Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liam Girdwood | 4201 | 70.63% | 3 | 15.79% |
Mark Brown | 1168 | 19.64% | 1 | 5.26% |
Takashi Iwai | 353 | 5.93% | 1 | 5.26% |
Jie Yang | 183 | 3.08% | 6 | 31.58% |
Pierre-Louis Bossart | 17 | 0.29% | 2 | 10.53% |
Sudip Mukherjee | 8 | 0.13% | 1 | 5.26% |
Vinod Koul | 7 | 0.12% | 1 | 5.26% |
Lu, Han | 6 | 0.10% | 1 | 5.26% |
Arnd Bergmann | 3 | 0.05% | 1 | 5.26% |
Julia Lawall | 1 | 0.02% | 1 | 5.26% |
Christian Engelmayer | 1 | 0.02% | 1 | 5.26% |
Total | 5948 | 19 |
/* * Intel SST Firmware Loader * * Copyright (C) 2013, Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/firmware.h> #include <linux/export.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/pci.h> #include <linux/acpi.h> /* supported DMA engine drivers */ #include <linux/dma/dw.h> #include <asm/page.h> #include <asm/pgtable.h> #include "sst-dsp.h" #include "sst-dsp-priv.h" #define SST_DMA_RESOURCES 2 #define SST_DSP_DMA_MAX_BURST 0x3 #define SST_HSW_BLOCK_ANY 0xffffffff #define SST_HSW_MASK_DMA_ADDR_DSP 0xfff00000 struct sst_dma { struct sst_dsp *sst; struct dw_dma_chip *chip; struct dma_async_tx_descriptor *desc; struct dma_chan *ch; }; static inline void sst_memcpy32(volatile void __iomem *dest, void *src, u32 bytes) { u32 tmp = 0; int i, m, n; const u8 *src_byte = src; m = bytes / 4; n = bytes % 4; /* __iowrite32_copy use 32bit size values so divide by 4 */ __iowrite32_copy((void *)dest, src, m); if (n) { for (i = 0; i < n; i++) tmp |= (u32)*(src_byte + m * 4 + i) << (i * 8); __iowrite32_copy((void *)(dest + m * 4), &tmp, 1); } } static void sst_dma_transfer_complete(void *arg) { struct sst_dsp *sst = (struct sst_dsp *)arg; dev_dbg(sst->dev, "DMA: callback\n"); } static int sst_dsp_dma_copy(struct sst_dsp *sst, dma_addr_t dest_addr, dma_addr_t src_addr, size_t size) { struct dma_async_tx_descriptor *desc; struct sst_dma *dma = sst->dma; if (dma->ch == NULL) { dev_err(sst->dev, "error: no DMA channel\n"); return -ENODEV; } dev_dbg(sst->dev, "DMA: src: 0x%lx dest 0x%lx size %zu\n", (unsigned long)src_addr, (unsigned long)dest_addr, size); desc = dma->ch->device->device_prep_dma_memcpy(dma->ch, dest_addr, src_addr, size, DMA_CTRL_ACK); if (!desc){ dev_err(sst->dev, "error: dma prep memcpy failed\n"); return -EINVAL; } desc->callback = sst_dma_transfer_complete; desc->callback_param = sst; desc->tx_submit(desc); dma_wait_for_async_tx(desc); return 0; } /* copy to DSP */ int sst_dsp_dma_copyto(struct sst_dsp *sst, dma_addr_t dest_addr, dma_addr_t src_addr, size_t size) { return sst_dsp_dma_copy(sst, dest_addr | SST_HSW_MASK_DMA_ADDR_DSP, src_addr, size); } EXPORT_SYMBOL_GPL(sst_dsp_dma_copyto); /* copy from DSP */ int sst_dsp_dma_copyfrom(struct sst_dsp *sst, dma_addr_t dest_addr, dma_addr_t src_addr, size_t size) { return sst_dsp_dma_copy(sst, dest_addr, src_addr | SST_HSW_MASK_DMA_ADDR_DSP, size); } EXPORT_SYMBOL_GPL(sst_dsp_dma_copyfrom); /* remove module from memory - callers hold locks */ static void block_list_remove(struct sst_dsp *dsp, struct list_head *block_list) { struct sst_mem_block *block, *tmp; int err; /* disable each block */ list_for_each_entry(block, block_list, module_list) { if (block->ops && block->ops->disable) { err = block->ops->disable(block); if (err < 0) dev_err(dsp->dev, "error: cant disable block %d:%d\n", block->type, block->index); } } /* mark each block as free */ list_for_each_entry_safe(block, tmp, block_list, module_list) { list_del(&block->module_list); list_move(&block->list, &dsp->free_block_list); dev_dbg(dsp->dev, "block freed %d:%d at offset 0x%x\n", block->type, block->index, block->offset); } } /* prepare the memory block to receive data from host - callers hold locks */ static int block_list_prepare(struct sst_dsp *dsp, struct list_head *block_list) { struct sst_mem_block *block; int ret = 0; /* enable each block so that's it'e ready for data */ list_for_each_entry(block, block_list, module_list) { if (block->ops && block->ops->enable && !block->users) { ret = block->ops->enable(block); if (ret < 0) { dev_err(dsp->dev, "error: cant disable block %d:%d\n", block->type, block->index); goto err; } } } return ret; err: list_for_each_entry(block, block_list, module_list) { if (block->ops && block->ops->disable) block->ops->disable(block); } return ret; } static struct dw_dma_chip *dw_probe(struct device *dev, struct resource *mem, int irq) { struct dw_dma_chip *chip; int err; chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return ERR_PTR(-ENOMEM); chip->irq = irq; chip->regs = devm_ioremap_resource(dev, mem); if (IS_ERR(chip->regs)) return ERR_CAST(chip->regs); err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(31)); if (err) return ERR_PTR(err); chip->dev = dev; err = dw_dma_probe(chip); if (err) return ERR_PTR(err); return chip; } static void dw_remove(struct dw_dma_chip *chip) { dw_dma_remove(chip); } static bool dma_chan_filter(struct dma_chan *chan, void *param) { struct sst_dsp *dsp = (struct sst_dsp *)param; return chan->device->dev == dsp->dma_dev; } int sst_dsp_dma_get_channel(struct sst_dsp *dsp, int chan_id) { struct sst_dma *dma = dsp->dma; struct dma_slave_config slave; dma_cap_mask_t mask; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); dma_cap_set(DMA_MEMCPY, mask); dma->ch = dma_request_channel(mask, dma_chan_filter, dsp); if (dma->ch == NULL) { dev_err(dsp->dev, "error: DMA request channel failed\n"); return -EIO; } memset(&slave, 0, sizeof(slave)); slave.direction = DMA_MEM_TO_DEV; slave.src_addr_width = slave.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; slave.src_maxburst = slave.dst_maxburst = SST_DSP_DMA_MAX_BURST; ret = dmaengine_slave_config(dma->ch, &slave); if (ret) { dev_err(dsp->dev, "error: unable to set DMA slave config %d\n", ret); dma_release_channel(dma->ch); dma->ch = NULL; } return ret; } EXPORT_SYMBOL_GPL(sst_dsp_dma_get_channel); void sst_dsp_dma_put_channel(struct sst_dsp *dsp) { struct sst_dma *dma = dsp->dma; if (!dma->ch) return; dma_release_channel(dma->ch); dma->ch = NULL; } EXPORT_SYMBOL_GPL(sst_dsp_dma_put_channel); static int sst_dma_new(struct sst_dsp *sst) { struct sst_pdata *sst_pdata = sst->pdata; struct sst_dma *dma; struct resource mem; int ret = 0; if (sst->pdata->resindex_dma_base == -1) /* DMA is not used, return and squelsh error messages */ return 0; /* configure the correct platform data for whatever DMA engine * is attached to the ADSP IP. */ switch (sst->pdata->dma_engine) { case SST_DMA_TYPE_DW: break; default: dev_err(sst->dev, "error: invalid DMA engine %d\n", sst->pdata->dma_engine); return -EINVAL; } dma = devm_kzalloc(sst->dev, sizeof(struct sst_dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->sst = sst; memset(&mem, 0, sizeof(mem)); mem.start = sst->addr.lpe_base + sst_pdata->dma_base; mem.end = sst->addr.lpe_base + sst_pdata->dma_base + sst_pdata->dma_size - 1; mem.flags = IORESOURCE_MEM; /* now register DMA engine device */ dma->chip = dw_probe(sst->dma_dev, &mem, sst_pdata->irq); if (IS_ERR(dma->chip)) { dev_err(sst->dev, "error: DMA device register failed\n"); ret = PTR_ERR(dma->chip); goto err_dma_dev; } sst->dma = dma; sst->fw_use_dma = true; return 0; err_dma_dev: devm_kfree(sst->dev, dma); return ret; } static void sst_dma_free(struct sst_dma *dma) { if (dma == NULL) return; if (dma->ch) dma_release_channel(dma->ch); if (dma->chip) dw_remove(dma->chip); } /* create new generic firmware object */ struct sst_fw *sst_fw_new(struct sst_dsp *dsp, const struct firmware *fw, void *private) { struct sst_fw *sst_fw; int err; if (!dsp->ops->parse_fw) return NULL; sst_fw = kzalloc(sizeof(*sst_fw), GFP_KERNEL); if (sst_fw == NULL) return NULL; sst_fw->dsp = dsp; sst_fw->private = private; sst_fw->size = fw->size; /* allocate DMA buffer to store FW data */ sst_fw->dma_buf = dma_alloc_coherent(dsp->dma_dev, sst_fw->size, &sst_fw->dmable_fw_paddr, GFP_KERNEL); if (!sst_fw->dma_buf) { dev_err(dsp->dev, "error: DMA alloc failed\n"); kfree(sst_fw); return NULL; } /* copy FW data to DMA-able memory */ memcpy((void *)sst_fw->dma_buf, (void *)fw->data, fw->size); if (dsp->fw_use_dma) { err = sst_dsp_dma_get_channel(dsp, 0); if (err < 0) goto chan_err; } /* call core specific FW paser to load FW data into DSP */ err = dsp->ops->parse_fw(sst_fw); if (err < 0) { dev_err(dsp->dev, "error: parse fw failed %d\n", err); goto parse_err; } if (dsp->fw_use_dma) sst_dsp_dma_put_channel(dsp); mutex_lock(&dsp->mutex); list_add(&sst_fw->list, &dsp->fw_list); mutex_unlock(&dsp->mutex); return sst_fw; parse_err: if (dsp->fw_use_dma) sst_dsp_dma_put_channel(dsp); chan_err: dma_free_coherent(dsp->dma_dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); sst_fw->dma_buf = NULL; kfree(sst_fw); return NULL; } EXPORT_SYMBOL_GPL(sst_fw_new); int sst_fw_reload(struct sst_fw *sst_fw) { struct sst_dsp *dsp = sst_fw->dsp; int ret; dev_dbg(dsp->dev, "reloading firmware\n"); /* call core specific FW paser to load FW data into DSP */ ret = dsp->ops->parse_fw(sst_fw); if (ret < 0) dev_err(dsp->dev, "error: parse fw failed %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(sst_fw_reload); void sst_fw_unload(struct sst_fw *sst_fw) { struct sst_dsp *dsp = sst_fw->dsp; struct sst_module *module, *mtmp; struct sst_module_runtime *runtime, *rtmp; dev_dbg(dsp->dev, "unloading firmware\n"); mutex_lock(&dsp->mutex); /* check module by module */ list_for_each_entry_safe(module, mtmp, &dsp->module_list, list) { if (module->sst_fw == sst_fw) { /* remove runtime modules */ list_for_each_entry_safe(runtime, rtmp, &module->runtime_list, list) { block_list_remove(dsp, &runtime->block_list); list_del(&runtime->list); kfree(runtime); } /* now remove the module */ block_list_remove(dsp, &module->block_list); list_del(&module->list); kfree(module); } } /* remove all scratch blocks */ block_list_remove(dsp, &dsp->scratch_block_list); mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_fw_unload); /* free single firmware object */ void sst_fw_free(struct sst_fw *sst_fw) { struct sst_dsp *dsp = sst_fw->dsp; mutex_lock(&dsp->mutex); list_del(&sst_fw->list); mutex_unlock(&dsp->mutex); if (sst_fw->dma_buf) dma_free_coherent(dsp->dma_dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); kfree(sst_fw); } EXPORT_SYMBOL_GPL(sst_fw_free); /* free