev;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	unsigned long flags;

	spin_lock_irqsave(&dac33->lock, flags);
	dac33->t_stamp1 = ktime_to_us(ktime_get());
	spin_unlock_irqrestore(&dac33->lock, flags);

	/* Do not schedule the workqueue in Mode7 */
	if (dac33->fifo_mode != DAC33_FIFO_MODE7)
		schedule_work(&dac33->work);

	return IRQ_HANDLED;
}

static void dac33_oscwait(struct snd_soc_component *component)
{
	int timeout = 60;
	u8 reg;

	do {
		usleep_range(1000, 2000);
		dac33_read(component, DAC33_INT_OSC_STATUS, &reg);
	} while (((reg & 0x03) != DAC33_OSCSTATUS_NORMAL) && timeout--);
	if ((reg & 0x03) != DAC33_OSCSTATUS_NORMAL)
		dev_err(component->dev,
			"internal oscillator calibration failed\n");
}

static int dac33_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	/* Stream started, save the substream pointer */
	dac33->substream = substream;

	return 0;
}

static void dac33_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	dac33->substream = NULL;
}

#define CALC_BURST_RATE(bclkdiv, bclk_per_sample) \
	(BURST_BASEFREQ_HZ / bclkdiv / bclk_per_sample)
static int dac33_hw_params(struct snd_pcm_substream *substream,
			   struct snd_pcm_hw_params *params,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	/* Check parameters for validity */
	switch (params_rate(params)) {
	case 44100:
	case 48000:
		break;
	default:
		dev_err(component->dev, "unsupported rate %d\n",
			params_rate(params));
		return -EINVAL;
	}

	switch (params_width(params)) {
	case 16:
		dac33->fifo_size = DAC33_FIFO_SIZE_16BIT;
		dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 32);
		break;
	case 32:
		dac33->fifo_size = DAC33_FIFO_SIZE_24BIT;
		dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 64);
		break;
	default:
		dev_err(component->dev, "unsupported width %d\n",
			params_width(params));
		return -EINVAL;
	}

	return 0;
}

#define CALC_OSCSET(rate, refclk) ( \
	((((rate * 10000) / refclk) * 4096) + 7000) / 10000)
#define CALC_RATIOSET(rate, refclk) ( \
	((((refclk  * 100000) / rate) * 16384) + 50000) / 100000)

/*
 * tlv320dac33 is strict on the sequence of the register writes, if the register
 * writes happens in different order, than dac33 might end up in unknown state.
 * Use the known, working sequence of register writes to initialize the dac33.
 */
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
			      struct snd_soc_component *component)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	unsigned int oscset, ratioset, pwr_ctrl, reg_tmp;
	u8 aictrl_a, aictrl_b, fifoctrl_a;

	switch (substream->runtime->rate) {
	case 44100:
	case 48000:
		oscset = CALC_OSCSET(substream->runtime->rate, dac33->refclk);
		ratioset = CALC_RATIOSET(substream->runtime->rate,
					 dac33->refclk);
		break;
	default:
		dev_err(component->dev, "unsupported rate %d\n",
			substream->runtime->rate);
		return -EINVAL;
	}


	aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A);
	aictrl_a &= ~(DAC33_NCYCL_MASK | DAC33_WLEN_MASK);
	/* Read FIFO control A, and clear FIFO flush bit */
	fifoctrl_a = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A);
	fifoctrl_a &= ~DAC33_FIFOFLUSH;

	fifoctrl_a &= ~DAC33_WIDTH;
	switch (substream->runtime->format) {
	case SNDRV_PCM_FORMAT_S16_LE:
		aictrl_a |= (DAC33_NCYCL_16 | DAC33_WLEN_16);
		fifoctrl_a |= DAC33_WIDTH;
		break;
	case SNDRV_PCM_FORMAT_S32_LE:
		aictrl_a |= (DAC33_NCYCL_32 | DAC33_WLEN_24);
		break;
	default:
		dev_err(component->dev, "unsupported format %d\n",
			substream->runtime->format);
		return -EINVAL;
	}

	mutex_lock(&dac33->mutex);

	if (!dac33->chip_power) {
		/*
		 * Chip is not powered yet.
		 * Do the init in the dac33_set_bias_level later.
		 */
		mutex_unlock(&dac33->mutex);
		return 0;
	}

	dac33_soft_power(component, 0);
	dac33_soft_power(component, 1);

	reg_tmp = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL);
	dac33_write(component, DAC33_INT_OSC_CTRL, reg_tmp);

