Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Brown | 18557 | 88.80% | 161 | 77.03% |
Dimitris Papastamos | 863 | 4.13% | 5 | 2.39% |
Kuninori Morimoto | 724 | 3.46% | 2 | 0.96% |
Liam Girdwood | 192 | 0.92% | 2 | 0.96% |
Lars-Peter Clausen | 128 | 0.61% | 7 | 3.35% |
Takashi Iwai | 124 | 0.59% | 3 | 1.44% |
Uk Kim | 107 | 0.51% | 1 | 0.48% |
Charles Keepax | 43 | 0.21% | 2 | 0.96% |
Wang Biao | 34 | 0.16% | 1 | 0.48% |
Chris Rattray | 30 | 0.14% | 2 | 0.96% |
Vinod Koul | 20 | 0.10% | 2 | 0.96% |
Nikesh Oswal | 18 | 0.09% | 1 | 0.48% |
Zidan Wang | 17 | 0.08% | 2 | 0.96% |
Axel Lin | 12 | 0.06% | 3 | 1.44% |
Kees Cook | 5 | 0.02% | 1 | 0.48% |
Fabio Estevam | 4 | 0.02% | 1 | 0.48% |
Dan Carpenter | 3 | 0.01% | 3 | 1.44% |
Tejun Heo | 3 | 0.01% | 1 | 0.48% |
Gustavo A. R. Silva | 3 | 0.01% | 2 | 0.96% |
Jesper Juhl | 3 | 0.01% | 1 | 0.48% |
Kyung-Kwee Ryu | 2 | 0.01% | 1 | 0.48% |
Joonyoung Shim | 2 | 0.01% | 1 | 0.48% |
Ian Lartey | 1 | 0.00% | 1 | 0.48% |
Qiao Zhou | 1 | 0.00% | 1 | 0.48% |
Masanari Iida | 1 | 0.00% | 1 | 0.48% |
Julia Lawall | 1 | 0.00% | 1 | 0.48% |
Total | 20898 | 209 |
/* * wm8994.c -- WM8994 ALSA SoC Audio driver * * Copyright 2009-12 Wolfson Microelectronics plc * * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/gcd.h> #include <linux/i2c.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include <trace/events/asoc.h> #include <linux/mfd/wm8994/core.h> #include <linux/mfd/wm8994/registers.h> #include <linux/mfd/wm8994/pdata.h> #include <linux/mfd/wm8994/gpio.h> #include "wm8994.h" #include "wm_hubs.h" #define WM1811_JACKDET_MODE_NONE 0x0000 #define WM1811_JACKDET_MODE_JACK 0x0100 #define WM1811_JACKDET_MODE_MIC 0x0080 #define WM1811_JACKDET_MODE_AUDIO 0x0180 #define WM8994_NUM_DRC 3 #define WM8994_NUM_EQ 3 static struct { unsigned int reg; unsigned int mask; } wm8994_vu_bits[] = { { WM8994_LEFT_LINE_INPUT_1_2_VOLUME, WM8994_IN1_VU }, { WM8994_RIGHT_LINE_INPUT_1_2_VOLUME, WM8994_IN1_VU }, { WM8994_LEFT_LINE_INPUT_3_4_VOLUME, WM8994_IN2_VU }, { WM8994_RIGHT_LINE_INPUT_3_4_VOLUME, WM8994_IN2_VU }, { WM8994_SPEAKER_VOLUME_LEFT, WM8994_SPKOUT_VU }, { WM8994_SPEAKER_VOLUME_RIGHT, WM8994_SPKOUT_VU }, { WM8994_LEFT_OUTPUT_VOLUME, WM8994_HPOUT1_VU }, { WM8994_RIGHT_OUTPUT_VOLUME, WM8994_HPOUT1_VU }, { WM8994_LEFT_OPGA_VOLUME, WM8994_MIXOUT_VU }, { WM8994_RIGHT_OPGA_VOLUME, WM8994_MIXOUT_VU }, { WM8994_AIF1_DAC1_LEFT_VOLUME, WM8994_AIF1DAC1_VU }, { WM8994_AIF1_DAC1_RIGHT_VOLUME, WM8994_AIF1DAC1_VU }, { WM8994_AIF1_DAC2_LEFT_VOLUME, WM8994_AIF1DAC2_VU }, { WM8994_AIF1_DAC2_RIGHT_VOLUME, WM8994_AIF1DAC2_VU }, { WM8994_AIF2_DAC_LEFT_VOLUME, WM8994_AIF2DAC_VU }, { WM8994_AIF2_DAC_RIGHT_VOLUME, WM8994_AIF2DAC_VU }, { WM8994_AIF1_ADC1_LEFT_VOLUME, WM8994_AIF1ADC1_VU }, { WM8994_AIF1_ADC1_RIGHT_VOLUME, WM8994_AIF1ADC1_VU }, { WM8994_AIF1_ADC2_LEFT_VOLUME, WM8994_AIF1ADC2_VU }, { WM8994_AIF1_ADC2_RIGHT_VOLUME, WM8994_AIF1ADC2_VU }, { WM8994_AIF2_ADC_LEFT_VOLUME, WM8994_AIF2ADC_VU }, { WM8994_AIF2_ADC_RIGHT_VOLUME, WM8994_AIF1ADC2_VU }, { WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_VU }, { WM8994_DAC1_RIGHT_VOLUME, WM8994_DAC1_VU }, { WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_VU }, { WM8994_DAC2_RIGHT_VOLUME, WM8994_DAC2_VU }, }; static int wm8994_drc_base[] = { WM8994_AIF1_DRC1_1, WM8994_AIF1_DRC2_1, WM8994_AIF2_DRC_1, }; static int wm8994_retune_mobile_base[] = { WM8994_AIF1_DAC1_EQ_GAINS_1, WM8994_AIF1_DAC2_EQ_GAINS_1, WM8994_AIF2_EQ_GAINS_1, }; static const struct wm8958_micd_rate micdet_rates[] = { { 32768, true, 1, 4 }, { 32768, false, 1, 1 }, { 44100 * 256, true, 7, 10 }, { 44100 * 256, false, 7, 10 }, }; static const struct wm8958_micd_rate jackdet_rates[] = { { 32768, true, 0, 1 }, { 32768, false, 0, 1 }, { 44100 * 256, true, 10, 10 }, { 44100 * 256, false, 7, 8 }, }; static void wm8958_micd_set_rate(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int best, i, sysclk, val; bool idle; const struct wm8958_micd_rate *rates; int num_rates; idle = !wm8994->jack_mic; sysclk = snd_soc_component_read32(component, WM8994_CLOCKING_1); if (sysclk & WM8994_SYSCLK_SRC) sysclk = wm8994->aifclk[1]; else sysclk = wm8994->aifclk[0]; if (control->pdata.micd_rates) { rates = control->pdata.micd_rates; num_rates = control->pdata.num_micd_rates; } else if (wm8994->jackdet) { rates = jackdet_rates; num_rates = ARRAY_SIZE(jackdet_rates); } else { rates = micdet_rates; num_rates = ARRAY_SIZE(micdet_rates); } best = 0; for (i = 0; i < num_rates; i++) { if (rates[i].idle != idle) continue; if (abs(rates[i].sysclk - sysclk) < abs(rates[best].sysclk - sysclk)) best = i; else if (rates[best].idle != idle) best = i; } val = rates[best].start << WM8958_MICD_BIAS_STARTTIME_SHIFT | rates[best].rate << WM8958_MICD_RATE_SHIFT; dev_dbg(component->dev, "MICD rate %d,%d for %dHz %s\n", rates[best].start, rates[best].rate, sysclk, idle ? "idle" : "active"); snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_BIAS_STARTTIME_MASK | WM8958_MICD_RATE_MASK, val); } static int configure_aif_clock(struct snd_soc_component *component, int aif) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int rate; int reg1 = 0; int offset; if (aif) offset = 4; else offset = 0; switch (wm8994->sysclk[aif]) { case WM8994_SYSCLK_MCLK1: rate = wm8994->mclk[0]; break; case WM8994_SYSCLK_MCLK2: reg1 |= 0x8; rate = wm8994->mclk[1]; break; case WM8994_SYSCLK_FLL1: reg1 |= 0x10; rate = wm8994->fll[0].out; break; case WM8994_SYSCLK_FLL2: reg1 |= 0x18; rate = wm8994->fll[1].out; break; default: return -EINVAL; } if (rate >= 13500000) { rate /= 2; reg1 |= WM8994_AIF1CLK_DIV; dev_dbg(component->dev, "Dividing AIF%d clock to %dHz\n", aif + 1, rate); } wm8994->aifclk[aif] = rate; snd_soc_component_update_bits(component, WM8994_AIF1_CLOCKING_1 + offset, WM8994_AIF1CLK_SRC_MASK | WM8994_AIF1CLK_DIV, reg1); return 0; } static int configure_clock(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int change, new; /* Bring up the AIF clocks first */ configure_aif_clock(component, 0); configure_aif_clock(component, 1); /* Then switch CLK_SYS over to the higher of them; a change * can only happen as a result of a clocking change which can * only be made outside of DAPM so we can safely redo the * clocking. */ /* If they're equal it doesn't matter which is used */ if (wm8994->aifclk[0] == wm8994->aifclk[1]) { wm8958_micd_set_rate(component); return 0; } if (wm8994->aifclk[0] < wm8994->aifclk[1]) new = WM8994_SYSCLK_SRC; else new = 0; change = snd_soc_component_update_bits(component, WM8994_CLOCKING_1, WM8994_SYSCLK_SRC, new); if (change) snd_soc_dapm_sync(dapm); wm8958_micd_set_rate(component); return 0; } static int check_clk_sys(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm); int reg = snd_soc_component_read32(component, WM8994_CLOCKING_1); const char *clk; /* Check what we're currently using for CLK_SYS */ if (reg & WM8994_SYSCLK_SRC) clk = "AIF2CLK"; else clk = "AIF1CLK"; return strcmp(source->name, clk) == 0; } static const char *sidetone_hpf_text[] = { "2.7kHz", "1.35kHz", "675Hz", "370Hz", "180Hz", "90Hz", "45Hz" }; static SOC_ENUM_SINGLE_DECL(sidetone_hpf, WM8994_SIDETONE, 7, sidetone_hpf_text); static const char *adc_hpf_text[] = { "HiFi", "Voice 1", "Voice 2", "Voice 3" }; static SOC_ENUM_SINGLE_DECL(aif1adc1_hpf, WM8994_AIF1_ADC1_FILTERS, 13, adc_hpf_text); static SOC_ENUM_SINGLE_DECL(aif1adc2_hpf, WM8994_AIF1_ADC2_FILTERS, 13, adc_hpf_text); static SOC_ENUM_SINGLE_DECL(aif2adc_hpf, WM8994_AIF2_ADC_FILTERS, 13, adc_hpf_text); static const DECLARE_TLV_DB_SCALE(aif_tlv, 0, 600, 0); static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1); static const DECLARE_TLV_DB_SCALE(st_tlv, -3600, 300, 0); static const DECLARE_TLV_DB_SCALE(wm8994_3d_tlv, -1600, 183, 0); static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0); static const DECLARE_TLV_DB_SCALE(ng_tlv, -10200, 600, 0); static const DECLARE_TLV_DB_SCALE(mixin_boost_tlv, 0, 900, 0); #define WM8994_DRC_SWITCH(xname, reg, shift) \ SOC_SINGLE_EXT(xname, reg, shift, 1, 0, \ snd_soc_get_volsw, wm8994_put_drc_sw) static int wm8994_put_drc_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); int mask, ret; /* Can't enable both ADC and DAC paths simultaneously */ if (mc->shift == WM8994_AIF1DAC1_DRC_ENA_SHIFT) mask = WM8994_AIF1ADC1L_DRC_ENA_MASK | WM8994_AIF1ADC1R_DRC_ENA_MASK; else mask = WM8994_AIF1DAC1_DRC_ENA_MASK; ret = snd_soc_component_read32(component, mc->reg); if (ret < 0) return ret; if (ret & mask) return -EINVAL; return snd_soc_put_volsw(kcontrol, ucontrol); } static void wm8994_set_drc(struct snd_soc_component *component, int drc) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int base = wm8994_drc_base[drc]; int cfg = wm8994->drc_cfg[drc]; int save, i; /* Save any enables; the configuration should clear them. */ save = snd_soc_component_read32(component, base); save &= WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA | WM8994_AIF1ADC1R_DRC_ENA; for (i = 0; i < WM8994_DRC_REGS; i++) snd_soc_component_update_bits(component, base + i, 0xffff, pdata->drc_cfgs[cfg].regs[i]); snd_soc_component_update_bits(component, base, WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA | WM8994_AIF1ADC1R_DRC_ENA, save); } /* Icky as hell but saves code duplication */ static int wm8994_get_drc(const char *name) { if (strcmp(name, "AIF1DRC1 Mode") == 0) return 0; if (strcmp(name, "AIF1DRC2 Mode") == 0) return 1; if (strcmp(name, "AIF2DRC Mode") == 0) return 2; return -EINVAL; } static int wm8994_put_drc_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int drc = wm8994_get_drc(kcontrol->id.name); int value = ucontrol->value.enumerated.item[0]; if (drc < 0) return drc; if (value >= pdata->num_drc_cfgs) return -EINVAL; wm8994->drc_cfg[drc] = value; wm8994_set_drc(component, drc); return 0; } static int wm8994_get_drc_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int drc = wm8994_get_drc(kcontrol->id.name); if (drc < 0) return drc; ucontrol->value.enumerated.item[0] = wm8994->drc_cfg[drc]; return 0; } static void wm8994_set_retune_mobile(struct snd_soc_component *component, int block) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int base = wm8994_retune_mobile_base[block]; int iface, best, best_val, save, i, cfg; if (!pdata || !wm8994->num_retune_mobile_texts) return; switch (block) { case 0: case 1: iface = 0; break; case 2: iface = 1; break; default: return; } /* Find the version of the currently selected configuration * with the nearest sample rate. */ cfg = wm8994->retune_mobile_cfg[block]; best = 0; best_val = INT_MAX; for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) { if (strcmp(pdata->retune_mobile_cfgs[i].name, wm8994->retune_mobile_texts[cfg]) == 0 && abs(pdata->retune_mobile_cfgs[i].rate - wm8994->dac_rates[iface]) < best_val) { best = i; best_val = abs(pdata->retune_mobile_cfgs[i].rate - wm8994->dac_rates[iface]); } } dev_dbg(component->dev, "ReTune Mobile %d %s/%dHz for %dHz sample rate\n", block, pdata->retune_mobile_cfgs[best].name, pdata->retune_mobile_cfgs[best].rate, wm8994->dac_rates[iface]); /* The EQ will be disabled while reconfiguring it, remember the * current configuration. */ save = snd_soc_component_read32(component, base); save &= WM8994_AIF1DAC1_EQ_ENA; for (i = 0; i < WM8994_EQ_REGS; i++) snd_soc_component_update_bits(component, base + i, 0xffff, pdata->retune_mobile_cfgs[best].regs[i]); snd_soc_component_update_bits(component, base, WM8994_AIF1DAC1_EQ_ENA, save); } /* Icky as hell but saves code duplication */ static int wm8994_get_retune_mobile_block(const char *name) { if (strcmp(name, "AIF1.1 EQ Mode") == 0) return 0; if (strcmp(name, "AIF1.2 EQ Mode") == 0) return 1; if (strcmp(name, "AIF2 EQ Mode") == 0) return 2; return -EINVAL; } static int wm8994_put_retune_mobile_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int block = wm8994_get_retune_mobile_block(kcontrol->id.name); int value = ucontrol->value.enumerated.item[0]; if (block < 0) return block; if (value >= pdata->num_retune_mobile_cfgs) return -EINVAL; wm8994->retune_mobile_cfg[block] = value; wm8994_set_retune_mobile(component, block); return 0; } static int wm8994_get_retune_mobile_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int block = wm8994_get_retune_mobile_block(kcontrol->id.name); if (block < 0) return block; ucontrol->value.enumerated.item[0] = wm8994->retune_mobile_cfg[block]; return 0; } static const char *aif_chan_src_text[] = { "Left", "Right" }; static SOC_ENUM_SINGLE_DECL(aif1adcl_src, WM8994_AIF1_CONTROL_1, 15, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif1adcr_src, WM8994_AIF1_CONTROL_1, 14, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif2adcl_src, WM8994_AIF2_CONTROL_1, 15, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif2adcr_src, WM8994_AIF2_CONTROL_1, 14, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif1dacl_src, WM8994_AIF1_CONTROL_2, 15, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif1dacr_src, WM8994_AIF1_CONTROL_2, 14, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif2dacl_src, WM8994_AIF2_CONTROL_2, 15, aif_chan_src_text); static SOC_ENUM_SINGLE_DECL(aif2dacr_src, WM8994_AIF2_CONTROL_2, 14, aif_chan_src_text); static const char *osr_text[] = { "Low Power", "High Performance", }; static SOC_ENUM_SINGLE_DECL(dac_osr, WM8994_OVERSAMPLING, 0, osr_text); static SOC_ENUM_SINGLE_DECL(adc_osr, WM8994_OVERSAMPLING, 1, osr_text); static const struct snd_kcontrol_new wm8994_snd_controls[] = { SOC_DOUBLE_R_TLV("AIF1ADC1 Volume", WM8994_AIF1_ADC1_LEFT_VOLUME, WM8994_AIF1_ADC1_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF1ADC2 Volume", WM8994_AIF1_ADC2_LEFT_VOLUME, WM8994_AIF1_ADC2_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF2ADC Volume", WM8994_AIF2_ADC_LEFT_VOLUME, WM8994_AIF2_ADC_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_ENUM("AIF1ADCL Source", aif1adcl_src), SOC_ENUM("AIF1ADCR Source", aif1adcr_src), SOC_ENUM("AIF2ADCL Source", aif2adcl_src), SOC_ENUM("AIF2ADCR Source", aif2adcr_src), SOC_ENUM("AIF1DACL Source", aif1dacl_src), SOC_ENUM("AIF1DACR Source", aif1dacr_src), SOC_ENUM("AIF2DACL Source", aif2dacl_src), SOC_ENUM("AIF2DACR Source", aif2dacr_src), SOC_DOUBLE_R_TLV("AIF1DAC1 Volume", WM8994_AIF1_DAC1_LEFT_VOLUME, WM8994_AIF1_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF1DAC2 