all firmware objects */ void sst_fw_free_all(struct sst_dsp *dsp) { struct sst_fw *sst_fw, *t; mutex_lock(&dsp->mutex); list_for_each_entry_safe(sst_fw, t, &dsp->fw_list, list) { list_del(&sst_fw->list); dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); kfree(sst_fw); } mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_fw_free_all); /* create a new SST generic module from FW template */ struct sst_module *sst_module_new(struct sst_fw *sst_fw, struct sst_module_template *template, void *private) { struct sst_dsp *dsp = sst_fw->dsp; struct sst_module *sst_module; sst_module = kzalloc(sizeof(*sst_module), GFP_KERNEL); if (sst_module == NULL) return NULL; sst_module->id = template->id; sst_module->dsp = dsp; sst_module->sst_fw = sst_fw; sst_module->scratch_size = template->scratch_size; sst_module->persistent_size = template->persistent_size; sst_module->entry = template->entry; sst_module->state = SST_MODULE_STATE_UNLOADED; INIT_LIST_HEAD(&sst_module->block_list); INIT_LIST_HEAD(&sst_module->runtime_list); mutex_lock(&dsp->mutex); list_add(&sst_module->list, &dsp->module_list); mutex_unlock(&dsp->mutex); return sst_module; } EXPORT_SYMBOL_GPL(sst_module_new); /* free firmware module and remove from available list */ void sst_module_free(struct sst_module *sst_module) { struct sst_dsp *dsp = sst_module->dsp; mutex_lock(&dsp->mutex); list_del(&sst_module->list); mutex_unlock(&dsp->mutex); kfree(sst_module); } EXPORT_SYMBOL_GPL(sst_module_free); struct sst_module_runtime *sst_module_runtime_new(struct sst_module *module, int id, void *private) { struct sst_dsp *dsp = module->dsp; struct sst_module_runtime *runtime; runtime = kzalloc(sizeof(*runtime), GFP_KERNEL); if (runtime == NULL) return NULL; runtime->id = id; runtime->dsp = dsp; runtime->module = module; INIT_LIST_HEAD(&runtime->block_list); mutex_lock(&dsp->mutex); list_add(&runtime->list, &module->runtime_list); mutex_unlock(&dsp->mutex); return runtime; } EXPORT_SYMBOL_GPL(sst_module_runtime_new); void sst_module_runtime_free(struct sst_module_runtime *runtime) { struct sst_dsp *dsp = runtime->dsp; mutex_lock(&dsp->mutex); list_del(&runtime->list); mutex_unlock(&dsp->mutex); kfree(runtime); } EXPORT_SYMBOL_GPL(sst_module_runtime_free); static struct sst_mem_block *find_block(struct sst_dsp *dsp, struct sst_block_allocator *ba) { struct sst_mem_block *block; list_for_each_entry(block, &dsp->free_block_list, list) { if (block->type == ba->type && block->offset == ba->offset) return block; } return NULL; } /* Block allocator must be on block boundary */ static int block_alloc_contiguous(struct sst_dsp *dsp, struct sst_block_allocator *ba, struct list_head *block_list) { struct list_head tmp = LIST_HEAD_INIT(tmp); struct sst_mem_block *block; u32 block_start = SST_HSW_BLOCK_ANY; int size = ba->size, offset = ba->offset; while (ba->size > 0) { block = find_block(dsp, ba); if (!block) { list_splice(&tmp, &dsp->free_block_list); ba->size = size; ba->offset = offset; return -ENOMEM; } list_move_tail(&block->list, &tmp); ba->offset += block->size; ba->size -= block->size; } ba->size = size; ba->offset = offset; list_for_each_entry(block, &tmp, list) { if (block->offset < block_start) block_start = block->offset; list_add(&block->module_list, block_list); dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n", block->type, block->index, block->offset); } list_splice(&tmp, &dsp->used_block_list); return 