	/* Write registers 0x08 and 0x09 (MSB, LSB) */
	dac33_write16(component, DAC33_INT_OSC_FREQ_RAT_A, oscset);

	/* OSC calibration time */
	dac33_write(component, DAC33_CALIB_TIME, 96);

	/* adjustment treshold & step */
	dac33_write(component, DAC33_INT_OSC_CTRL_B, DAC33_ADJTHRSHLD(2) |
						 DAC33_ADJSTEP(1));

	/* div=4 / gain=1 / div */
	dac33_write(component, DAC33_INT_OSC_CTRL_C, DAC33_REFDIV(4));

	pwr_ctrl = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
	pwr_ctrl |= DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB;
	dac33_write(component, DAC33_PWR_CTRL, pwr_ctrl);

	dac33_oscwait(component);

	if (dac33->fifo_mode) {
		/* Generic for all FIFO modes */
		/* 50-51 : ASRC Control registers */
		dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCLKDIV(1));
		dac33_write(component, DAC33_ASRC_CTRL_B, 1); /* ??? */

		/* Write registers 0x34 and 0x35 (MSB, LSB) */
		dac33_write16(component, DAC33_SRC_REF_CLK_RATIO_A, ratioset);

		/* Set interrupts to high active */
		dac33_write(component, DAC33_INTP_CTRL_A, DAC33_INTPM_AHIGH);
	} else {
		/* FIFO bypass mode */
		/* 50-51 : ASRC Control registers */
		dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCBYP);
		dac33_write(component, DAC33_ASRC_CTRL_B, 0); /* ??? */
	}

	/* Interrupt behaviour configuration */
	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		dac33_write(component, DAC33_FIFO_IRQ_MODE_B,
			    DAC33_ATM(DAC33_FIFO_IRQ_MODE_LEVEL));
		break;
	case DAC33_FIFO_MODE7:
		dac33_write(component, DAC33_FIFO_IRQ_MODE_A,
			DAC33_UTM(DAC33_FIFO_IRQ_MODE_LEVEL));
		break;
	default:
		/* in FIFO bypass mode, the interrupts are not used */
		break;
	}

	aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		/*
		 * For mode1:
		 * Disable the FIFO bypass (Enable the use of FIFO)
		 * Select nSample mode
		 * BCLK is only running when data is needed by DAC33
		 */
		fifoctrl_a &= ~DAC33_FBYPAS;
		fifoctrl_a &= ~DAC33_FAUTO;
		if (dac33->keep_bclk)
			aictrl_b |= DAC33_BCLKON;
		else
			aictrl_b &= ~DAC33_BCLKON;
		break;
	case DAC33_FIFO_MODE7:
		/*
		 * For mode1:
		 * Disable the FIFO bypass (Enable the use of FIFO)
		 * Select Threshold mode
		 * BCLK is only running when data is needed by DAC33
		 */
		fifoctrl_a &= ~DAC33_FBYPAS;
		fifoctrl_a |= DAC33_FAUTO;
		if (dac33->keep_bclk)
			aictrl_b |= DAC33_BCLKON;
		else
			aictrl_b &= ~DAC33_BCLKON;
		break;
	default:
		/*
		 * For FIFO bypass mode:
		 * Enable the FIFO bypass (Disable the FIFO use)
		 * Set the BCLK as continuous
		 */
		fifoctrl_a |= DAC33_FBYPAS;
		aictrl_b |= DAC33_BCLKON;
		break;
	}

	dac33_write(component, DAC33_FIFO_CTRL_A, fifoctrl_a);
	dac33_write(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
	dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);

	/*
	 * BCLK divide ratio
	 * 0: 1.5
	 * 1: 1
	 * 2: 2
	 * ...
	 * 254: 254
	 * 255: 255
	 */
	if (dac33->fifo_mode)
		dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C,
							dac33->burst_bclkdiv);
	else
		if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
			dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 32);
		else
			dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 16);