Volume", WM8994_AIF1_DAC2_LEFT_VOLUME, WM8994_AIF1_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF2DAC Volume", WM8994_AIF2_DAC_LEFT_VOLUME, WM8994_AIF2_DAC_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_SINGLE_TLV("AIF1 Boost Volume", WM8994_AIF1_CONTROL_2, 10, 3, 0, aif_tlv), SOC_SINGLE_TLV("AIF2 Boost Volume", WM8994_AIF2_CONTROL_2, 10, 3, 0, aif_tlv), SOC_SINGLE("AIF1DAC1 EQ Switch", WM8994_AIF1_DAC1_EQ_GAINS_1, 0, 1, 0), SOC_SINGLE("AIF1DAC2 EQ Switch", WM8994_AIF1_DAC2_EQ_GAINS_1, 0, 1, 0), SOC_SINGLE("AIF2 EQ Switch", WM8994_AIF2_EQ_GAINS_1, 0, 1, 0), WM8994_DRC_SWITCH("AIF1DAC1 DRC Switch", WM8994_AIF1_DRC1_1, 2), WM8994_DRC_SWITCH("AIF1ADC1L DRC Switch", WM8994_AIF1_DRC1_1, 1), WM8994_DRC_SWITCH("AIF1ADC1R DRC Switch", WM8994_AIF1_DRC1_1, 0), WM8994_DRC_SWITCH("AIF1DAC2 DRC Switch", WM8994_AIF1_DRC2_1, 2), WM8994_DRC_SWITCH("AIF1ADC2L DRC Switch", WM8994_AIF1_DRC2_1, 1), WM8994_DRC_SWITCH("AIF1ADC2R DRC Switch", WM8994_AIF1_DRC2_1, 0), WM8994_DRC_SWITCH("AIF2DAC DRC Switch", WM8994_AIF2_DRC_1, 2), WM8994_DRC_SWITCH("AIF2ADCL DRC Switch", WM8994_AIF2_DRC_1, 1), WM8994_DRC_SWITCH("AIF2ADCR DRC Switch", WM8994_AIF2_DRC_1, 0), SOC_SINGLE_TLV("DAC1 Right Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES, 5, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC1 Left Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES, 0, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC2 Right Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES, 5, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC2 Left Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES, 0, 12, 0, st_tlv), SOC_ENUM("Sidetone HPF Mux", sidetone_hpf), SOC_SINGLE("Sidetone HPF Switch", WM8994_SIDETONE, 6, 1, 0), SOC_ENUM("AIF1ADC1 HPF Mode", aif1adc1_hpf), SOC_DOUBLE("AIF1ADC1 HPF Switch", WM8994_AIF1_ADC1_FILTERS, 12, 11, 1, 0), SOC_ENUM("AIF1ADC2 HPF Mode", aif1adc2_hpf), SOC_DOUBLE("AIF1ADC2 HPF Switch", WM8994_AIF1_ADC2_FILTERS, 12, 11, 1, 0), SOC_ENUM("AIF2ADC HPF Mode", aif2adc_hpf), SOC_DOUBLE("AIF2ADC HPF Switch", WM8994_AIF2_ADC_FILTERS, 12, 11, 1, 0), SOC_ENUM("ADC OSR", adc_osr), SOC_ENUM("DAC OSR", dac_osr), SOC_DOUBLE_R_TLV("DAC1 Volume", WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R("DAC1 Switch", WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_RIGHT_VOLUME, 9, 1, 1), SOC_DOUBLE_R_TLV("DAC2 Volume", WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R("DAC2 Switch", WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_RIGHT_VOLUME, 9, 1, 1), SOC_SINGLE_TLV("SPKL DAC2 Volume", WM8994_SPKMIXL_ATTENUATION, 6, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKL DAC1 Volume", WM8994_SPKMIXL_ATTENUATION, 2, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKR DAC2 Volume", WM8994_SPKMIXR_ATTENUATION, 6, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKR DAC1 Volume", WM8994_SPKMIXR_ATTENUATION, 2, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("AIF1DAC1 3D Stereo Volume", WM8994_AIF1_DAC1_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF1DAC1 3D Stereo Switch", WM8994_AIF1_DAC1_FILTERS_2, 8, 1, 0), SOC_SINGLE_TLV("AIF1DAC2 3D Stereo Volume", WM8994_AIF1_DAC2_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF1DAC2 3D Stereo Switch", WM8994_AIF1_DAC2_FILTERS_2, 8, 1, 0), SOC_SINGLE_TLV("AIF2DAC 3D Stereo Volume", WM8994_AIF2_DAC_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF2DAC 3D Stereo Switch", WM8994_AIF2_DAC_FILTERS_2, 8, 1, 0), }; static const struct snd_kcontrol_new wm8994_eq_controls[] = { SOC_SINGLE_TLV("AIF1DAC1 EQ1 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ2 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ3 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ4 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ5 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ1 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ2 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ3 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ4 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ5 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ1 Volume", WM8994_AIF2_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ2 Volume", WM8994_AIF2_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ3 Volume", WM8994_AIF2_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ4 Volume", WM8994_AIF2_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ5 Volume", WM8994_AIF2_EQ_GAINS_2, 6, 31, 0, eq_tlv), }; static const struct snd_kcontrol_new wm8994_drc_controls[] = { SND_SOC_BYTES_MASK("AIF1.1 DRC", WM8994_AIF1_DRC1_1, 5, WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA | WM8994_AIF1ADC1R_DRC_ENA), SND_SOC_BYTES_MASK("AIF1.2 DRC", WM8994_AIF1_DRC2_1, 5, WM8994_AIF1DAC2_DRC_ENA | WM8994_AIF1ADC2L_DRC_ENA | WM8994_AIF1ADC2R_DRC_ENA), SND_SOC_BYTES_MASK("AIF2 DRC", WM8994_AIF2_DRC_1, 5, WM8994_AIF2DAC_DRC_ENA | WM8994_AIF2ADCL_DRC_ENA | WM8994_AIF2ADCR_DRC_ENA), }; static const char *wm8958_ng_text[] = { "30ms", "125ms", "250ms", "500ms", }; static SOC_ENUM_SINGLE_DECL(wm8958_aif1dac1_ng_hold, WM8958_AIF1_DAC1_NOISE_GATE, WM8958_AIF1DAC1_NG_THR_SHIFT, wm8958_ng_text); static SOC_ENUM_SINGLE_DECL(wm8958_aif1dac2_ng_hold, WM8958_AIF1_DAC2_NOISE_GATE, WM8958_AIF1DAC2_NG_THR_SHIFT, wm8958_ng_text); static SOC_ENUM_SINGLE_DECL(wm8958_aif2dac_ng_hold, WM8958_AIF2_DAC_NOISE_GATE, WM8958_AIF2DAC_NG_THR_SHIFT, wm8958_ng_text); static const struct snd_kcontrol_new wm8958_snd_controls[] = { SOC_SINGLE_TLV("AIF3 Boost Volume", WM8958_AIF3_CONTROL_2, 10, 3, 0, aif_tlv), SOC_SINGLE("AIF1DAC1 Noise Gate Switch", WM8958_AIF1_DAC1_NOISE_GATE, WM8958_AIF1DAC1_NG_ENA_SHIFT, 1, 0), SOC_ENUM("AIF1DAC1 Noise Gate Hold Time", wm8958_aif1dac1_ng_hold), SOC_SINGLE_TLV("AIF1DAC1 Noise Gate Threshold Volume", WM8958_AIF1_DAC1_NOISE_GATE, WM8958_AIF1DAC1_NG_THR_SHIFT, 7, 1, ng_tlv), SOC_SINGLE("AIF1DAC2 Noise Gate Switch", WM8958_AIF1_DAC2_NOISE_GATE, WM8958_AIF1DAC2_NG_ENA_SHIFT, 1, 0), SOC_ENUM("AIF1DAC2 Noise Gate Hold Time", wm8958_aif1dac2_ng_hold), SOC_SINGLE_TLV("AIF1DAC2 Noise Gate Threshold Volume", WM8958_AIF1_DAC2_NOISE_GATE, WM8958_AIF1DAC2_NG_THR_SHIFT, 7, 1, ng_tlv), SOC_SINGLE("AIF2DAC Noise Gate Switch", WM8958_AIF2_DAC_NOISE_GATE, WM8958_AIF2DAC_NG_ENA_SHIFT, 1, 0), SOC_ENUM("AIF2DAC Noise Gate Hold Time", wm8958_aif2dac_ng_hold), SOC_SINGLE_TLV("AIF2DAC Noise Gate Threshold Volume", WM8958_AIF2_DAC_NOISE_GATE, WM8958_AIF2DAC_NG_THR_SHIFT, 7, 1, ng_tlv), }; static const struct snd_kcontrol_new wm1811_snd_controls[] = { SOC_SINGLE_TLV("MIXINL IN1LP Boost Volume", WM8994_INPUT_MIXER_1, 7, 1, 0, mixin_boost_tlv), SOC_SINGLE_TLV("MIXINL IN1RP Boost Volume", WM8994_INPUT_MIXER_1, 8, 1, 0, mixin_boost_tlv), }; /* We run all mode setting through a function to enforce audio mode */ static void wm1811_jackdet_set_mode(struct snd_soc_component *component, u16 mode) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); if (!wm8994->jackdet || !wm8994->micdet[0].jack) return; if (wm8994->active_refcount) mode = WM1811_JACKDET_MODE_AUDIO; if (mode == wm8994->jackdet_mode) return; wm8994->jackdet_mode = mode; /* Always use audio mode to detect while the system is active */ if (mode != WM1811_JACKDET_MODE_NONE) mode = WM1811_JACKDET_MODE_AUDIO; snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM1811_JACKDET_MODE_MASK, mode); } static void active_reference(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); mutex_lock(&wm8994->accdet_lock); wm8994->active_refcount++; dev_dbg(component->dev, "Active refcount incremented, now %d\n", wm8994->active_refcount); /* If we're using jack detection go into audio mode */ wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_AUDIO); mutex_unlock(&wm8994->accdet_lock); } static void active_dereference(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); u16 mode; mutex_lock(&wm8994->accdet_lock); wm8994->active_refcount--; dev_dbg(component->dev, "Active refcount decremented, now %d\n", wm8994->active_refcount); if (wm8994->active_refcount == 0) { /* Go into appropriate detection only mode */ if (wm8994->jack_mic || wm8994->mic_detecting) mode = WM1811_JACKDET_MODE_MIC; else mode = WM1811_JACKDET_MODE_JACK; wm1811_jackdet_set_mode(component, mode); } mutex_unlock(&wm8994->accdet_lock); } static int clk_sys_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: return configure_clock(component); case SND_SOC_DAPM_POST_PMU: /* * JACKDET won't run until we start the clock and it * only reports deltas, make sure we notify the state * up the stack on startup. Use a *very* generous * timeout for paranoia, there's no urgency and we * don't want false reports. */ if (wm8994->jackdet && !wm8994->clk_has_run) { queue_delayed_work(system_power_efficient_wq, &wm8994->jackdet_bootstrap, msecs_to_jiffies(1000)); wm8994->clk_has_run = true; } break; case SND_SOC_DAPM_POST_PMD: configure_clock(component); break; } return 0; } static void vmid_reference(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); pm_runtime_get_sync(component->dev); wm8994->vmid_refcount++; dev_dbg(component->dev, "Referencing VMID, refcount is now %d\n", wm8994->vmid_refcount); if (wm8994->vmid_refcount == 1) { snd_soc_component_update_bits(component, WM8994_ANTIPOP_1, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH, 0); wm_hubs_vmid_ena(component); switch (wm8994->vmid_mode) { default: WARN_ON(NULL == "Invalid VMID mode"); /* fall through */ case WM8994_VMID_NORMAL: /* Startup bias, VMID ramp & buffer */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_VMID_DISCH | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | (0x2 << WM8994_VMID_RAMP_SHIFT)); /* Main bias enable, VMID=2x40k */ snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_1, WM8994_BIAS_ENA | WM8994_VMID_SEL_MASK, WM8994_BIAS_ENA | 0x2); msleep(300); snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_VMID_RAMP_MASK | WM8994_BIAS_SRC, 0); break; case WM8994_VMID_FORCE: /* Startup bias, slow VMID ramp & buffer */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_VMID_DISCH | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | (0x2 << WM8994_VMID_RAMP_SHIFT)); /* Main bias enable, VMID=2x40k */ snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_1, WM8994_BIAS_ENA | WM8994_VMID_SEL_MASK, WM8994_BIAS_ENA | 0x2); msleep(400); snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_VMID_RAMP_MASK | WM8994_BIAS_SRC, 0); break; } } } static void vmid_dereference(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); wm8994->vmid_refcount--; dev_dbg(component->dev, "Dereferencing VMID, refcount is now %d\n", wm8994->vmid_refcount); if (wm8994->vmid_refcount == 0) { if (wm8994->hubs.lineout1_se) snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_3, WM8994_LINEOUT1N_ENA | WM8994_LINEOUT1P_ENA, WM8994_LINEOUT1N_ENA | WM8994_LINEOUT1P_ENA); if (wm8994->hubs.lineout2_se) snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_3, WM8994_LINEOUT2N_ENA | WM8994_LINEOUT2P_ENA, WM8994_LINEOUT2N_ENA | WM8994_LINEOUT2P_ENA); /* Start discharging VMID */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_VMID_DISCH, WM8994_BIAS_SRC | WM8994_VMID_DISCH); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_1, WM8994_VMID_SEL_MASK, 0); msleep(400); /* Active discharge */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_1, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_3, WM8994_LINEOUT1N_ENA | WM8994_LINEOUT1P_ENA | WM8994_LINEOUT2N_ENA | WM8994_LINEOUT2P_ENA, 0); /* Switch off startup biases */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, 0); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_1, WM8994_VMID_SEL_MASK, 0); } pm_runtime_put(component->dev); } static int vmid_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_PRE_PMU: vmid_reference(component); break; case SND_SOC_DAPM_POST_PMD: vmid_dereference(component); break; } return 0; } static bool wm8994_check_class_w_digital(struct snd_soc_component *component) { int source = 0; /* GCC flow analysis can't track enable */ int reg, reg_r; /* We also need the same AIF source for L/R and only one path */ reg = snd_soc_component_read32(component, WM8994_DAC1_LEFT_MIXER_ROUTING); switch (reg) { case WM8994_AIF2DACL_TO_DAC1L: dev_vdbg(component->dev, "Class W source AIF2DAC\n"); source = 2 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; case WM8994_AIF1DAC2L_TO_DAC1L: dev_vdbg(component->dev, "Class W source AIF1DAC2\n"); source = 1 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; case WM8994_AIF1DAC1L_TO_DAC1L: dev_vdbg(component->dev, "Class W source AIF1DAC1\n"); source = 0 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; default: dev_vdbg(component->dev, "DAC mixer setting: %x\n", reg); return false; } reg_r = snd_soc_component_read32(component, WM8994_DAC1_RIGHT_MIXER_ROUTING); if (reg_r != reg) { dev_vdbg(component->dev, "Left and right DAC mixers different\n"); return false; } /* Set the source up */ snd_soc_component_update_bits(component, WM8994_CLASS_W_1, WM8994_CP_DYN_SRC_SEL_MASK, source); return true; } static int aif1clk_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int mask = WM8994_AIF1DAC1L_ENA | WM8994_AIF1DAC1R_ENA; int i; int dac; int adc; int val; switch (control->type) { case WM8994: case WM8958: mask |= WM8994_AIF1DAC2L_ENA | WM8994_AIF1DAC2R_ENA; break; default: break; } switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Don't enable timeslot 2 if not in use */ if (wm8994->channels[0] <= 2) mask &= ~(WM8994_AIF1DAC2L_ENA | WM8994_AIF1DAC2R_ENA); val = snd_soc_component_read32(component, WM8994_AIF1_CONTROL_1); if ((val & WM8994_AIF1ADCL_SRC) && (val & WM8994_AIF1ADCR_SRC)) adc = WM8994_AIF1ADC1R_ENA | WM8994_AIF1ADC2R_ENA; else if (!(val & WM8994_AIF1ADCL_SRC) && !(val & WM8994_AIF1ADCR_SRC)) adc = WM8994_AIF1ADC1L_ENA | WM8994_AIF1ADC2L_ENA; else adc = WM8994_AIF1ADC1R_ENA | WM8994_AIF1ADC2R_ENA | WM8994_AIF1ADC1L_ENA | WM8994_AIF1ADC2L_ENA; val = snd_soc_component_read32(component, WM8994_AIF1_CONTROL_2); if ((val & WM8994_AIF1DACL_SRC) && (val & WM8994_AIF1DACR_SRC)) dac = WM8994_AIF1DAC1R_ENA | WM8994_AIF1DAC2R_ENA; else if (!(val & WM8994_AIF1DACL_SRC) && !(val & WM8994_AIF1DACR_SRC)) dac = WM8994_AIF1DAC1L_ENA | WM8994_AIF1DAC2L_ENA; else dac = WM8994_AIF1DAC1R_ENA | WM8994_AIF1DAC2R_ENA | WM8994_AIF1DAC1L_ENA | WM8994_AIF1DAC2L_ENA; snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, mask, adc); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, mask, dac); snd_soc_component_update_bits(component, WM8994_CLOCKING_1, WM8994_AIF1DSPCLK_ENA | WM8994_SYSDSPCLK_ENA, WM8994_AIF1DSPCLK_ENA | WM8994_SYSDSPCLK_ENA); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, mask, WM8994_AIF1ADC1R_ENA | WM8994_AIF1ADC1L_ENA | WM8994_AIF1ADC2R_ENA | WM8994_AIF1ADC2L_ENA); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, mask, WM8994_AIF1DAC1R_ENA | WM8994_AIF1DAC1L_ENA | WM8994_AIF1DAC2R_ENA | WM8994_AIF1DAC2L_ENA); break; case SND_SOC_DAPM_POST_PMU: for (i = 0; i < ARRAY_SIZE(wm8994_vu_bits); i++) snd_soc_component_write(component, wm8994_vu_bits[i].reg, snd_soc_component_read32(component, wm8994_vu_bits[i].reg)); break; case SND_SOC_DAPM_PRE_PMD: case SND_SOC_DAPM_POST_PMD: snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, mask, 0); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, mask, 0); val = snd_soc_component_read32(component, WM8994_CLOCKING_1); if (val & WM8994_AIF2DSPCLK_ENA) val = WM8994_SYSDSPCLK_ENA; else val = 0; snd_soc_component_update_bits(component, WM8994_CLOCKING_1, WM8994_SYSDSPCLK_ENA | WM8994_AIF1DSPCLK_ENA, val); break; } return 0; } static int aif2clk_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); int i; int dac; int adc; int val; switch (event) { case SND_SOC_DAPM_PRE_PMU: val = snd_soc_component_read32(component, WM8994_AIF2_CONTROL_1); if ((val & WM8994_AIF2ADCL_SRC) && (val & WM8994_AIF2ADCR_SRC)) adc = WM8994_AIF2ADCR_ENA; else if (!(val & WM8994_AIF2ADCL_SRC) && !(val & WM8994_AIF2ADCR_SRC)) adc = WM8994_AIF2ADCL_ENA; else adc = WM8994_AIF2ADCL_ENA | WM8994_AIF2ADCR_ENA; val = snd_soc_component_read32(component, WM8994_AIF2_CONTROL_2); if ((val & WM8994_AIF2DACL_SRC) && (val & WM8994_AIF2DACR_SRC)) dac = WM8994_AIF2DACR_ENA; else if (!(val & WM8994_AIF2DACL_SRC) && !(val & WM8994_AIF2DACR_SRC)) dac = WM8994_AIF2DACL_ENA; else dac = WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA; snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, WM8994_AIF2ADCL_ENA | WM8994_AIF2ADCR_ENA, adc); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA, dac); snd_soc_component_update_bits(component, WM8994_CLOCKING_1, WM8994_AIF2DSPCLK_ENA | WM8994_SYSDSPCLK_ENA, WM8994_AIF2DSPCLK_ENA | WM8994_SYSDSPCLK_ENA); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, WM8994_AIF2ADCL_ENA | WM8994_AIF2ADCR_ENA, WM8994_AIF2ADCL_ENA | WM8994_AIF2ADCR_ENA); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA, WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA); break; case SND_SOC_DAPM_POST_PMU: for (i = 0; i < ARRAY_SIZE(wm8994_vu_bits); i++) snd_soc_component_write(component, wm8994_vu_bits[i].reg, snd_soc_component_read32(component, wm8994_vu_bits[i].reg)); break; case SND_SOC_DAPM_PRE_PMD: case SND_SOC_DAPM_POST_PMD: snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA, 0); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_4, WM8994_AIF2ADCL_ENA | WM8994_AIF2ADCR_ENA, 0); val = snd_soc_component_read32(component, WM8994_CLOCKING_1); if (val & WM8994_AIF1DSPCLK_ENA) val = WM8994_SYSDSPCLK_ENA; else val = 0; snd_soc_component_update_bits(component, WM8994_CLOCKING_1, WM8994_SYSDSPCLK_ENA | WM8994_AIF2DSPCLK_ENA, val); break; } return 0; } static int aif1clk_late_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: wm8994->aif1clk_enable = 1; break; case SND_SOC_DAPM_POST_PMD: wm8994->aif1clk_disable = 1; break; } return 0; } static int aif2clk_late_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: wm8994->aif2clk_enable = 1; break; case SND_SOC_DAPM_POST_PMD: wm8994->aif2clk_disable = 1; break; } return 0; } static int late_enable_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: if (wm8994->aif1clk_enable) { aif1clk_ev(w, kcontrol, SND_SOC_DAPM_PRE_PMU); snd_soc_component_update_bits(component, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA_MASK, WM8994_AIF1CLK_ENA); aif1clk_ev(w, kcontrol, SND_SOC_DAPM_POST_PMU); wm8994->aif1clk_enable = 0; } if (wm8994->aif2clk_enable) { aif2clk_ev(w, kcontrol, SND_SOC_DAPM_PRE_PMU); snd_soc_component_update_bits(component, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA_MASK, WM8994_AIF2CLK_ENA); aif2clk_ev(w, kcontrol, SND_SOC_DAPM_POST_PMU); wm8994->aif2clk_enable = 0; } break; } /* We may also have postponed startup of DSP, handle that. */ wm8958_aif_ev(w, kcontrol, event); return 0; } static int late_disable_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMD: if (wm8994->aif1clk_disable) { aif1clk_ev(w, kcontrol, SND_SOC_DAPM_PRE_PMD); snd_soc_component_update_bits(component, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA_MASK, 0); aif1clk_ev(w, kcontrol, SND_SOC_DAPM_POST_PMD); wm8994->aif1clk_disable = 0; } if (wm8994->aif2clk_disable) { aif2clk_ev(w, kcontrol, SND_SOC_DAPM_PRE_PMD); snd_soc_component_update_bits(component, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA_MASK, 0); aif2clk_ev(w, kcontrol, SND_SOC_DAPM_POST_PMD); wm8994->aif2clk_disable = 0; } break; } return 0; } static int adc_mux_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { late_enable_ev(w, kcontrol, event); return 0; } static int micbias_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { late_enable_ev(w, kcontrol, event); return 0; } static int dac_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); unsigned int mask = 1 << w->shift; snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_5, mask, mask); return 0; } static const char *adc_mux_text[] = { "ADC", "DMIC", }; static SOC_ENUM_SINGLE_VIRT_DECL(adc_enum, adc_mux_text); static const struct snd_kcontrol_new adcl_mux = SOC_DAPM_ENUM("ADCL Mux", adc_enum); static const struct snd_kcontrol_new adcr_mux = SOC_DAPM_ENUM("ADCR Mux", adc_enum); static const struct snd_kcontrol_new left_speaker_mixer[] = { SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 9, 1, 0), SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 7, 1, 0), SOC_DAPM_SINGLE("IN1LP Switch", WM8994_SPEAKER_MIXER, 5, 1, 0), SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 3, 1, 0), SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 1, 1, 0), }; static const struct snd_kcontrol_new right_speaker_mixer[] = { SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 8, 1, 0), SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 6, 1, 0), SOC_DAPM_SINGLE("IN1RP Switch", WM8994_SPEAKER_MIXER, 4, 1, 0), SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 2, 1, 0), SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 0, 1, 0), }; /* Debugging; dump chip status after DAPM transitions */ static int post_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); dev_dbg(component->dev, "SRC status: %x\n", snd_soc_component_read32(component, WM8994_RATE_STATUS)); return 0; } static const struct snd_kcontrol_new aif1adc1l_mix[] = { SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc1r_mix[] = { SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc2l_mix[] = { SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc2r_mix[] = { SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif2dac2l_mix[] = { SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 5, 1, 0), SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 4, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 2, 1, 0), SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif2dac2r_mix[] = { SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 5, 1, 0), SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 4, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 2, 1, 0), SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 0, 1, 0), }; #define WM8994_CLASS_W_SWITCH(xname, reg, shift, max, invert) \ SOC_SINGLE_EXT(xname, reg, shift, max, invert, \ snd_soc_dapm_get_volsw, wm8994_put_class_w) static int wm8994_put_class_w(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_dapm_kcontrol_component(kcontrol); int ret; ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol); wm_hubs_update_class_w(component); return ret; } static const struct snd_kcontrol_new dac1l_mix[] = { WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 5, 1, 0), WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 4, 1, 0), WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 2, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 1, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new dac1r_mix[] = { WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 5, 1, 0), WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 4, 1, 0), WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 2, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 1, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const char *sidetone_text[] = { "ADC/DMIC1", "DMIC2", }; static SOC_ENUM_SINGLE_DECL(sidetone1_enum, WM8994_SIDETONE, 0, sidetone_text); static const struct snd_kcontrol_new sidetone1_mux = SOC_DAPM_ENUM("Left Sidetone Mux", sidetone1_enum); static SOC_ENUM_SINGLE_DECL(sidetone2_enum, WM8994_SIDETONE, 1, sidetone_text); static const struct snd_kcontrol_new sidetone2_mux = SOC_DAPM_ENUM("Right Sidetone Mux", sidetone2_enum); static const char *aif1dac_text[] = { "AIF1DACDAT", "AIF3DACDAT", }; static const char *loopback_text[] = { "None", "ADCDAT", }; static SOC_ENUM_SINGLE_DECL(aif1_loopback_enum, WM8994_AIF1_CONTROL_2, WM8994_AIF1_LOOPBACK_SHIFT, loopback_text); static const struct snd_kcontrol_new aif1_loopback = SOC_DAPM_ENUM("AIF1 Loopback", aif1_loopback_enum); static SOC_ENUM_SINGLE_DECL(aif2_loopback_enum, WM8994_AIF2_CONTROL_2, WM8994_AIF2_LOOPBACK_SHIFT, loopback_text); static const struct snd_kcontrol_new aif2_loopback = SOC_DAPM_ENUM("AIF2 Loopback", aif2_loopback_enum); static SOC_ENUM_SINGLE_DECL(aif1dac_enum, WM8994_POWER_MANAGEMENT_6, 0, aif1dac_text); static const struct snd_kcontrol_new aif1dac_mux = SOC_DAPM_ENUM("AIF1DAC Mux", aif1dac_enum); static const char *aif2dac_text[] = { "AIF2DACDAT", "AIF3DACDAT", }; static SOC_ENUM_SINGLE_DECL(aif2dac_enum, WM8994_POWER_MANAGEMENT_6, 1, aif2dac_text); static const struct snd_kcontrol_new aif2dac_mux = SOC_DAPM_ENUM("AIF2DAC Mux", aif2dac_enum); static const char *aif2adc_text[] = { "AIF2ADCDAT", "AIF3DACDAT", }; static SOC_ENUM_SINGLE_DECL(aif2adc_enum, WM8994_POWER_MANAGEMENT_6, 2, aif2adc_text); static const struct snd_kcontrol_new aif2adc_mux = SOC_DAPM_ENUM("AIF2ADC Mux", aif2adc_enum); static const char *aif3adc_text[] = { "AIF1ADCDAT", "AIF2ADCDAT", "AIF2DACDAT", "Mono PCM", }; static SOC_ENUM_SINGLE_DECL(wm8994_aif3adc_enum, WM8994_POWER_MANAGEMENT_6, 3, aif3adc_text); static const struct snd_kcontrol_new wm8994_aif3adc_mux = SOC_DAPM_ENUM("AIF3ADC Mux", wm8994_aif3adc_enum); static SOC_ENUM_SINGLE_DECL(wm8958_aif3adc_enum, WM8994_POWER_MANAGEMENT_6, 3, aif3adc_text); static const struct snd_kcontrol_new wm8958_aif3adc_mux = SOC_DAPM_ENUM("AIF3ADC Mux", wm8958_aif3adc_enum); static const char *mono_pcm_out_text[] = { "None", "AIF2ADCL", "AIF2ADCR", }; static SOC_ENUM_SINGLE_DECL(mono_pcm_out_enum, WM8994_POWER_MANAGEMENT_6, 9, mono_pcm_out_text); static const struct snd_kcontrol_new mono_pcm_out_mux = SOC_DAPM_ENUM("Mono PCM Out Mux", mono_pcm_out_enum); static const char *aif2dac_src_text[] = { "AIF2", "AIF3", }; /* Note that these two control shouldn't be simultaneously switched to AIF3 */ static SOC_ENUM_SINGLE_DECL(aif2dacl_src_enum, WM8994_POWER_MANAGEMENT_6, 7, aif2dac_src_text); static const struct snd_kcontrol_new aif2dacl_src_mux = SOC_DAPM_ENUM("AIF2DACL Mux", aif2dacl_src_enum); static SOC_ENUM_SINGLE_DECL(aif2dacr_src_enum, WM8994_POWER_MANAGEMENT_6, 8, aif2dac_src_text); static const struct snd_kcontrol_new aif2dacr_src_mux = SOC_DAPM_ENUM("AIF2DACR Mux", aif2dacr_src_enum); static const struct snd_soc_dapm_widget wm8994_lateclk_revd_widgets[] = { SND_SOC_DAPM_SUPPLY("AIF1CLK", SND_SOC_NOPM, 0, 0, aif1clk_late_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("AIF2CLK", SND_SOC_NOPM, 0, 0, aif2clk_late_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("Late DAC1L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC1R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC2L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC2R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Direct Voice", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("SPKL", WM8994_POWER_MANAGEMENT_3, 8, 0, left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer), late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("SPKR", WM8994_POWER_MANAGEMENT_3, 9, 0, right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer), late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("Left Headphone Mux", SND_SOC_NOPM, 0, 0, &wm_hubs_hpl_mux, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("Right Headphone Mux", SND_SOC_NOPM, 0, 0, &wm_hubs_hpr_mux, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_POST("Late Disable PGA", late_disable_ev) }; static const struct snd_soc_dapm_widget wm8994_lateclk_widgets[] = { SND_SOC_DAPM_SUPPLY("AIF1CLK", WM8994_AIF1_CLOCKING_1, 0, 0, aif1clk_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("AIF2CLK", WM8994_AIF2_CLOCKING_1, 0, 0, aif2clk_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA("Direct Voice", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SPKL", WM8994_POWER_MANAGEMENT_3, 8, 0, left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)), SND_SOC_DAPM_MIXER("SPKR", WM8994_POWER_MANAGEMENT_3, 9, 0, right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)), SND_SOC_DAPM_MUX("Left Headphone Mux", SND_SOC_NOPM, 0, 0, &wm_hubs_hpl_mux), SND_SOC_DAPM_MUX("Right Headphone Mux", SND_SOC_NOPM, 0, 0, &wm_hubs_hpr_mux), }; static const struct snd_soc_dapm_widget wm8994_dac_revd_widgets[] = { SND_SOC_DAPM_DAC_E("DAC2L", NULL, SND_SOC_NOPM, 3, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC2R", NULL, SND_SOC_NOPM, 2, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC1L", NULL, SND_SOC_NOPM, 1, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC1R", NULL, SND_SOC_NOPM, 0, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), }; static const struct snd_soc_dapm_widget wm8994_dac_widgets[] = { SND_SOC_DAPM_DAC("DAC2L", NULL, WM8994_POWER_MANAGEMENT_5, 3, 0), SND_SOC_DAPM_DAC("DAC2R", NULL, WM8994_POWER_MANAGEMENT_5, 2, 