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		dac33_write16(component, DAC33_ATHR_MSB,
			      DAC33_THRREG(dac33->alarm_threshold));
		break;
	case DAC33_FIFO_MODE7:
		/*
		 * Configure the threshold levels, and leave 10 sample space
		 * at the bottom, and also at the top of the FIFO
		 */
		dac33_write16(component, DAC33_UTHR_MSB, DAC33_THRREG(dac33->uthr));
		dac33_write16(component, DAC33_LTHR_MSB,
			      DAC33_THRREG(DAC33_MODE7_MARGIN));
		break;
	default:
		break;
	}

	mutex_unlock(&dac33->mutex);

	return 0;
}

static void dac33_calculate_times(struct snd_pcm_substream *substream,
				  struct snd_soc_component *component)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	unsigned int period_size = substream->runtime->period_size;
	unsigned int rate = substream->runtime->rate;
	unsigned int nsample_limit;

	/* In bypass mode we don't need to calculate */
	if (!dac33->fifo_mode)
		return;

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_MODE1:
		/* Number of samples under i2c latency */
		dac33->alarm_threshold = US_TO_SAMPLES(rate,
						dac33->mode1_latency);
		nsample_limit = dac33->fifo_size - dac33->alarm_threshold;

		if (period_size <= dac33->alarm_threshold)
			/*
			 * Configure nSamaple to number of periods,
			 * which covers the latency requironment.
			 */
			dac33->nsample = period_size *
				((dac33->alarm_threshold / period_size) +
				(dac33->alarm_threshold % period_size ?
				1 : 0));
		else if (period_size > nsample_limit)
			dac33->nsample = nsample_limit;
		else
			dac33->nsample = period_size;

		dac33->mode1_us_burst = SAMPLES_TO_US(dac33->burst_rate,
						      dac33->nsample);
		dac33->t_stamp1 = 0;
		dac33->t_stamp2 = 0;
		break;
	case DAC33_FIFO_MODE7:
		dac33->uthr = UTHR_FROM_PERIOD_SIZE(period_size, rate,
						    dac33->burst_rate) + 9;
		if (dac33->uthr > (dac33->fifo_size - DAC33_MODE7_MARGIN))
			dac33->uthr = dac33->fifo_size - DAC33_MODE7_MARGIN;
		if (dac33->uthr < (DAC33_MODE7_MARGIN + 10))
			dac33->uthr = (DAC33_MODE7_MARGIN + 10);

		dac33->mode7_us_to_lthr =
				SAMPLES_TO_US(substream->runtime->rate,
					dac33->uthr - DAC33_MODE7_MARGIN + 1);
		dac33->t_stamp1 = 0;
		break;
	default:
		break;
	}

}

static int dac33_pcm_trigger(struct snd_pcm_substream *substream, int cmd,
			     struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (dac33->fifo_mode) {
			dac33->state = DAC33_PREFILL;
			schedule_work(&dac33->work);
		}
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (dac33->fifo_mode) {
			dac33->state = DAC33_FLUSH;
			schedule_work(&dac33->work);
		}
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static snd_pcm_sframes_t dac33_dai_delay(
			struct snd_pcm_substream *substream,
			struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	unsigned long long t0, t1, t_now;
	unsigned int time_delta, uthr;
	int samples_out, samples_in, samples;
	snd_pcm_sframes_t delay = 0;
	unsigned long flags;

	switch (dac33->fifo_mode) {
	case DAC33_FIFO_BYPASS:
		break;
	case DAC33_FIFO_MODE1:
		spin_lock_irqsave(&dac33->lock, flags);
		t0 = dac33->t_stamp1;
		t1 = dac33->t_stamp2;
		spin_unlock_irqrestore(&dac33->lock, flags);
		t_now = ktime_to_us(ktime_get());