0), SND_SOC_DAPM_DAC("DAC1L", NULL, WM8994_POWER_MANAGEMENT_5, 1, 0), SND_SOC_DAPM_DAC("DAC1R", NULL, WM8994_POWER_MANAGEMENT_5, 0, 0), }; static const struct snd_soc_dapm_widget wm8994_adc_revd_widgets[] = { SND_SOC_DAPM_MUX_E("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux, adc_mux_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux, adc_mux_ev, SND_SOC_DAPM_PRE_PMU), }; static const struct snd_soc_dapm_widget wm8994_adc_widgets[] = { SND_SOC_DAPM_MUX("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux), SND_SOC_DAPM_MUX("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux), }; static const struct snd_soc_dapm_widget wm8994_dapm_widgets[] = { SND_SOC_DAPM_INPUT("DMIC1DAT"), SND_SOC_DAPM_INPUT("DMIC2DAT"), SND_SOC_DAPM_INPUT("Clock"), SND_SOC_DAPM_SUPPLY_S("MICBIAS Supply", 1, SND_SOC_NOPM, 0, 0, micbias_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_SUPPLY("VMID", SND_SOC_NOPM, 0, 0, vmid_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("CLK_SYS", SND_SOC_NOPM, 0, 0, clk_sys_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("DSP1CLK", SND_SOC_NOPM, 3, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DSP2CLK", SND_SOC_NOPM, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DSPINTCLK", SND_SOC_NOPM, 1, 0, NULL, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC1L", NULL, 0, SND_SOC_NOPM, 9, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC1R", NULL, 0, SND_SOC_NOPM, 8, 0), SND_SOC_DAPM_AIF_IN_E("AIF1DAC1L", NULL, 0, SND_SOC_NOPM, 9, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF1DAC1R", NULL, 0, SND_SOC_NOPM, 8, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("AIF1ADC2L", NULL, 0, SND_SOC_NOPM, 11, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC2R", NULL, 0, SND_SOC_NOPM, 10, 0), SND_SOC_DAPM_AIF_IN_E("AIF1DAC2L", NULL, 0, SND_SOC_NOPM, 11, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF1DAC2R", NULL, 0, SND_SOC_NOPM, 10, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("AIF1ADC1L Mixer", SND_SOC_NOPM, 0, 0, aif1adc1l_mix, ARRAY_SIZE(aif1adc1l_mix)), SND_SOC_DAPM_MIXER("AIF1ADC1R Mixer", SND_SOC_NOPM, 0, 0, aif1adc1r_mix, ARRAY_SIZE(aif1adc1r_mix)), SND_SOC_DAPM_MIXER("AIF1ADC2L Mixer", SND_SOC_NOPM, 0, 0, aif1adc2l_mix, ARRAY_SIZE(aif1adc2l_mix)), SND_SOC_DAPM_MIXER("AIF1ADC2R Mixer", SND_SOC_NOPM, 0, 0, aif1adc2r_mix, ARRAY_SIZE(aif1adc2r_mix)), SND_SOC_DAPM_MIXER("AIF2DAC2L Mixer", SND_SOC_NOPM, 0, 0, aif2dac2l_mix, ARRAY_SIZE(aif2dac2l_mix)), SND_SOC_DAPM_MIXER("AIF2DAC2R Mixer", SND_SOC_NOPM, 0, 0, aif2dac2r_mix, ARRAY_SIZE(aif2dac2r_mix)), SND_SOC_DAPM_MUX("Left Sidetone", SND_SOC_NOPM, 0, 0, &sidetone1_mux), SND_SOC_DAPM_MUX("Right Sidetone", SND_SOC_NOPM, 0, 0, &sidetone2_mux), SND_SOC_DAPM_MIXER("DAC1L Mixer", SND_SOC_NOPM, 0, 0, dac1l_mix, ARRAY_SIZE(dac1l_mix)), SND_SOC_DAPM_MIXER("DAC1R Mixer", SND_SOC_NOPM, 0, 0, dac1r_mix, ARRAY_SIZE(dac1r_mix)), SND_SOC_DAPM_AIF_OUT("AIF2ADCL", NULL, 0, SND_SOC_NOPM, 13, 0), SND_SOC_DAPM_AIF_OUT("AIF2ADCR", NULL, 0, SND_SOC_NOPM, 12, 0), SND_SOC_DAPM_AIF_IN_E("AIF2DACL", NULL, 0, SND_SOC_NOPM, 13, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_AIF_IN_E("AIF2DACR", NULL, 0, SND_SOC_NOPM, 12, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_AIF_IN("AIF1DACDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIF2DACDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADCDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF2ADCDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("AIF1DAC Mux", SND_SOC_NOPM, 0, 0, &aif1dac_mux), SND_SOC_DAPM_MUX("AIF2DAC Mux", SND_SOC_NOPM, 0, 0, &aif2dac_mux), SND_SOC_DAPM_MUX("AIF2ADC Mux", SND_SOC_NOPM, 0, 0, &aif2adc_mux), SND_SOC_DAPM_AIF_IN("AIF3DACDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF3ADCDAT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("TOCLK", WM8994_CLOCKING_1, 4, 0, NULL, 0), SND_SOC_DAPM_ADC("DMIC2L", NULL, WM8994_POWER_MANAGEMENT_4, 5, 0), SND_SOC_DAPM_ADC("DMIC2R", NULL, WM8994_POWER_MANAGEMENT_4, 4, 0), SND_SOC_DAPM_ADC("DMIC1L", NULL, WM8994_POWER_MANAGEMENT_4, 3, 0), SND_SOC_DAPM_ADC("DMIC1R", NULL, WM8994_POWER_MANAGEMENT_4, 2, 0), /* Power is done with the muxes since the ADC power also controls the * downsampling chain, the chip will automatically manage the analogue * specific portions. */ SND_SOC_DAPM_ADC("ADCL", NULL, SND_SOC_NOPM, 1, 0), SND_SOC_DAPM_ADC("ADCR", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("AIF1 Loopback", SND_SOC_NOPM, 0, 0, &aif1_loopback), SND_SOC_DAPM_MUX("AIF2 Loopback", SND_SOC_NOPM, 0, 0, &aif2_loopback), SND_SOC_DAPM_POST("Debug log", post_ev), }; static const struct snd_soc_dapm_widget wm8994_specific_dapm_widgets[] = { SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8994_aif3adc_mux), }; static const struct snd_soc_dapm_widget wm8958_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("AIF3", WM8994_POWER_MANAGEMENT_6, 5, 1, NULL, 0), SND_SOC_DAPM_MUX("Mono PCM Out Mux", SND_SOC_NOPM, 0, 0, &mono_pcm_out_mux), SND_SOC_DAPM_MUX("AIF2DACL Mux", SND_SOC_NOPM, 0, 0, &aif2dacl_src_mux), SND_SOC_DAPM_MUX("AIF2DACR Mux", SND_SOC_NOPM, 0, 0, &aif2dacr_src_mux), SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8958_aif3adc_mux), }; static const struct snd_soc_dapm_route intercon[] = { { "CLK_SYS", NULL, "AIF1CLK", check_clk_sys }, { "CLK_SYS", NULL, "AIF2CLK", check_clk_sys }, { "DSP1CLK", NULL, "CLK_SYS" }, { "DSP2CLK", NULL, "CLK_SYS" }, { "DSPINTCLK", NULL, "CLK_SYS" }, { "AIF1ADC1L", NULL, "AIF1CLK" }, { "AIF1ADC1L", NULL, "DSP1CLK" }, { "AIF1ADC1R", NULL, "AIF1CLK" }, { "AIF1ADC1R", NULL, "DSP1CLK" }, { "AIF1ADC1R", NULL, "DSPINTCLK" }, { "AIF1DAC1L", NULL, "AIF1CLK" }, { "AIF1DAC1L", NULL, "DSP1CLK" }, { "AIF1DAC1R", NULL, "AIF1CLK" }, { "AIF1DAC1R", NULL, "DSP1CLK" }, { "AIF1DAC1R", NULL, "DSPINTCLK" }, { "AIF1ADC2L", NULL, "AIF1CLK" }, { "AIF1ADC2L", NULL, "DSP1CLK" }, { "AIF1ADC2R", NULL, "AIF1CLK" }, { "AIF1ADC2R", NULL, "DSP1CLK" }, { "AIF1ADC2R", NULL, "DSPINTCLK" }, { "AIF1DAC2L", NULL, "AIF1CLK" }, { "AIF1DAC2L", NULL, "DSP1CLK" }, { "AIF1DAC2R", NULL, "AIF1CLK" }, { "AIF1DAC2R", NULL, "DSP1CLK" }, { "AIF1DAC2R", NULL, "DSPINTCLK" }, { "AIF2ADCL", NULL, "AIF2CLK" }, { "AIF2ADCL", NULL, "DSP2CLK" }, { "AIF2ADCR", NULL, "AIF2CLK" }, { "AIF2ADCR", NULL, "DSP2CLK" }, { "AIF2ADCR", NULL, "DSPINTCLK" }, { "AIF2DACL", NULL, "AIF2CLK" }, { "AIF2DACL", NULL, "DSP2CLK" }, { "AIF2DACR", NULL, "AIF2CLK" }, { "AIF2DACR", NULL, "DSP2CLK" }, { "AIF2DACR", NULL, "DSPINTCLK" }, { "DMIC1L", NULL, "DMIC1DAT" }, { "DMIC1L", NULL, "CLK_SYS" }, { "DMIC1R", NULL, "DMIC1DAT" }, { "DMIC1R", NULL, "CLK_SYS" }, { "DMIC2L", NULL, "DMIC2DAT" }, { "DMIC2L", NULL, "CLK_SYS" }, { "DMIC2R", NULL, "DMIC2DAT" }, { "DMIC2R", NULL, "CLK_SYS" }, { "ADCL", NULL, "AIF1CLK" }, { "ADCL", NULL, "DSP1CLK" }, { "ADCL", NULL, "DSPINTCLK" }, { "ADCR", NULL, "AIF1CLK" }, { "ADCR", NULL, "DSP1CLK" }, { "ADCR", NULL, "DSPINTCLK" }, { "ADCL Mux", "ADC", "ADCL" }, { "ADCL Mux", "DMIC", "DMIC1L" }, { "ADCR Mux", "ADC", "ADCR" }, { "ADCR Mux", "DMIC", "DMIC1R" }, { "DAC1L", NULL, "AIF1CLK" }, { "DAC1L", NULL, "DSP1CLK" }, { "DAC1L", NULL, "DSPINTCLK" }, { "DAC1R", NULL, "AIF1CLK" }, { "DAC1R", NULL, "DSP1CLK" }, { "DAC1R", NULL, "DSPINTCLK" }, { "DAC2L", NULL, "AIF2CLK" }, { "DAC2L", NULL, "DSP2CLK" }, { "DAC2L", NULL, "DSPINTCLK" }, { "DAC2R", NULL, "AIF2DACR" }, { "DAC2R", NULL, "AIF2CLK" }, { "DAC2R", NULL, "DSP2CLK" }, { "DAC2R", NULL, "DSPINTCLK" }, { "TOCLK", NULL, "CLK_SYS" }, { "AIF1DACDAT", NULL, "AIF1 Playback" }, { "AIF2DACDAT", NULL, "AIF2 Playback" }, { "AIF3DACDAT", NULL, "AIF3 Playback" }, { "AIF1 Capture", NULL, "AIF1ADCDAT" }, { "AIF2 Capture", NULL, "AIF2ADCDAT" }, { "AIF3 Capture", NULL, "AIF3ADCDAT" }, /* AIF1 outputs */ { "AIF1ADC1L", NULL, "AIF1ADC1L Mixer" }, { "AIF1ADC1L Mixer", "ADC/DMIC Switch", "ADCL Mux" }, { "AIF1ADC1L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF1ADC1R", NULL, "AIF1ADC1R Mixer" }, { "AIF1ADC1R Mixer", "ADC/DMIC Switch", "ADCR Mux" }, { "AIF1ADC1R Mixer", "AIF2 Switch", "AIF2DACR" }, { "AIF1ADC2L", NULL, "AIF1ADC2L Mixer" }, { "AIF1ADC2L Mixer", "DMIC Switch", "DMIC2L" }, { "AIF1ADC2L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF1ADC2R", NULL, "AIF1ADC2R Mixer" }, { "AIF1ADC2R Mixer", "DMIC Switch", "DMIC2R" }, { "AIF1ADC2R Mixer", "AIF2 Switch", "AIF2DACR" }, /* Pin level routing for AIF3 */ { "AIF1DAC1L", NULL, "AIF1DAC Mux" }, { "AIF1DAC1R", NULL, "AIF1DAC Mux" }, { "AIF1DAC2L", NULL, "AIF1DAC Mux" }, { "AIF1DAC2R", NULL, "AIF1DAC Mux" }, { "AIF1DAC Mux", "AIF1DACDAT", "AIF1 Loopback" }, { "AIF1DAC Mux", "AIF3DACDAT", "AIF3DACDAT" }, { "AIF2DAC Mux", "AIF2DACDAT", "AIF2 Loopback" }, { "AIF2DAC Mux", "AIF3DACDAT", "AIF3DACDAT" }, { "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCL" }, { "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCR" }, { "AIF2ADC Mux", "AIF3DACDAT", "AIF3ADCDAT" }, /* DAC1 inputs */ { "DAC1L Mixer", "AIF2 Switch", "AIF2DACL" }, { "DAC1L Mixer", "AIF1.2 Switch", "AIF1DAC2L" }, { "DAC1L Mixer", "AIF1.1 Switch", "AIF1DAC1L" }, { "DAC1L Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "DAC1L Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "DAC1R Mixer", "AIF2 Switch", "AIF2DACR" }, { "DAC1R Mixer", "AIF1.2 Switch", "AIF1DAC2R" }, { "DAC1R Mixer", "AIF1.1 Switch", "AIF1DAC1R" }, { "DAC1R Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "DAC1R Mixer", "Right Sidetone Switch", "Right Sidetone" }, /* DAC2/AIF2 outputs */ { "AIF2ADCL", NULL, "AIF2DAC2L Mixer" }, { "AIF2DAC2L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF2DAC2L Mixer", "AIF1.2 Switch", "AIF1DAC2L" }, { "AIF2DAC2L Mixer", "AIF1.1 Switch", "AIF1DAC1L" }, { "AIF2DAC2L Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "AIF2DAC2L Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "AIF2ADCR", NULL, "AIF2DAC2R Mixer" }, { "AIF2DAC2R Mixer", "AIF2 Switch", "AIF2DACR" }, { "AIF2DAC2R Mixer", "AIF1.2 Switch", "AIF1DAC2R" }, { "AIF2DAC2R Mixer", "AIF1.1 Switch", "AIF1DAC1R" }, { "AIF2DAC2R Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "AIF2DAC2R Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "AIF1ADCDAT", NULL, "AIF1ADC1L" }, { "AIF1ADCDAT", NULL, "AIF1ADC1R" }, { "AIF1ADCDAT", NULL, "AIF1ADC2L" }, { "AIF1ADCDAT", NULL, "AIF1ADC2R" }, { "AIF2ADCDAT", NULL, "AIF2ADC Mux" }, /* AIF3 output */ { "AIF3ADC Mux", "AIF1ADCDAT", "AIF1ADC1L" }, { "AIF3ADC Mux", "AIF1ADCDAT", "AIF1ADC1R" }, { "AIF3ADC Mux", "AIF1ADCDAT", "AIF1ADC2L" }, { "AIF3ADC Mux", "AIF1ADCDAT", "AIF1ADC2R" }, { "AIF3ADC Mux", "AIF2ADCDAT", "AIF2ADCL" }, { "AIF3ADC Mux", "AIF2ADCDAT", "AIF2ADCR" }, { "AIF3ADC Mux", "AIF2DACDAT", "AIF2DACL" }, { "AIF3ADC Mux", "AIF2DACDAT", "AIF2DACR" }, { "AIF3ADCDAT", NULL, "AIF3ADC Mux" }, /* Loopback */ { "AIF1 Loopback", "ADCDAT", "AIF1ADCDAT" }, { "AIF1 Loopback", "None", "AIF1DACDAT" }, { "AIF2 Loopback", "ADCDAT", "AIF2ADCDAT" }, { "AIF2 Loopback", "None", "AIF2DACDAT" }, /* Sidetone */ { "Left Sidetone", "ADC/DMIC1", "ADCL Mux" }, { "Left Sidetone", "DMIC2", "DMIC2L" }, { "Right Sidetone", "ADC/DMIC1", "ADCR Mux" }, { "Right Sidetone", "DMIC2", "DMIC2R" }, /* Output stages */ { "Left Output Mixer", "DAC Switch", "DAC1L" }, { "Right Output Mixer", "DAC Switch", "DAC1R" }, { "SPKL", "DAC1 Switch", "DAC1L" }, { "SPKL", "DAC2 Switch", "DAC2L" }, { "SPKR", "DAC1 Switch", "DAC1R" }, { "SPKR", "DAC2 Switch", "DAC2R" }, { "Left Headphone Mux", "DAC", "DAC1L" }, { "Right Headphone Mux", "DAC", "DAC1R" }, }; static const struct snd_soc_dapm_route wm8994_lateclk_revd_intercon[] = { { "DAC1L", NULL, "Late DAC1L Enable PGA" }, { "Late DAC1L Enable PGA", NULL, "DAC1L Mixer" }, { "DAC1R", NULL, "Late DAC1R Enable PGA" }, { "Late DAC1R Enable PGA", NULL, "DAC1R Mixer" }, { "DAC2L", NULL, "Late DAC2L Enable PGA" }, { "Late DAC2L Enable PGA", NULL, "AIF2DAC2L Mixer" }, { "DAC2R", NULL, "Late DAC2R Enable PGA" }, { "Late DAC2R Enable PGA", NULL, "AIF2DAC2R Mixer" } }; static const struct snd_soc_dapm_route wm8994_lateclk_intercon[] = { { "DAC1L", NULL, "DAC1L Mixer" }, { "DAC1R", NULL, "DAC1R Mixer" }, { "DAC2L", NULL, "AIF2DAC2L Mixer" }, { "DAC2R", NULL, "AIF2DAC2R Mixer" }, }; static const struct snd_soc_dapm_route wm8994_revd_intercon[] = { { "AIF1DACDAT", NULL, "AIF2DACDAT" }, { "AIF2DACDAT", NULL, "AIF1DACDAT" }, { "AIF1ADCDAT", NULL, "AIF2ADCDAT" }, { "AIF2ADCDAT", NULL, "AIF1ADCDAT" }, { "MICBIAS1", NULL, "CLK_SYS" }, { "MICBIAS1", NULL, "MICBIAS Supply" }, { "MICBIAS2", NULL, "CLK_SYS" }, { "MICBIAS2", NULL, "MICBIAS Supply" }, }; static const struct snd_soc_dapm_route wm8994_intercon[] = { { "AIF2DACL", NULL, "AIF2DAC Mux" }, { "AIF2DACR", NULL, "AIF2DAC Mux" }, { "MICBIAS1", NULL, "VMID" }, { "MICBIAS2", NULL, "VMID" }, }; static const struct snd_soc_dapm_route wm8958_intercon[] = { { "AIF2DACL", NULL, "AIF2DACL Mux" }, { "AIF2DACR", NULL, "AIF2DACR Mux" }, { "AIF2DACL Mux", "AIF2", "AIF2DAC Mux" }, { "AIF2DACL Mux", "AIF3", "AIF3DACDAT" }, { "AIF2DACR Mux", "AIF2", "AIF2DAC Mux" }, { "AIF2DACR Mux", "AIF3", "AIF3DACDAT" }, { "AIF3DACDAT", NULL, "AIF3" }, { "AIF3ADCDAT", NULL, "AIF3" }, { "Mono PCM Out Mux", "AIF2ADCL", "AIF2ADCL" }, { "Mono PCM Out Mux", "AIF2ADCR", "AIF2ADCR" }, { "AIF3ADC Mux", "Mono PCM", "Mono PCM Out Mux" }, }; /* The size in bits of the FLL divide multiplied by 10 * to allow rounding later */ #define FIXED_FLL_SIZE ((1 << 16) * 10) struct fll_div { u16 outdiv; u16 n; u16 k; u16 lambda; u16 clk_ref_div; u16 fll_fratio; }; static int wm8994_get_fll_config(struct wm8994 *control, struct fll_div *fll, int freq_in, int freq_out) { u64 Kpart; unsigned int K, Ndiv, Nmod, gcd_fll; pr_debug("FLL input=%dHz, output=%dHz\n", freq_in, freq_out); /* Scale the input frequency down to <= 13.5MHz */ fll->clk_ref_div = 0; while (freq_in > 13500000) { fll->clk_ref_div++; freq_in /= 2; if (fll->clk_ref_div > 3) return -EINVAL; } pr_debug("CLK_REF_DIV=%d, Fref=%dHz\n", fll->clk_ref_div, freq_in); /* Scale the output to give 90MHz<=Fvco<=100MHz */ fll->outdiv = 3; while (freq_out * (fll->outdiv + 1) < 90000000) { fll->outdiv++; if (fll->outdiv > 63) return -EINVAL; } freq_out *= fll->outdiv + 1; pr_debug("OUTDIV=%d, Fvco=%dHz\n", fll->outdiv, freq_out); if (freq_in > 1000000) { fll->fll_fratio = 0; } else if (freq_in > 256000) { fll->fll_fratio = 1; freq_in *= 2; } else if (freq_in > 128000) { fll->fll_fratio = 2; freq_in *= 4; } else if (freq_in > 64000) { fll->fll_fratio = 3; freq_in *= 8; } else { fll->fll_fratio = 4; freq_in *= 16; } pr_debug("FLL_FRATIO=%d, Fref=%dHz\n", fll->fll_fratio, freq_in); /* Now, calculate N.K */ Ndiv = freq_out / freq_in; fll->n = Ndiv; Nmod = freq_out % freq_in; pr_debug("Nmod=%d\n", Nmod); switch (control->type) { case WM8994: /* Calculate fractional part - scale up so we can round. */ Kpart = FIXED_FLL_SIZE * (long long)Nmod; do_div(Kpart, freq_in); K = Kpart & 0xFFFFFFFF; if ((K % 10) >= 5) K += 5; /* Move down to proper range now rounding is done */ fll->k = K / 10; fll->lambda = 0; pr_debug("N=%x K=%x\n", fll->n, fll->k); break; default: gcd_fll = gcd(freq_out, freq_in); fll->k = (freq_out - (freq_in * fll->n)) / gcd_fll; fll->lambda = freq_in / gcd_fll; } return 0; } static int _wm8994_set_fll(struct snd_soc_component *component, int id, int src, unsigned int freq_in, unsigned int freq_out) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int reg_offset, ret; struct fll_div fll; u16 reg, clk1, aif_reg, aif_src; unsigned long timeout; bool was_enabled; switch (id) { case WM8994_FLL1: reg_offset = 0; id = 0; aif_src = 0x10; break; case WM8994_FLL2: reg_offset = 0x20; id = 1; aif_src = 0x18; break; default: return -EINVAL; } reg = snd_soc_component_read32(component, WM8994_FLL1_CONTROL_1 + reg_offset); was_enabled = reg & WM8994_FLL1_ENA; switch (src) { case 0: /* Allow no source specification when stopping */ if (freq_out) return -EINVAL; src = wm8994->fll[id].src; break; case WM8994_FLL_SRC_MCLK1: case WM8994_FLL_SRC_MCLK2: case WM8994_FLL_SRC_LRCLK: case WM8994_FLL_SRC_BCLK: break; case WM8994_FLL_SRC_INTERNAL: freq_in = 12000000; freq_out = 12000000; break; default: return -EINVAL; } /* Are we changing anything? */ if (wm8994->fll[id].src == src && wm8994->fll[id].in == freq_in && wm8994->fll[id].out == freq_out) return 0; /* If we're stopping the FLL redo the old config - no * registers will actually be written but we avoid GCC flow * analysis bugs spewing warnings. */ if (freq_out) ret = wm8994_get_fll_config(control, &fll, freq_in, freq_out); else ret = wm8994_get_fll_config(control, &fll, wm8994->fll[id].in, wm8994->fll[id].out); if (ret < 0) return ret; /* Make sure that we're not providing SYSCLK right now */ clk1 = snd_soc_component_read32(component, WM8994_CLOCKING_1); if (clk1 & WM8994_SYSCLK_SRC) aif_reg = WM8994_AIF2_CLOCKING_1; else aif_reg = WM8994_AIF1_CLOCKING_1; reg = snd_soc_component_read32(component, aif_reg); if ((reg & WM8994_AIF1CLK_ENA) && (reg & WM8994_AIF1CLK_SRC_MASK) == aif_src) { dev_err(component->dev, "FLL%d is currently providing SYSCLK\n", id + 1); return -EBUSY; } /* We always need to disable the FLL while reconfiguring */ snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_1 + reg_offset, WM8994_FLL1_ENA, 0); if (wm8994->fll_byp && src == WM8994_FLL_SRC_BCLK && freq_in == freq_out && freq_out) { dev_dbg(component->dev, "Bypassing FLL%d\n", id + 1); snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_5 + reg_offset, WM8958_FLL1_BYP, WM8958_FLL1_BYP); goto out; } reg = (fll.outdiv << WM8994_FLL1_OUTDIV_SHIFT) | (fll.fll_fratio << WM8994_FLL1_FRATIO_SHIFT); snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_2 + reg_offset, WM8994_FLL1_OUTDIV_MASK | WM8994_FLL1_FRATIO_MASK, reg); snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_3 + reg_offset, WM8994_FLL1_K_MASK, fll.k); snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_4 + reg_offset, WM8994_FLL1_N_MASK, fll.n << WM8994_FLL1_N_SHIFT); if (fll.lambda) { snd_soc_component_update_bits(component, WM8958_FLL1_EFS_1 + reg_offset, WM8958_FLL1_LAMBDA_MASK, fll.lambda); snd_soc_component_update_bits(component, WM8958_FLL1_EFS_2 + reg_offset, WM8958_FLL1_EFS_ENA, WM8958_FLL1_EFS_ENA); } else { snd_soc_component_update_bits(component, WM8958_FLL1_EFS_2 + reg_offset, WM8958_FLL1_EFS_ENA, 0); } snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_5 + reg_offset, WM8994_FLL1_FRC_NCO | WM8958_FLL1_BYP | WM8994_FLL1_REFCLK_DIV_MASK | WM8994_FLL1_REFCLK_SRC_MASK, ((src == WM8994_FLL_SRC_INTERNAL) << WM8994_FLL1_FRC_NCO_SHIFT) | (fll.clk_ref_div << WM8994_FLL1_REFCLK_DIV_SHIFT) | (src - 1)); /* Clear any pending completion from a previous failure */ try_wait_for_completion(&wm8994->fll_locked[id]); /* Enable (with fractional mode if required) */ if (freq_out) { /* Enable VMID if we need it */ if (!was_enabled) { active_reference(component); switch (control->type) { case WM8994: vmid_reference(component); break; case WM8958: if (control->revision < 1) vmid_reference(component); break; default: break; } } reg = WM8994_FLL1_ENA; if (fll.k) reg |= WM8994_FLL1_FRAC; if (src == WM8994_FLL_SRC_INTERNAL) reg |= WM8994_FLL1_OSC_ENA; snd_soc_component_update_bits(component, WM8994_FLL1_CONTROL_1 + reg_offset, WM8994_FLL1_ENA | WM8994_FLL1_OSC_ENA | WM8994_FLL1_FRAC, reg); if (wm8994->fll_locked_irq) { timeout = wait_for_completion_timeout(&wm8994->fll_locked[id], msecs_to_jiffies(10)); if (timeout == 0) dev_warn(component->dev, "Timed out waiting for FLL lock\n"); } else { msleep(5); } } else { if (was_enabled) { switch (control->type) { case WM8994: vmid_dereference(component); break; case WM8958: if (control->revision < 1) vmid_dereference(component); break; default: break; } active_dereference(component); } } out: wm8994->fll[id].in = freq_in; wm8994->fll[id].out = freq_out; wm8994->fll[id].src = src; configure_clock(component); /* * If SYSCLK will be less than 50kHz adjust AIFnCLK dividers * for detection. */ if (max(wm8994->aifclk[0], wm8994->aifclk[1]) < 50000) { dev_dbg(component->dev, "Configuring AIFs for 128fs\n"); wm8994->aifdiv[0] = snd_soc_component_read32(component, WM8994_AIF1_RATE) & WM8994_AIF1CLK_RATE_MASK; wm8994->aifdiv[1] = snd_soc_component_read32(component, WM8994_AIF2_RATE) & WM8994_AIF1CLK_RATE_MASK; snd_soc_component_update_bits(component, WM8994_AIF1_RATE, WM8994_AIF1CLK_RATE_MASK, 0x1); snd_soc_component_update_bits(component, WM8994_AIF2_RATE, WM8994_AIF2CLK_RATE_MASK, 0x1); } else if (wm8994->aifdiv[0]) { snd_soc_component_update_bits(component, WM8994_AIF1_RATE, WM8994_AIF1CLK_RATE_MASK, wm8994->aifdiv[0]); snd_soc_component_update_bits(component, WM8994_AIF2_RATE, WM8994_AIF2CLK_RATE_MASK, wm8994->aifdiv[1]); wm8994->aifdiv[0] = 0; wm8994->aifdiv[1] = 0; } return 0; } static irqreturn_t wm8994_fll_locked_irq(int irq, void *data) { struct completion *completion = data; complete(completion); return IRQ_HANDLED; } static int opclk_divs[] = { 10, 20, 30, 40, 55, 60, 80, 120, 160 }; static int wm8994_set_fll(struct snd_soc_dai *dai, int id, int src, unsigned int freq_in, unsigned int freq_out) { return _wm8994_set_fll(dai->component, id, src, freq_in, freq_out); } static int wm8994_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int i; switch (dai->id) { case 1: case 2: break; default: /* AIF3 shares clocking with AIF1/2 */ return -EINVAL; } switch (clk_id) { case WM8994_SYSCLK_MCLK1: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK1; wm8994->mclk[0] = freq; dev_dbg(dai->dev, "AIF%d using MCLK1 at %uHz\n", dai->id, freq); break; case WM8994_SYSCLK_MCLK2: /* TODO: Set GPIO AF */ wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK2; wm8994->mclk[1] = freq; dev_dbg(dai->dev, "AIF%d using MCLK2 at %uHz\n", dai->id, freq); break; case WM8994_SYSCLK_FLL1: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL1; dev_dbg(dai->dev, "AIF%d using FLL1\n", dai->id); break; case WM8994_SYSCLK_FLL2: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL2; dev_dbg(dai->dev, "AIF%d using FLL2\n", dai->id); break; case WM8994_SYSCLK_OPCLK: /* Special case - a division (times 10) is given and * no effect on main clocking. */ if (freq) { for (i = 0; i < ARRAY_SIZE(opclk_divs); i++) if (opclk_divs[i] == freq) break; if (i == ARRAY_SIZE(opclk_divs)) return -EINVAL; snd_soc_component_update_bits(component, WM8994_CLOCKING_2, WM8994_OPCLK_DIV_MASK, i); snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_2, WM8994_OPCLK_ENA, WM8994_OPCLK_ENA); } else { snd_soc_component_update_bits(component, WM8994_POWER_MANAGEMENT_2, WM8994_OPCLK_ENA, 0); } break; default: return -EINVAL; } configure_clock(component); /* * If SYSCLK will be less than 50kHz adjust AIFnCLK dividers * for detection. */ if (max(wm8994->aifclk[0], wm8994->aifclk[1]) < 50000) { dev_dbg(component->dev, "Configuring AIFs for 128fs\n"); wm8994->aifdiv[0] = snd_soc_component_read32(component, WM8994_AIF1_RATE) & WM8994_AIF1CLK_RATE_MASK; wm8994->aifdiv[1] = snd_soc_component_read32(component, WM8994_AIF2_RATE) & WM8994_AIF1CLK_RATE_MASK; snd_soc_component_update_bits(component, WM8994_AIF1_RATE, WM8994_AIF1CLK_RATE_MASK, 0x1); snd_soc_component_update_bits(component, WM8994_AIF2_RATE, WM8994_AIF2CLK_RATE_MASK, 0x1); } else if (wm8994->aifdiv[0]) { snd_soc_component_update_bits(component, WM8994_AIF1_RATE, WM8994_AIF1CLK_RATE_MASK, wm8994->aifdiv[0]); snd_soc_component_update_bits(component, WM8994_AIF2_RATE, WM8994_AIF2CLK_RATE_MASK, wm8994->aifdiv[1]); wm8994->aifdiv[0] = 0; wm8994->aifdiv[1] = 0; } return 0; } static int wm8994_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; wm_hubs_set_bias_level(component, level); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* MICBIAS into regulating mode */ switch (control->type) { case WM8958: case WM1811: snd_soc_component_update_bits(component, WM8958_MICBIAS1, WM8958_MICB1_MODE, 0); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_MODE, 0); break; default: break; } if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_STANDBY) active_reference(component); break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { switch (control->type) { case WM8958: if (control->revision == 0) { /* Optimise performance for rev A */ snd_soc_component_update_bits(component, WM8958_CHARGE_PUMP_2, WM8958_CP_DISCH, WM8958_CP_DISCH); } break; default: break; } /* Discharge LINEOUT1 & 2 */ snd_soc_component_update_bits(component, WM8994_ANTIPOP_1, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH); } if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_PREPARE) active_dereference(component); /* MICBIAS into bypass mode on newer devices */ switch (control->type) { case WM8958: case WM1811: snd_soc_component_update_bits(component, WM8958_MICBIAS1, WM8958_MICB1_MODE, WM8958_MICB1_MODE); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_MODE, WM8958_MICB2_MODE); break; default: break; } break; case SND_SOC_BIAS_OFF: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_STANDBY) wm8994->cur_fw = NULL; break; } return 0; } int wm8994_vmid_mode(struct snd_soc_component *component, enum wm8994_vmid_mode mode) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); switch (mode) { case WM8994_VMID_NORMAL: snd_soc_dapm_mutex_lock(dapm); if (wm8994->hubs.lineout1_se) { snd_soc_dapm_disable_pin_unlocked(dapm, "LINEOUT1N Driver"); snd_soc_dapm_disable_pin_unlocked(dapm, "LINEOUT1P Driver"); } if (wm8994->hubs.lineout2_se) { snd_soc_dapm_disable_pin_unlocked(dapm, "LINEOUT2N Driver"); snd_soc_dapm_disable_pin_unlocked(dapm, "LINEOUT2P Driver"); } /* Do the sync with the old mode to allow it to clean up */ snd_soc_dapm_sync_unlocked(dapm); wm8994->vmid_mode = mode; snd_soc_dapm_mutex_unlock(dapm); break; case WM8994_VMID_FORCE: snd_soc_dapm_mutex_lock(dapm); if (wm8994->hubs.lineout1_se) { snd_soc_dapm_force_enable_pin_unlocked(dapm, "LINEOUT1N Driver"); snd_soc_dapm_force_enable_pin_unlocked(dapm, "LINEOUT1P Driver"); } if (wm8994->hubs.lineout2_se) { snd_soc_dapm_force_enable_pin_unlocked(dapm, "LINEOUT2N Driver"); snd_soc_dapm_force_enable_pin_unlocked(dapm, "LINEOUT2P Driver"); } wm8994->vmid_mode = mode; snd_soc_dapm_sync_unlocked(dapm); snd_soc_dapm_mutex_unlock(dapm); break; default: return -EINVAL; } return 0; } static int wm8994_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int ms_reg; int aif1_reg; int dac_reg; int adc_reg; int ms = 0; int aif1 = 0; int lrclk = 0; switch (dai->id) { case 1: ms_reg = WM8994_AIF1_MASTER_SLAVE; aif1_reg = WM8994_AIF1_CONTROL_1; dac_reg = WM8994_AIF1DAC_LRCLK; adc_reg = WM8994_AIF1ADC_LRCLK; break; case 2: ms_reg = WM8994_AIF2_MASTER_SLAVE; aif1_reg = WM8994_AIF2_CONTROL_1; dac_reg = WM8994_AIF1DAC_LRCLK; adc_reg = WM8994_AIF1ADC_LRCLK; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBM_CFM: ms = WM8994_AIF1_MSTR; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_B: aif1 |= WM8994_AIF1_LRCLK_INV; lrclk |= WM8958_AIF1_LRCLK_INV; /* fall through */ case SND_SOC_DAIFMT_DSP_A: aif1 |= 0x18; break; case SND_SOC_DAIFMT_I2S: aif1 |= 0x10; break; case SND_SOC_DAIFMT_RIGHT_J: break; case SND_SOC_DAIFMT_LEFT_J: aif1 |= 0x8; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: /* frame inversion not valid for DSP modes */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8994_AIF1_BCLK_INV; break; default: return -EINVAL; } break; case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: aif1 |= WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV; lrclk |= WM8958_AIF1_LRCLK_INV; break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8994_AIF1_BCLK_INV; break; case SND_SOC_DAIFMT_NB_IF: aif1 |= WM8994_AIF1_LRCLK_INV; lrclk |= WM8958_AIF1_LRCLK_INV; break; default: return -EINVAL; } break; default: return -EINVAL; } /* The AIF2 format configuration needs to be mirrored to AIF3 * on WM8958 if it's in use so just do it all the time. */ switch (control->type) { case WM1811: case WM8958: if (dai->id == 2) snd_soc_component_update_bits(component, WM8958_AIF3_CONTROL_1, WM8994_AIF1_LRCLK_INV | WM8958_AIF3_FMT_MASK, aif1); break; default: break; } snd_soc_component_update_bits(component, aif1_reg, WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV | WM8994_AIF1_FMT_MASK, aif1); snd_soc_component_update_bits(component, ms_reg, WM8994_AIF1_MSTR, ms); snd_soc_component_update_bits(component, dac_reg, WM8958_AIF1_LRCLK_INV, lrclk); snd_soc_component_update_bits(component, adc_reg, WM8958_AIF1_LRCLK_INV, lrclk); return 0; } static struct { int val, rate; } srs[] = { { 0, 8000 }, { 1, 11025 }, { 2, 12000 }, { 3, 16000 }, { 4, 22050 }, { 5, 24000 }, { 6, 32000 }, { 7, 44100 }, { 8, 48000 }, { 9, 88200 }, { 10, 96000 }, }; static int fs_ratios[] = { 64, 128, 192, 256, 384, 512, 768, 1024, 1408, 1536 }; static int bclk_divs[] = { 10, 15, 20, 30, 40, 50, 60, 80, 110, 120, 160, 220, 240, 320, 440, 480, 640, 880, 960, 1280, 1760, 1920 }; static int wm8994_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int aif1_reg; int aif2_reg; int bclk_reg; int lrclk_reg; int rate_reg; int aif1 = 0; int aif2 = 0; int bclk = 0; int lrclk = 0; int rate_val = 0; int id = dai->id - 1; int i, cur_val, best_val, bclk_rate, best; switch (dai->id) { case 1: aif1_reg = WM8994_AIF1_CONTROL_1; aif2_reg = WM8994_AIF1_CONTROL_2; bclk_reg = WM8994_AIF1_BCLK; rate_reg = WM8994_AIF1_RATE; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || wm8994->lrclk_shared[0]) { lrclk_reg = WM8994_AIF1DAC_LRCLK; } else { lrclk_reg = WM8994_AIF1ADC_LRCLK; dev_dbg(component->dev, "AIF1 using split LRCLK\n"); } break; case 2: aif1_reg = WM8994_AIF2_CONTROL_1; aif2_reg = WM8994_AIF2_CONTROL_2; bclk_reg = WM8994_AIF2_BCLK; rate_reg = WM8994_AIF2_RATE; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || wm8994->lrclk_shared[1]) { lrclk_reg = WM8994_AIF2DAC_LRCLK; } else { lrclk_reg = WM8994_AIF2ADC_LRCLK; dev_dbg(component->dev, "AIF2 using split LRCLK\n"); } break; default: return -EINVAL; } bclk_rate = params_rate(params); switch (params_width(params)) { case 16: bclk_rate *= 16; break; case 20: bclk_rate *= 20; aif1 |= 0x20; break; case 24: bclk_rate *= 24; aif1 |= 0x40; break; case 32: bclk_rate *= 32; aif1 |= 0x60; break; default: return -EINVAL; } wm8994->channels[id] = params_channels(params); if (pdata->max_channels_clocked[id] && wm8994->channels[id] > pdata->max_channels_clocked[id]) { dev_dbg(dai->dev, "Constraining channels to %d from %d\n", pdata->max_channels_clocked[id], wm8994->channels[id]); wm8994->channels[id] = pdata->max_channels_clocked[id]; } switch (wm8994->channels[id]) { case 1: case 2: bclk_rate *= 2; break; default: bclk_rate *= 4; break; } /* Try to find an appropriate sample rate; look for an exact match. */ for (i = 0; i < ARRAY_SIZE(srs); i++) if (srs[i].rate == params_rate(params)) break; if (i == ARRAY_SIZE(srs)) return -EINVAL; rate_val |= srs[i].val << WM8994_AIF1_SR_SHIFT; dev_dbg(dai->dev, "Sample rate is %dHz\n", srs[i].rate); dev_dbg(dai->dev, "AIF%dCLK is %dHz, target BCLK %dHz\n", dai->id, wm8994->aifclk[id], bclk_rate); if (wm8994->channels[id] == 1 && (snd_soc_component_read32(component, aif1_reg) & 0x18) == 0x18) aif2 |= WM8994_AIF1_MONO; if (wm8994->aifclk[id] == 0) { dev_err(dai->dev, "AIF%dCLK not configured\n", dai->id); return -EINVAL; } /* AIFCLK/fs ratio; look for a close match in either direction */ best = 0; best_val = abs((fs_ratios[0] * params_rate(params)) - wm8994->aifclk[id]); for (i = 1; i < ARRAY_SIZE(fs_ratios); i++) { cur_val = abs((fs_ratios[i] * params_rate(params)) - wm8994->aifclk[id]); if (cur_val >= best_val) continue; best = i; best_val = cur_val; } dev_dbg(dai->dev, "Selected AIF%dCLK/fs = %d\n", dai->id, fs_ratios[best]); rate_val |= best; /* We may not get quite the right frequency if using * approximate clocks so look for the closest match that is * higher than the target (we need to ensure that there enough * BCLKs to clock out the samples). */ best = 0; for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) { cur_val = (wm8994->aifclk[id] * 10 / bclk_divs[i]) - bclk_rate; if (cur_val < 0) /* BCLK table is sorted */ break; best = i; } bclk_rate = wm8994->aifclk[id] * 10 / bclk_divs[best]; dev_dbg(dai->dev, "Using BCLK_DIV %d for actual BCLK %dHz\n", bclk_divs[best], bclk_rate); bclk |= best << WM8994_AIF1_BCLK_DIV_SHIFT; lrclk = bclk_rate / params_rate(params); if (!lrclk) { dev_err(dai->dev, "Unable to generate LRCLK from %dHz BCLK\n", bclk_rate); return -EINVAL; } dev_dbg(dai->dev, "Using LRCLK rate %d for actual LRCLK %dHz\n", lrclk, bclk_rate / lrclk); snd_soc_component_update_bits(component, aif1_reg, WM8994_AIF1_WL_MASK, aif1); snd_soc_component_update_bits(component, aif2_reg, WM8994_AIF1_MONO, aif2); snd_soc_component_update_bits(component, bclk_reg, WM8994_AIF1_BCLK_DIV_MASK, bclk); snd_soc_component_update_bits(component, lrclk_reg, WM8994_AIF1DAC_RATE_MASK, lrclk); snd_soc_component_update_bits(component, rate_reg, WM8994_AIF1_SR_MASK | WM8994_AIF1CLK_RATE_MASK, rate_val); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (dai->id) { case 1: wm8994->dac_rates[0] = params_rate(params); wm8994_set_retune_mobile(component, 0); wm8994_set_retune_mobile(component, 1); break; case 2: wm8994->dac_rates[1] = params_rate(params); wm8994_set_retune_mobile(component, 2); break; } } return 0; } static int wm8994_aif3_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int aif1_reg; int aif1 = 0; switch (dai->id) { case 3: switch (control->type) { case WM1811: case WM8958: aif1_reg = WM8958_AIF3_CONTROL_1; break; default: return 0; } break; default: return 0; } switch (params_width(params)) { case 16: break; case 20: aif1 |= 0x20; break; case 24: aif1 |= 0x40; break; case 32: aif1 |= 0x60; break; default: return -EINVAL; } return snd_soc_component_update_bits(component, aif1_reg, WM8994_AIF1_WL_MASK, aif1); } static int wm8994_aif_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_component *component = codec_dai->component; int mute_reg; int reg; switch (codec_dai->id) { case 1: mute_reg = WM8994_AIF1_DAC1_FILTERS_1; break; case 2: mute_reg = WM8994_AIF2_DAC_FILTERS_1; break; default: return -EINVAL; } if (mute) reg = WM8994_AIF1DAC1_MUTE; else reg = 0; snd_soc_component_update_bits(component, mute_reg, WM8994_AIF1DAC1_MUTE, reg); return 0; } static int wm8994_set_tristate(struct snd_soc_dai *codec_dai, int tristate) { struct snd_soc_component *component = codec_dai->component; int reg, val, mask; switch (codec_dai->id) { case 1: reg = WM8994_AIF1_MASTER_SLAVE; mask = WM8994_AIF1_TRI; break; case 2: reg = WM8994_AIF2_MASTER_SLAVE; mask = WM8994_AIF2_TRI; break; default: return -EINVAL; } if (tristate) val = mask; else val = 0; return snd_soc_component_update_bits(component, reg, mask, val); } static int wm8994_aif2_probe(struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; /* Disable the pulls on the AIF if we're using it to save power. */ snd_soc_component_update_bits(component, WM8994_GPIO_3, WM8994_GPN_PU | WM8994_GPN_PD, 0); snd_soc_component_update_bits(component, WM8994_GPIO_4, WM8994_GPN_PU | WM8994_GPN_PD, 0); snd_soc_component_update_bits(component, WM8994_GPIO_5, WM8994_GPN_PU | WM8994_GPN_PD, 0); return 0; } #define WM8994_RATES SNDRV_PCM_RATE_8000_96000 #define WM8994_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops wm8994_aif1_dai_ops = { .set_sysclk = wm8994_set_dai_sysclk, .set_fmt = wm8994_set_dai_fmt, .hw_params = wm8994_hw_params, .digital_mute = wm8994_aif_mute, .set_pll = wm8994_set_fll, .set_tristate = wm8994_set_tristate, }; static const struct snd_soc_dai_ops wm8994_aif2_dai_ops = { .set_sysclk = wm8994_set_dai_sysclk, .set_fmt = wm8994_set_dai_fmt, .hw_params = wm8994_hw_params, .digital_mute = wm8994_aif_mute, .set_pll = wm8994_set_fll, .set_tristate = wm8994_set_tristate, }; static const struct snd_soc_dai_ops wm8994_aif3_dai_ops = { .hw_params = wm8994_aif3_hw_params, }; static struct snd_soc_dai_driver wm8994_dai[] = { { .name = "wm8994-aif1", .id = 1, .playback = { .stream_name = "AIF1 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .capture = { .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .ops = &wm8994_aif1_dai_ops, }, { .name = "wm8994-aif2", .id = 2, .playback = { .stream_name = "AIF2 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .capture = { .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .probe = wm8994_aif2_probe, .ops = &wm8994_aif2_dai_ops, }, { .name = "wm8994-aif3", .id = 3, .playback = { .stream_name = "AIF3 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .capture = { .stream_name = "AIF3 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, .sig_bits = 24, }, .ops = &wm8994_aif3_dai_ops, } }; #ifdef CONFIG_PM static int wm8994_component_suspend(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int i, ret; for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) { memcpy(&wm8994->fll_suspend[i], &wm8994->fll[i], sizeof(struct wm8994_fll_config)); ret = _wm8994_set_fll(component, i + 1, 0, 0, 0); if (ret < 0) dev_warn(component->dev, "Failed to stop FLL%d: %d\n", i + 1, ret); } snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); return 0; } static int wm8994_component_resume(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int i, ret; for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) { if (!wm8994->fll_suspend[i].out) continue; ret = _wm8994_set_fll(component, i + 1, wm8994->fll_suspend[i].src, wm8994->fll_suspend[i].in, wm8994->fll_suspend[i].out); if (ret < 0) dev_warn(component->dev, "Failed to restore FLL%d: %d\n", i + 1, ret); } return 0; } #else #define wm8994_component_suspend NULL #define wm8994_component_resume NULL #endif static void wm8994_handle_retune_mobile_pdata(struct wm8994_priv *wm8994) { struct snd_soc_component *component = wm8994->hubs.component; struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; struct snd_kcontrol_new controls[] = { SOC_ENUM_EXT("AIF1.1 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), SOC_ENUM_EXT("AIF1.2 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), SOC_ENUM_EXT("AIF2 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), }; int ret, i, j; const char **t; /* We need an array of texts for the enum API but the number * of texts is likely to be less than the number of * configurations due to the sample rate dependency of the * configurations. */ wm8994->num_retune_mobile_texts = 0; wm8994->retune_mobile_texts = NULL; for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) { for (j = 0; j < wm8994->num_retune_mobile_texts; j++) { if (strcmp(pdata->retune_mobile_cfgs[i].name, wm8994->retune_mobile_texts[j]) == 0) break; } if (j != wm8994->num_retune_mobile_texts) continue; /* Expand the array... */ t = krealloc(wm8994->retune_mobile_texts, sizeof(char *) * (wm8994->num_retune_mobile_texts + 1), GFP_KERNEL); if (t == NULL) continue; /* ...store the new entry... */ t[wm8994->num_retune_mobile_texts] = pdata->retune_mobile_cfgs[i].name; /* ...and remember the new version. */ wm8994->num_retune_mobile_texts++; wm8994->retune_mobile_texts = t; } dev_dbg(component->dev, "Allocated %d unique ReTune Mobile names\n", wm8994->num_retune_mobile_texts); wm8994->retune_mobile_enum.items = wm8994->num_retune_mobile_texts; wm8994->retune_mobile_enum.texts = wm8994->retune_mobile_texts; ret = snd_soc_add_component_controls(wm8994->hubs.component, controls, ARRAY_SIZE(controls)); if (ret != 0) dev_err(wm8994->hubs.component->dev, "Failed to add ReTune Mobile controls: %d\n", ret); } static void wm8994_handle_pdata(struct wm8994_priv *wm8994) { struct snd_soc_component *component = wm8994->hubs.component; struct wm8994 *control = wm8994->wm8994; struct wm8994_pdata *pdata = &control->pdata; int ret, i; if (!pdata) return; wm_hubs_handle_analogue_pdata(component, pdata->lineout1_diff, pdata->lineout2_diff, pdata->lineout1fb, pdata->lineout2fb, pdata->jd_scthr, pdata->jd_thr, pdata->micb1_delay, pdata->micb2_delay, pdata->micbias1_lvl, pdata->micbias2_lvl); dev_dbg(component->dev, "%d DRC configurations\n", pdata->num_drc_cfgs); if (pdata->num_drc_cfgs) { struct snd_kcontrol_new controls[] = { SOC_ENUM_EXT("AIF1DRC1 Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), SOC_ENUM_EXT("AIF1DRC2 Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), SOC_ENUM_EXT("AIF2DRC Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), }; /* We need an array of texts for the enum API */ wm8994->drc_texts = devm_kcalloc(wm8994->hubs.component->dev, pdata->num_drc_cfgs, sizeof(char *), GFP_KERNEL); if (!wm8994->drc_texts) return; for (i = 0; i < pdata->num_drc_cfgs; i++) wm8994->drc_texts[i] = pdata->drc_cfgs[i].name; wm8994->drc_enum.items = pdata->num_drc_cfgs; wm8994->drc_enum.texts = wm8994->drc_texts; ret = snd_soc_add_component_controls(wm8994->hubs.component, controls, ARRAY_SIZE(controls)); for (i = 0; i < WM8994_NUM_DRC; i++) wm8994_set_drc(component, i); } else { ret = snd_soc_add_component_controls(wm8994->hubs.component, wm8994_drc_controls, ARRAY_SIZE(wm8994_drc_controls)); } if (ret != 0) dev_err(wm8994->hubs.component->dev, "Failed to add DRC mode controls: %d\n", ret); dev_dbg(component->dev, "%d ReTune Mobile configurations\n", pdata->num_retune_mobile_cfgs); if (pdata->num_retune_mobile_cfgs) wm8994_handle_retune_mobile_pdata(wm8994); else snd_soc_add_component_controls(wm8994->hubs.component, wm8994_eq_controls, ARRAY_SIZE(wm8994_eq_controls)); for (i = 0; i < ARRAY_SIZE(pdata->micbias); i++) { if (pdata->micbias[i]) { snd_soc_component_write(component, WM8958_MICBIAS1 + i, pdata->micbias[i] & 0xffff); } } } /** * wm8994_mic_detect - Enable microphone detection via the WM8994 IRQ * * @component: WM8994 component * @jack: jack to report detection events on * @micbias: microphone bias to detect on * * Enable microphone detection via IRQ on the WM8994. If GPIOs are * being used to bring out signals to the processor then only platform * data configuration is needed for WM8994 and processor GPIOs should * be configured using snd_soc_jack_add_gpios() instead. * * Configuration of detection levels is available via the micbias1_lvl * and micbias2_lvl platform data members. */ int wm8994_mic_detect(struct snd_soc_component *component, struct snd_soc_jack *jack, int micbias) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994_micdet *micdet; struct wm8994 *control = wm8994->wm8994; int reg, ret; if (control->type != WM8994) { dev_warn(component->dev, "Not a WM8994\n"); return -EINVAL; } switch (micbias) { case 1: micdet = &wm8994->micdet[0]; if (jack) ret = snd_soc_dapm_force_enable_pin(dapm, "MICBIAS1"); else ret = snd_soc_dapm_disable_pin(dapm, "MICBIAS1"); break; case 2: micdet = &wm8994->micdet[1]; if (jack) ret = snd_soc_dapm_force_enable_pin(dapm, "MICBIAS1"); else ret = snd_soc_dapm_disable_pin(dapm, "MICBIAS1"); break; default: dev_warn(component->dev, "Invalid MICBIAS %d\n", micbias); return -EINVAL; } if (ret != 0) dev_warn(component->dev, "Failed to configure MICBIAS%d: %d\n", micbias, ret); dev_dbg(component->dev, "Configuring microphone detection on %d %p\n", micbias, jack); /* Store the configuration */ micdet->jack = jack; micdet->detecting = true; /* If either of the jacks is set up then enable detection */ if (wm8994->micdet[0].jack || wm8994->micdet[1].jack) reg = WM8994_MICD_ENA; else reg = 0; snd_soc_component_update_bits(component, WM8994_MICBIAS, WM8994_MICD_ENA, reg); /* enable MICDET and MICSHRT deboune */ snd_soc_component_update_bits(component, WM8994_IRQ_DEBOUNCE, WM8994_MIC1_DET_DB_MASK | WM8994_MIC1_SHRT_DB_MASK | WM8994_MIC2_DET_DB_MASK | WM8994_MIC2_SHRT_DB_MASK, WM8994_MIC1_DET_DB | WM8994_MIC1_SHRT_DB); snd_soc_dapm_sync(dapm); return 0; } EXPORT_SYMBOL_GPL(wm8994_mic_detect); static void wm8994_mic_work(struct work_struct *work) { struct wm8994_priv *priv = container_of(work, struct wm8994_priv, mic_work.work); struct regmap *regmap = priv->wm8994->regmap; struct device *dev = priv->wm8994->dev; unsigned int reg; int ret; int report; pm_runtime_get_sync(dev); ret = regmap_read(regmap, WM8994_INTERRUPT_RAW_STATUS_2, ®); if (ret < 0) { dev_err(dev, "Failed to read microphone status: %d\n", ret); pm_runtime_put(dev); return; } dev_dbg(dev, "Microphone status: %x\n", reg); report = 0; if (reg & WM8994_MIC1_DET_STS) { if (priv->micdet[0].detecting) report = SND_JACK_HEADSET; } if (reg & WM8994_MIC1_SHRT_STS) { if (priv->micdet[0].detecting) report = SND_JACK_HEADPHONE; else report |= SND_JACK_BTN_0; } if (report) priv->micdet[0].detecting = false; else priv->micdet[0].detecting = true; snd_soc_jack_report(priv->micdet[0].jack, report, SND_JACK_HEADSET | SND_JACK_BTN_0); report = 0; if (reg & WM8994_MIC2_DET_STS) { if (priv->micdet[1].detecting) report = SND_JACK_HEADSET; } if (reg & WM8994_MIC2_SHRT_STS) { if (priv->micdet[1].detecting) report = SND_JACK_HEADPHONE; else report |= SND_JACK_BTN_0; } if (report) priv->micdet[1].detecting = false; else priv->micdet[1].detecting = true; snd_soc_jack_report(priv->micdet[1].jack, report, SND_JACK_HEADSET | SND_JACK_BTN_0); pm_runtime_put(dev); } static irqreturn_t wm8994_mic_irq(int irq, void *data) { struct wm8994_priv *priv = data; struct snd_soc_component *component = priv->hubs.component; #ifndef CONFIG_SND_SOC_WM8994_MODULE trace_snd_soc_jack_irq(dev_name(component->dev)); #endif pm_wakeup_event(component->dev, 300); queue_delayed_work(system_power_efficient_wq, &priv->mic_work, msecs_to_jiffies(250)); return IRQ_HANDLED; } /* Should be called with accdet_lock held */ static void wm1811_micd_stop(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); if (!wm8994->jackdet) return; snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, 0); wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_JACK); if (wm8994->wm8994->pdata.jd_ext_cap) snd_soc_dapm_disable_pin(dapm, "MICBIAS2"); } static void wm8958_button_det(struct snd_soc_component *component, u16 status) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); int report; report = 0; if (status & 0x4) report |= SND_JACK_BTN_0; if (status & 0x8) report |= SND_JACK_BTN_1; if (status & 0x10) report |= SND_JACK_BTN_2; if (status & 0x20) report |= SND_JACK_BTN_3; if (status & 0x40) report |= SND_JACK_BTN_4; if (status & 0x80) report |= SND_JACK_BTN_5; snd_soc_jack_report(wm8994->micdet[0].jack, report, wm8994->btn_mask); } static void wm8958_open_circuit_work(struct work_struct *work) { struct wm8994_priv *wm8994 = container_of(work, struct wm8994_priv, open_circuit_work.work); struct device *dev = wm8994->wm8994->dev; mutex_lock(&wm8994->accdet_lock); wm1811_micd_stop(wm8994->hubs.component); dev_dbg(dev, "Reporting open circuit\n"); wm8994->jack_mic = false; wm8994->mic_detecting = true; wm8958_micd_set_rate(wm8994->hubs.component); snd_soc_jack_report(wm8994->micdet[0].jack, 0, wm8994->btn_mask | SND_JACK_HEADSET); mutex_unlock(&wm8994->accdet_lock); } static void wm8958_mic_id(void *data, u16 status) { struct snd_soc_component *component = data; struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); /* Either nothing present or just starting detection */ if (!(status & WM8958_MICD_STS)) { /* If nothing present then clear our statuses */ dev_dbg(component->dev, "Detected open circuit\n"); queue_delayed_work(system_power_efficient_wq, &wm8994->open_circuit_work, msecs_to_jiffies(2500)); return; } /* If the measurement is showing a high impedence we've got a * microphone. */ if (status & 0x600) { dev_dbg(component->dev, "Detected microphone\n"); wm8994->mic_detecting = false; wm8994->jack_mic = true; wm8958_micd_set_rate(component); snd_soc_jack_report(wm8994->micdet[0].jack, SND_JACK_HEADSET, SND_JACK_HEADSET); } if (status & 0xfc) { dev_dbg(component->dev, "Detected headphone\n"); wm8994->mic_detecting = false; wm8958_micd_set_rate(component); /* If we have jackdet that will detect removal */ wm1811_micd_stop(component); snd_soc_jack_report(wm8994->micdet[0].jack, SND_JACK_HEADPHONE, SND_JACK_HEADSET); } } /* Deferred mic detection to allow for extra settling time */ static void wm1811_mic_work(struct work_struct *work) { struct wm8994_priv *wm8994 = container_of(work, struct wm8994_priv, mic_work.work); struct wm8994 *control = wm8994->wm8994; struct snd_soc_component *component = wm8994->hubs.component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); pm_runtime_get_sync(component->dev); /* If required for an external cap force MICBIAS on */ if (control->pdata.jd_ext_cap) { snd_soc_dapm_force_enable_pin(dapm, "MICBIAS2"); snd_soc_dapm_sync(dapm); } mutex_lock(&wm8994->accdet_lock); dev_dbg(component->dev, "Starting mic detection\n"); /* Use a user-supplied callback if we have one */ if (wm8994->micd_cb) { wm8994->micd_cb(wm8994->micd_cb_data); } else { /* * Start off measument of microphone impedence to find out * what's actually there. */ wm8994->mic_detecting = true; wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_MIC); snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, WM8958_MICD_ENA); } mutex_unlock(&wm8994->accdet_lock); pm_runtime_put(component->dev); } static irqreturn_t wm1811_jackdet_irq(int irq, void *data) { struct wm8994_priv *wm8994 = data; struct wm8994 *control = wm8994->wm8994; struct snd_soc_component *component = wm8994->hubs.component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); int reg, delay; bool present; pm_runtime_get_sync(component->dev); cancel_delayed_work_sync(&wm8994->mic_complete_work); mutex_lock(&wm8994->accdet_lock); reg = snd_soc_component_read32(component, WM1811_JACKDET_CTRL); if (reg < 0) { dev_err(component->dev, "Failed to read jack status: %d\n", reg); mutex_unlock(&wm8994->accdet_lock); pm_runtime_put(component->dev); return IRQ_NONE; } dev_dbg(component->dev, "JACKDET %x\n", reg); present = reg & WM1811_JACKDET_LVL; if (present) { dev_dbg(component->dev, "Jack detected\n"); wm8958_micd_set_rate(component); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_DISCH, 0); /* Disable debounce while inserted */ snd_soc_component_update_bits(component, WM1811_JACKDET_CTRL, WM1811_JACKDET_DB, 0); delay = control->pdata.micdet_delay; queue_delayed_work(system_power_efficient_wq, &wm8994->mic_work, msecs_to_jiffies(delay)); } else { dev_dbg(component->dev, "Jack not detected\n"); cancel_delayed_work_sync(&wm8994->mic_work); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_DISCH, WM8958_MICB2_DISCH); /* Enable debounce while removed */ snd_soc_component_update_bits(component, WM1811_JACKDET_CTRL, WM1811_JACKDET_DB, WM1811_JACKDET_DB); wm8994->mic_detecting = false; wm8994->jack_mic = false; snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, 0); wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_JACK); } mutex_unlock(&wm8994->accdet_lock); /* Turn off MICBIAS if it was on for an external cap */ if (control->pdata.jd_ext_cap && !present) snd_soc_dapm_disable_pin(dapm, "MICBIAS2"); if (present) snd_soc_jack_report(wm8994->micdet[0].jack, SND_JACK_MECHANICAL, SND_JACK_MECHANICAL); else snd_soc_jack_report(wm8994->micdet[0].jack, 0, SND_JACK_MECHANICAL | SND_JACK_HEADSET | wm8994->btn_mask); /* Since we only report deltas force an update, ensures we * avoid bootstrapping issues with the core. */ snd_soc_jack_report(wm8994->micdet[0].jack, 0, 0); pm_runtime_put(component->dev); return IRQ_HANDLED; } static void wm1811_jackdet_bootstrap(struct work_struct *work) { struct wm8994_priv *wm8994 = container_of(work, struct wm8994_priv, jackdet_bootstrap.work); wm1811_jackdet_irq(0, wm8994); } /** * wm8958_mic_detect - Enable microphone detection via the WM8958 IRQ * * @component: WM8958 component * @jack: jack to report detection events on * * Enable microphone detection functionality for the WM8958. By * default simple detection which supports the detection of up to 6 * buttons plus video and microphone functionality is supported. * * The WM8958 has an advanced jack detection facility which is able to * support complex accessory detection, especially when used in * conjunction with external circuitry. In order to provide maximum * flexiblity a callback is provided which allows a completely custom * detection algorithm. */ int wm8958_mic_detect(struct snd_soc_component *component, struct snd_soc_jack *jack, wm1811_micdet_cb det_cb, void *det_cb_data, wm1811_mic_id_cb id_cb, void *id_cb_data) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; u16 micd_lvl_sel; switch (control->type) { case WM1811: case WM8958: break; default: return -EINVAL; } if (jack) { snd_soc_dapm_force_enable_pin(dapm, "CLK_SYS"); snd_soc_dapm_sync(dapm); wm8994->micdet[0].jack = jack; if (det_cb) { wm8994->micd_cb = det_cb; wm8994->micd_cb_data = det_cb_data; } else { wm8994->mic_detecting = true; wm8994->jack_mic = false; } if (id_cb) { wm8994->mic_id_cb = id_cb; wm8994->mic_id_cb_data = id_cb_data; } else { wm8994->mic_id_cb = wm8958_mic_id; wm8994->mic_id_cb_data = component; } wm8958_micd_set_rate(component); /* Detect microphones and short circuits by default */ if (control->pdata.micd_lvl_sel) micd_lvl_sel = control->pdata.micd_lvl_sel; else micd_lvl_sel = 0x41; wm8994->btn_mask = SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_BTN_4 | SND_JACK_BTN_5; snd_soc_component_update_bits(component, WM8958_MIC_DETECT_2, WM8958_MICD_LVL_SEL_MASK, micd_lvl_sel); WARN_ON(snd_soc_component_get_bias_level(component) > SND_SOC_BIAS_STANDBY); /* * If we can use jack detection start off with that, * otherwise jump straight to microphone detection. */ if (wm8994->jackdet) { /* Disable debounce for the initial detect */ snd_soc_component_update_bits(component, WM1811_JACKDET_CTRL, WM1811_JACKDET_DB, 0); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_DISCH, WM8958_MICB2_DISCH); snd_soc_component_update_bits(component, WM8994_LDO_1, WM8994_LDO1_DISCH, 0); wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_JACK); } else { snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, WM8958_MICD_ENA); } } else { snd_soc_component_update_bits(component, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, 0); wm1811_jackdet_set_mode(component, WM1811_JACKDET_MODE_NONE); snd_soc_dapm_disable_pin(dapm, "CLK_SYS"); snd_soc_dapm_sync(dapm); } return 0; } EXPORT_SYMBOL_GPL(wm8958_mic_detect); static void wm8958_mic_work(struct work_struct *work) { struct wm8994_priv *wm8994 = container_of(work, struct wm8994_priv, mic_complete_work.work); struct snd_soc_component *component = wm8994->hubs.component; pm_runtime_get_sync(component->dev); mutex_lock(&wm8994->accdet_lock); wm8994->mic_id_cb(wm8994->mic_id_cb_data, wm8994->mic_status); mutex_unlock(&wm8994->accdet_lock); pm_runtime_put(component->dev); } static irqreturn_t wm8958_mic_irq(int irq, void *data) { struct wm8994_priv *wm8994 = data; struct snd_soc_component *component = wm8994->hubs.component; int reg, count, ret, id_delay; /* * Jack detection may have detected a removal simulataneously * with an update of the MICDET status; if so it will have * stopped detection and we can ignore this interrupt. */ if (!(snd_soc_component_read32(component, WM8958_MIC_DETECT_1) & WM8958_MICD_ENA)) return IRQ_HANDLED; cancel_delayed_work_sync(&wm8994->mic_complete_work); cancel_delayed_work_sync(&wm8994->open_circuit_work); pm_runtime_get_sync(component->dev); /* We may occasionally read a detection without an impedence * range being provided - if that happens loop again. */ count = 10; do { reg = snd_soc_component_read32(component, WM8958_MIC_DETECT_3); if (reg < 0) { dev_err(component->dev, "Failed to read mic detect status: %d\n", reg); pm_runtime_put(component->dev); return IRQ_NONE; } if (!(reg & WM8958_MICD_VALID)) { dev_dbg(component->dev, "Mic detect data not valid\n"); goto out; } if (!(reg & WM8958_MICD_STS) || (reg & WM8958_MICD_LVL_MASK)) break; msleep(1); } while (count--); if (count == 0) dev_warn(component->dev, "No impedance range reported for jack\n"); #ifndef CONFIG_SND_SOC_WM8994_MODULE trace_snd_soc_jack_irq(dev_name(component->dev)); #endif /* Avoid a transient report when the accessory is being removed */ if (wm8994->jackdet) { ret = snd_soc_component_read32(component, WM1811_JACKDET_CTRL); if (ret < 0) { dev_err(component->dev, "Failed to read jack status: %d\n", ret); } else if (!(ret & WM1811_JACKDET_LVL)) { dev_dbg(component->dev, "Ignoring removed jack\n"); goto out; } } else if (!