		/* We have not started to fill the FIFO yet, delay is 0 */
		if (!t1)
			goto out;

		if (t0 > t1) {
			/*
			 * Phase 1:
			 * After Alarm threshold, and before nSample write
			 */
			time_delta = t_now - t0;
			samples_out = time_delta ? US_TO_SAMPLES(
						substream->runtime->rate,
						time_delta) : 0;

			if (likely(dac33->alarm_threshold > samples_out))
				delay = dac33->alarm_threshold - samples_out;
			else
				delay = 0;
		} else if ((t_now - t1) <= dac33->mode1_us_burst) {
			/*
			 * Phase 2:
			 * After nSample write (during burst operation)
			 */
			time_delta = t_now - t0;
			samples_out = time_delta ? US_TO_SAMPLES(
						substream->runtime->rate,
						time_delta) : 0;

			time_delta = t_now - t1;
			samples_in = time_delta ? US_TO_SAMPLES(
						dac33->burst_rate,
						time_delta) : 0;

			samples = dac33->alarm_threshold;
			samples += (samples_in - samples_out);

			if (likely(samples > 0))
				delay = samples;
			else
				delay = 0;
		} else {
			/*
			 * Phase 3:
			 * After burst operation, before next alarm threshold
			 */
			time_delta = t_now - t0;
			samples_out = time_delta ? US_TO_SAMPLES(
						substream->runtime->rate,
						time_delta) : 0;

			samples_in = dac33->nsample;
			samples = dac33->alarm_threshold;
			samples += (samples_in - samples_out);

			if (likely(samples > 0))
				delay = samples > dac33->fifo_size ?
					dac33->fifo_size : samples;
			else
				delay = 0;
		}
		break;
	case DAC33_FIFO_MODE7:
		spin_lock_irqsave(&dac33->lock, flags);
		t0 = dac33->t_stamp1;
		uthr = dac33->uthr;
		spin_unlock_irqrestore(&dac33->lock, flags);
		t_now = ktime_to_us(ktime_get());

		/* We have not started to fill the FIFO yet, delay is 0 */
		if (!t0)
			goto out;

		if (t_now <= t0) {
			/*
			 * Either the timestamps are messed or equal. Report
			 * maximum delay
			 */
			delay = uthr;
			goto out;
		}

		time_delta = t_now - t0;
		if (time_delta <= dac33->mode7_us_to_lthr) {
			/*
			* Phase 1:
			* After burst (draining phase)
			*/
			samples_out = US_TO_SAMPLES(
					substream->runtime->rate,
					time_delta);

			if (likely(uthr > samples_out))
				delay = uthr - samples_out;
			else
				delay = 0;
		} else {
			/*
			* Phase 2:
			* During burst operation
			*/
			time_delta = time_delta - dac33->mode7_us_to_lthr;

			samples_out = US_TO_SAMPLES(
					substream->runtime->rate,
					time_delta);
			samples_in = US_TO_SAMPLES(
					dac33->burst_rate,
					time_delta);
			delay = DAC33_MODE7_MARGIN + samples_in - samples_out;

			if (unlikely(delay > uthr))
				delay = uthr;
		}
		break;
	default:
		dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
							dac33->fifo_mode);
		break;
	}
out:
	return delay;
}

static int dac33_set_dai_sysclk(struct snd_soc_dai *codec_dai,
		int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_component *component = codec_dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 ioc_reg, asrcb_reg;

	ioc_reg = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL);
	asrcb_reg = dac33_read_reg_cache(component, DAC33_ASRC_CTRL_B);
	switch (clk_id) {
	case TLV320DAC33_MCLK:
		ioc_reg |= DAC33_REFSEL;
		asrcb_reg |= DAC33_SRCREFSEL;
		break;
	case TLV320DAC33_SLEEPCLK:
		ioc_reg &= ~DAC33_REFSEL;
		asrcb_reg &= ~DAC33_SRCREFSEL;
		break;
	default:
		dev_err(component->dev, "Invalid clock ID (%d)\n", clk_id);
		break;
	}
	dac33->refclk = freq;

	dac33_write_reg_cache(component, DAC33_INT_OSC_CTRL, ioc_reg);
	dac33_write_reg_cache(component, DAC33_ASRC_CTRL_B, asrcb_reg);

	return 0;
}

static int dac33_set_dai_fmt(struct snd_soc_dai *codec_dai,
			     unsigned int fmt)
{
	struct snd_soc_component *component = codec_dai->component;
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	u8 aictrl_a, aictrl_b;

	aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A);
	aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);
	/* set master/slave audio interface */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		/* Codec Master */
		aictrl_a |= (DAC33_MSBCLK | DAC33_MSWCLK);
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		/* Codec Slave */
		if (dac33->fifo_mode) {
			dev_err(component->dev, "FIFO mode requires master mode\n");
			return -EINVAL;
		} else
			aictrl_a &= ~(DAC33_MSBCLK | DAC33_MSWCLK);
		break;
	default:
		return -EINVAL;
	}

	aictrl_a &= ~DAC33_AFMT_MASK;
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		aictrl_a |= DAC33_AFMT_I2S;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		aictrl_a |= DAC33_AFMT_DSP;
		aictrl_b &= ~DAC33_DATA_DELAY_MASK;
		aictrl_b |= DAC33_DATA_DELAY(0);
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		aictrl_a |= DAC33_AFMT_RIGHT_J;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		aictrl_a |= DAC33_AFMT_LEFT_J;
		break;
	default:
		dev_err(component->dev, "Unsupported format (%u)\n",
			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
		return -EINVAL;
	}

	dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
	dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);

	return 0;
}

static int dac33_soc_probe(struct snd_soc_component *component)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
	int ret = 0;

	dac33->component = component;

	/* Read the tlv320dac33 ID registers */
	ret = dac33_hard_power(component, 1);
	if (ret != 0) {
		dev_err(component->dev, "Failed to power up component: %d\n", ret);
		goto err_power;
	}
	ret = dac33_read_id(component);
	dac33_hard_power(component, 0);

	if (ret < 0) {
		dev_err(component->dev, "Failed to read chip ID: %d\n", ret);
		ret = -ENODEV;
		goto err_power;
	}

	/* Check if the IRQ number is valid and request it */
	if (dac33->irq >= 0) {
		ret = request_irq(dac33->irq, dac33_interrupt_handler,
				  IRQF_TRIGGER_RISING,
				  component->name, component);
		if (ret < 0) {
			dev_err(component->dev, "Could not request IRQ%d (%d)\n",
						dac33->irq, ret);
			dac33->irq = -1;
		}
		if (dac33->irq != -1) {
			INIT_WORK(&dac33->work, dac33_work);
		}
	}

	/* Only add the FIFO controls, if we have valid IRQ number */
	if (dac33->irq >= 0)
		snd_soc_add_component_controls(component, dac33_mode_snd_controls,
				     ARRAY_SIZE(dac33_mode_snd_controls));

err_power:
	return ret;
}

static void dac33_soc_remove(struct snd_soc_component *component)
{
	struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);

	if (dac33->irq >= 0) {
		free_irq(dac33->irq, dac33->component);
		flush_work(&dac33->work);
	}
}

static const struct snd_soc_component_driver soc_component_dev_tlv320dac33 = {
	.read			= dac33_read_reg_cache,
	.write			= dac33_write_locked,
	.set_bias_level		= dac33_set_bias_level,
	.probe			= dac33_soc_probe,
	.remove			= dac33_soc_remove,
	.controls		= dac33_snd_controls,
	.num_controls		= ARRAY_SIZE(dac33_snd_controls),
	.dapm_widgets		= dac33_dapm_widgets,
	.num_dapm_widgets	= ARRAY_SIZE(dac33_dapm_widgets),
	.dapm_routes		= audio_map,
	.num_dapm_routes	= ARRAY_SIZE(audio_map),
	.use_pmdown_time	= 1,
	.endianness		= 1,
	.non_legacy_dai_naming	= 1,
};