(reg & WM8958_MICD_STS)) { snd_soc_jack_report(wm8994->micdet[0].jack, 0, SND_JACK_MECHANICAL | SND_JACK_HEADSET | wm8994->btn_mask); wm8994->mic_detecting = true; goto out; } wm8994->mic_status = reg; id_delay = wm8994->wm8994->pdata.mic_id_delay; if (wm8994->mic_detecting) queue_delayed_work(system_power_efficient_wq, &wm8994->mic_complete_work, msecs_to_jiffies(id_delay)); else wm8958_button_det(component, reg); out: pm_runtime_put(component->dev); return IRQ_HANDLED; } static irqreturn_t wm8994_fifo_error(int irq, void *data) { struct snd_soc_component *component = data; dev_err(component->dev, "FIFO error\n"); return IRQ_HANDLED; } static irqreturn_t wm8994_temp_warn(int irq, void *data) { struct snd_soc_component *component = data; dev_err(component->dev, "Thermal warning\n"); return IRQ_HANDLED; } static irqreturn_t wm8994_temp_shut(int irq, void *data) { struct snd_soc_component *component = data; dev_crit(component->dev, "Thermal shutdown\n"); return IRQ_HANDLED; } static int wm8994_component_probe(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct wm8994 *control = dev_get_drvdata(component->dev->parent); struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); unsigned int reg; int ret, i; snd_soc_component_init_regmap(component, control->regmap); wm8994->hubs.component = component; mutex_init(&wm8994->accdet_lock); INIT_DELAYED_WORK(&wm8994->jackdet_bootstrap, wm1811_jackdet_bootstrap); INIT_DELAYED_WORK(&wm8994->open_circuit_work, wm8958_open_circuit_work); switch (control->type) { case WM8994: INIT_DELAYED_WORK(&wm8994->mic_work, wm8994_mic_work); break; case WM1811: INIT_DELAYED_WORK(&wm8994->mic_work, wm1811_mic_work); break; default: break; } INIT_DELAYED_WORK(&wm8994->mic_complete_work, wm8958_mic_work); for (i = 0; i < ARRAY_SIZE(wm8994->fll_locked); i++) init_completion(&wm8994->fll_locked[i]); wm8994->micdet_irq = control->pdata.micdet_irq; /* By default use idle_bias_off, will override for WM8994 */ dapm->idle_bias_off = 1; /* Set revision-specific configuration */ switch (control->type) { case WM8994: /* Single ended line outputs should have VMID on. */ if (!control->pdata.lineout1_diff || !control->pdata.lineout2_diff) dapm->idle_bias_off = 0; switch (control->revision) { case 2: case 3: wm8994->hubs.dcs_codes_l = -5; wm8994->hubs.dcs_codes_r = -5; wm8994->hubs.hp_startup_mode = 1; wm8994->hubs.dcs_readback_mode = 1; wm8994->hubs.series_startup = 1; break; default: wm8994->hubs.dcs_readback_mode = 2; break; } break; case WM8958: wm8994->hubs.dcs_readback_mode = 1; wm8994->hubs.hp_startup_mode = 1; switch (control->revision) { case 0: break; default: wm8994->fll_byp = true; break; } break; case WM1811: wm8994->hubs.dcs_readback_mode = 2; wm8994->hubs.no_series_update = 1; wm8994->hubs.hp_startup_mode = 1; wm8994->hubs.no_cache_dac_hp_direct = true; wm8994->fll_byp = true; wm8994->hubs.dcs_codes_l = -9; wm8994->hubs.dcs_codes_r = -7; snd_soc_component_update_bits(component, WM8994_ANALOGUE_HP_1, WM1811_HPOUT1_ATTN, WM1811_HPOUT1_ATTN); break; default: break; } wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_FIFOS_ERR, wm8994_fifo_error, "FIFO error", component); wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_TEMP_WARN, wm8994_temp_warn, "Thermal warning", component); wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_TEMP_SHUT, wm8994_temp_shut, "Thermal shutdown", component); switch (control->type) { case WM8994: if (wm8994->micdet_irq) ret = request_threaded_irq(wm8994->micdet_irq, NULL, wm8994_mic_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "Mic1 detect", wm8994); else ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_MIC1_DET, wm8994_mic_irq, "Mic 1 detect", wm8994); if (ret != 0) dev_warn(component->dev, "Failed to request Mic1 detect IRQ: %d\n", ret); ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_MIC1_SHRT, wm8994_mic_irq, "Mic 1 short", wm8994); if (ret != 0) dev_warn(component->dev, "Failed to request Mic1 short IRQ: %d\n", ret); ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_MIC2_DET, wm8994_mic_irq, "Mic 2 detect", wm8994); if (ret != 0) dev_warn(component->dev, "Failed to request Mic2 detect IRQ: %d\n", ret); ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_MIC2_SHRT, wm8994_mic_irq, "Mic 2 short", wm8994); if (ret != 0) dev_warn(component->dev, "Failed to request Mic2 short IRQ: %d\n", ret); break; case WM8958: case WM1811: if (wm8994->micdet_irq) { ret = request_threaded_irq(wm8994->micdet_irq, NULL, wm8958_mic_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "Mic detect", wm8994); if (ret != 0) dev_warn(component->dev, "Failed to request Mic detect IRQ: %d\n", ret); } else { wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_MIC1_DET, wm8958_mic_irq, "Mic detect", wm8994); } } switch (control->type) { case WM1811: if (control->cust_id > 1 || control->revision > 1) { ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_GPIO(6), wm1811_jackdet_irq, "JACKDET", wm8994); if (ret == 0) wm8994->jackdet = true; } break; default: break; } wm8994->fll_locked_irq = true; for (i = 0; i < ARRAY_SIZE(wm8994->fll_locked); i++) { ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_FLL1_LOCK + i, wm8994_fll_locked_irq, "FLL lock", &wm8994->fll_locked[i]); if (ret != 0) wm8994->fll_locked_irq = false; } /* Make sure we can read from the GPIOs if they're inputs */ pm_runtime_get_sync(component->dev); /* Remember if AIFnLRCLK is configured as a GPIO. This should be * configured on init - if a system wants to do this dynamically * at runtime we can deal with that then. */ ret = regmap_read(control->regmap, WM8994_GPIO_1, ®); if (ret < 0) { dev_err(component->dev, "Failed to read GPIO1 state: %d\n", ret); goto err_irq; } if ((reg & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) { wm8994->lrclk_shared[0] = 1; wm8994_dai[0].symmetric_rates = 1; } else { wm8994->lrclk_shared[0] = 0; } ret = regmap_read(control->regmap, WM8994_GPIO_6, ®); if (ret < 0) { dev_err(component->dev, "Failed to read GPIO6 state: %d\n", ret); goto err_irq; } if ((reg & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) { wm8994->lrclk_shared[1] = 1; wm8994_dai[1].symmetric_rates = 1; } else { wm8994->lrclk_shared[1] = 0; } pm_runtime_put(component->dev); /* Latch volume update bits */ for (i = 0; i < ARRAY_SIZE(wm8994_vu_bits); i++) snd_soc_component_update_bits(component, wm8994_vu_bits[i].reg, wm8994_vu_bits[i].mask, wm8994_vu_bits[i].mask); /* Set the low bit of the 3D stereo depth so TLV matches */ snd_soc_component_update_bits(component, WM8994_AIF1_DAC1_FILTERS_2, 1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT, 1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT); snd_soc_component_update_bits(component, WM8994_AIF1_DAC2_FILTERS_2, 1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT, 1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT); snd_soc_component_update_bits(component, WM8994_AIF2_DAC_FILTERS_2, 1 << WM8994_AIF2DAC_3D_GAIN_SHIFT, 1 << WM8994_AIF2DAC_3D_GAIN_SHIFT); /* Unconditionally enable AIF1 ADC TDM mode on chips which can * use this; it only affects behaviour on idle TDM clock * cycles. */ switch (control->type) { case WM8994: case WM8958: snd_soc_component_update_bits(component, WM8994_AIF1_CONTROL_1, WM8994_AIF1ADC_TDM, WM8994_AIF1ADC_TDM); break; default: break; } /* Put MICBIAS into bypass mode by default on newer devices */ switch (control->type) { case WM8958: case WM1811: snd_soc_component_update_bits(component, WM8958_MICBIAS1, WM8958_MICB1_MODE, WM8958_MICB1_MODE); snd_soc_component_update_bits(component, WM8958_MICBIAS2, WM8958_MICB2_MODE, WM8958_MICB2_MODE); break; default: break; } wm8994->hubs.check_class_w_digital = wm8994_check_class_w_digital; wm_hubs_update_class_w(component); wm8994_handle_pdata(wm8994); wm_hubs_add_analogue_controls(component); snd_soc_add_component_controls(component, wm8994_snd_controls, ARRAY_SIZE(wm8994_snd_controls)); snd_soc_dapm_new_controls(dapm, wm8994_dapm_widgets, ARRAY_SIZE(wm8994_dapm_widgets)); switch (control->type) { case WM8994: snd_soc_dapm_new_controls(dapm, wm8994_specific_dapm_widgets, ARRAY_SIZE(wm8994_specific_dapm_widgets)); if (control->revision < 4) { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets, ARRAY_SIZE(wm8994_lateclk_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets, ARRAY_SIZE(wm8994_adc_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets, ARRAY_SIZE(wm8994_dac_revd_widgets)); } else { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets, ARRAY_SIZE(wm8994_lateclk_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets, ARRAY_SIZE(wm8994_adc_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets, ARRAY_SIZE(wm8994_dac_widgets)); } break; case WM8958: snd_soc_add_component_controls(component, wm8958_snd_controls, ARRAY_SIZE(wm8958_snd_controls)); snd_soc_dapm_new_controls(dapm, wm8958_dapm_widgets, ARRAY_SIZE(wm8958_dapm_widgets)); if (control->revision < 1) { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets, ARRAY_SIZE(wm8994_lateclk_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets, ARRAY_SIZE(wm8994_adc_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets, ARRAY_SIZE(wm8994_dac_revd_widgets)); } else { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets, ARRAY_SIZE(wm8994_lateclk_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets, ARRAY_SIZE(wm8994_adc_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets, ARRAY_SIZE(wm8994_dac_widgets)); } break; case WM1811: snd_soc_add_component_controls(component, wm8958_snd_controls, ARRAY_SIZE(wm8958_snd_controls)); snd_soc_dapm_new_controls(dapm, wm8958_dapm_widgets, ARRAY_SIZE(wm8958_dapm_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets, ARRAY_SIZE(wm8994_lateclk_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets, ARRAY_SIZE(wm8994_adc_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets, ARRAY_SIZE(wm8994_dac_widgets)); break; } wm_hubs_add_analogue_routes(component, 0, 0); ret = wm8994_request_irq(wm8994->wm8994, WM8994_IRQ_DCS_DONE, wm_hubs_dcs_done, "DC servo done", &wm8994->hubs); if (ret == 0) wm8994->hubs.dcs_done_irq = true; snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon)); switch (control->type) { case WM8994: snd_soc_dapm_add_routes(dapm, wm8994_intercon, ARRAY_SIZE(wm8994_intercon)); if (control->revision < 4) { snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon, ARRAY_SIZE(wm8994_revd_intercon)); snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon, ARRAY_SIZE(wm8994_lateclk_revd_intercon)); } else { snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon, ARRAY_SIZE(wm8994_lateclk_intercon)); } break; case WM8958: if (control->revision < 1) { snd_soc_dapm_add_routes(dapm, wm8994_intercon, ARRAY_SIZE(wm8994_intercon)); snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon, ARRAY_SIZE(wm8994_revd_intercon)); snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon, ARRAY_SIZE(wm8994_lateclk_revd_intercon)); } else { snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon, ARRAY_SIZE(wm8994_lateclk_intercon)); snd_soc_dapm_add_routes(dapm, wm8958_intercon, ARRAY_SIZE(wm8958_intercon)); } wm8958_dsp2_init(component); break; case WM1811: snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon, ARRAY_SIZE(wm8994_lateclk_intercon)); snd_soc_dapm_add_routes(dapm, wm8958_intercon, ARRAY_SIZE(wm8958_intercon)); break; } return 0; err_irq: if (wm8994->jackdet) wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_GPIO(6), wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC2_SHRT, wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC2_DET, wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC1_SHRT, wm8994); if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); for (i = 0; i < ARRAY_SIZE(wm8994->fll_locked); i++) wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_FLL1_LOCK + i, &wm8994->fll_locked[i]); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_DCS_DONE, &wm8994->hubs); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_FIFOS_ERR, component); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_TEMP_SHUT, component); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_TEMP_WARN, component); return ret; } static void wm8994_component_remove(struct snd_soc_component *component) { struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component); struct wm8994 *control = wm8994->wm8994; int i; for (i = 0; i < ARRAY_SIZE(wm8994->fll_locked); i++) wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_FLL1_LOCK + i, &wm8994->fll_locked[i]); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_DCS_DONE, &wm8994->hubs); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_FIFOS_ERR, component); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_TEMP_SHUT, component); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_TEMP_WARN, component); if (wm8994->jackdet) wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_GPIO(6), wm8994); switch (control->type) { case WM8994: if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC2_DET, wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC1_SHRT, wm8994); wm8994_free_irq(wm8994->wm8994, WM8994_IRQ_MIC1_DET, wm8994); break; case WM1811: case WM8958: if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); break; } release_firmware(wm8994->mbc); release_firmware(wm8994->mbc_vss); release_firmware(wm8994->enh_eq); kfree(wm8994->retune_mobile_texts); } static const struct snd_soc_component_driver soc_component_dev_wm8994 = { .probe = wm8994_component_probe, .remove = wm8994_component_remove, .suspend = wm8994_component_suspend, .resume = wm8994_component_resume, .set_bias_level = wm8994_set_bias_level, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static int wm8994_probe(struct platform_device *pdev) { struct wm8994_priv *wm8994; wm8994 = devm_kzalloc(&pdev->dev, sizeof(struct wm8994_priv), GFP_KERNEL); if (wm8994 == NULL) return -ENOMEM; platform_set_drvdata(pdev, wm8994); mutex_init(&wm8994->fw_lock); wm8994->wm8994 = dev_get_drvdata(pdev->dev.parent); pm_runtime_enable(&pdev->dev); pm_runtime_idle(&pdev->dev); return devm_snd_soc_register_component(&pdev->dev, &soc_component_dev_wm8994, wm8994_dai, ARRAY_SIZE(wm8994_dai)); } static int wm8994_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int wm8994_suspend(struct device *dev) { struct wm8994_priv *wm8994 = dev_get_drvdata(dev); /* Drop down to power saving mode when system is suspended */ if (wm8994->jackdet && !wm8994->active_refcount) regmap_update_bits(wm8994->wm8994->regmap, WM8994_ANTIPOP_2, WM1811_JACKDET_MODE_MASK, wm8994->jackdet_mode); return 0; } static int wm8994_resume(struct device *dev) { struct wm8994_priv *wm8994 = dev_get_drvdata(dev); if (wm8994->jackdet && wm8994->jackdet_mode) regmap_update_bits(wm8994->wm8994->regmap, WM8994_ANTIPOP_2, WM1811_JACKDET_MODE_MASK, WM1811_JACKDET_MODE_AUDIO); return 0; } #endif static const struct dev_pm_ops wm8994_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(wm8994_suspend, wm8994_resume) }; static struct platform_driver wm8994_codec_driver = { .driver = { .name = "wm8994-codec", .pm = &wm8994_pm_ops, }, .probe = wm8994_probe, .remove = wm8994_remove, }; module_platform_driver(wm8994_codec_driver); MODULE_DESCRIPTION("ASoC WM8994 driver"); MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:wm8994-codec");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1