#define DAC33_RATES	(SNDRV_PCM_RATE_44100 | \
			 SNDRV_PCM_RATE_48000)
#define DAC33_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE)

static const struct snd_soc_dai_ops dac33_dai_ops = {
	.startup	= dac33_startup,
	.shutdown	= dac33_shutdown,
	.hw_params	= dac33_hw_params,
	.trigger	= dac33_pcm_trigger,
	.delay		= dac33_dai_delay,
	.set_sysclk	= dac33_set_dai_sysclk,
	.set_fmt	= dac33_set_dai_fmt,
};

static struct snd_soc_dai_driver dac33_dai = {
	.name = "tlv320dac33-hifi",
	.playback = {
		.stream_name = "Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = DAC33_RATES,
		.formats = DAC33_FORMATS,
		.sig_bits = 24,
	},
	.ops = &dac33_dai_ops,
};

static int dac33_i2c_probe(struct i2c_client *client,
			   const struct i2c_device_id *id)
{
	struct tlv320dac33_platform_data *pdata;
	struct tlv320dac33_priv *dac33;
	int ret, i;

	if (client->dev.platform_data == NULL) {
		dev_err(&client->dev, "Platform data not set\n");
		return -ENODEV;
	}
	pdata = client->dev.platform_data;

	dac33 = devm_kzalloc(&client->dev, sizeof(struct tlv320dac33_priv),
			     GFP_KERNEL);
	if (dac33 == NULL)
		return -ENOMEM;

	dac33->reg_cache = devm_kmemdup(&client->dev,
					dac33_reg,
					ARRAY_SIZE(dac33_reg) * sizeof(u8),
					GFP_KERNEL);
	if (!dac33->reg_cache)
		return -ENOMEM;

	dac33->i2c = client;
	mutex_init(&dac33->mutex);
	spin_lock_init(&dac33->lock);

	i2c_set_clientdata(client, dac33);

	dac33->power_gpio = pdata->power_gpio;
	dac33->burst_bclkdiv = pdata->burst_bclkdiv;
	dac33->keep_bclk = pdata->keep_bclk;
	dac33->mode1_latency = pdata->mode1_latency;
	if (!dac33->mode1_latency)
		dac33->mode1_latency = 10000; /* 10ms */
	dac33->irq = client->irq;
	/* Disable FIFO use by default */
	dac33->fifo_mode = DAC33_FIFO_BYPASS;

	/* Check if the reset GPIO number is valid and request it */
	if (dac33->power_gpio >= 0) {
		ret = gpio_request(dac33->power_gpio, "tlv320dac33 reset");
		if (ret < 0) {
			dev_err(&client->dev,
				"Failed to request reset GPIO (%d)\n",
				dac33->power_gpio);
			goto err_gpio;
		}
		gpio_direction_output(dac33->power_gpio, 0);
	}

	for (i = 0; i < ARRAY_SIZE(dac33->supplies); i++)
		dac33->supplies[i].supply = dac33_supply_names[i];

	ret = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(dac33->supplies),
				 dac33->supplies);

	if (ret != 0) {
		dev_err(&client->dev, "Failed to request supplies: %d\n", ret);
		goto err_get;
	}

	ret = devm_snd_soc_register_component(&client->dev,
			&soc_component_dev_tlv320dac33, &dac33_dai, 1);
	if (ret < 0)
		goto err_get;

	return ret;
err_get:
	if (dac33->power_gpio >= 0)
		gpio_free(dac33->power_gpio);
err_gpio:
	return ret;
}

static int dac33_i2c_remove(struct i2c_client *client)
{
	struct tlv320dac33_priv *dac33 = i2c_get_clientdata(client);

	if (unlikely(dac33->chip_power))
		dac33_hard_power(dac33->component, 0);

	if (dac33->power_gpio >= 0)
		gpio_free(dac33->power_gpio);

	return 0;
}

static const struct i2c_device_id tlv320dac33_i2c_id[] = {
	{
		.name = "tlv320dac33",
		.driver_data = 0,
	},
	{ },
};
MODULE_DEVICE_TABLE(i2c, tlv320dac33_i2c_id);

static struct i2c_driver tlv320dac33_i2c_driver = {
	.driver = {
		.name = "tlv320dac33-codec",
	},
	.probe		= dac33_i2c_probe,
	.remove		= dac33_i2c_remove,
	.id_table	= tlv320dac33_i2c_id,
};

module_i2c_driver(tlv320dac33_i2c_driver);

MODULE_DESCRIPTION("ASoC TLV320DAC33 codec driver");
MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@ti.com>");
MODULE_LICENSE("GPL");