0; } /* allocate first free DSP blocks for data - callers hold locks */ static int block_alloc(struct sst_dsp *dsp, struct sst_block_allocator *ba, struct list_head *block_list) { struct sst_mem_block *block, *tmp; int ret = 0; if (ba->size == 0) return 0; /* find first free whole blocks that can hold module */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { /* ignore blocks with wrong type */ if (block->type != ba->type) continue; if (ba->size > block->size) continue; ba->offset = block->offset; block->bytes_used = ba->size % block->size; list_add(&block->module_list, block_list); list_move(&block->list, &dsp->used_block_list); dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n", block->type, block->index, block->offset); return 0; } /* then find free multiple blocks that can hold module */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { /* ignore blocks with wrong type */ if (block->type != ba->type) continue; /* do we span > 1 blocks */ if (ba->size > block->size) { /* align ba to block boundary */ ba->offset = block->offset; ret = block_alloc_contiguous(dsp, ba, block_list); if (ret == 0) return ret; } } /* not enough free block space */ return -ENOMEM; } int sst_alloc_blocks(struct sst_dsp *dsp, struct sst_block_allocator *ba, struct list_head *block_list) { int ret; dev_dbg(dsp->dev, "block request 0x%x bytes at offset 0x%x type %d\n", ba->size, ba->offset, ba->type); mutex_lock(&dsp->mutex); ret = block_alloc(dsp, ba, block_list); if (ret < 0) { dev_err(dsp->dev, "error: can't alloc blocks %d\n", ret); goto out; } /* prepare DSP blocks for module usage */ ret = block_list_prepare(dsp, block_list); if (ret < 0) dev_err(dsp->dev, "error: prepare failed\n"); out: mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_alloc_blocks); int sst_free_blocks(struct sst_dsp *dsp, struct list_head *block_list) { mutex_lock(&dsp->mutex); block_list_remove(dsp, block_list); mutex_unlock(&dsp->mutex); return 0; } EXPORT_SYMBOL_GPL(sst_free_blocks); /* allocate memory blocks for static module addresses - callers hold locks */ static int block_alloc_fixed(struct sst_dsp *dsp, struct sst_block_allocator *ba, struct list_head *block_list) { struct sst_mem_block *block, *tmp; struct sst_block_allocator ba_tmp = *ba; u32 end = ba->offset + ba->size, block_end; int err; /* only IRAM/DRAM blocks are managed */ if (ba->type != SST_MEM_IRAM && ba->type != SST_MEM_DRAM) return 0; /* are blocks already attached to this module */ list_for_each_entry_safe(block, tmp, block_list, module_list) { /* ignore blocks with wrong type */ if (block->type != ba->type) continue; block_end = block->offset + block->size; /* find block that holds section */ if (ba->offset >= block->offset && end <= block_end) return 0; /* does block span more than 1 section */ if (ba->offset >= block->offset && ba->offset < block_end) { /* align ba to block boundary */ ba_tmp.size -= block_end - ba->offset; ba_tmp.offset = block_end; err = block_alloc_contiguous(dsp, &ba_tmp, block_list); if (err < 0) return -ENOMEM; /* module already owns blocks */ return 0; } } /* find first free blocks that can hold section in free list */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { block_end = block->offset + block->size; /* ignore blocks with wrong type */ if (block->type != ba->type) continue; /* find block that holds section */ if (ba->offset >= block->offset && end <= block_end) { /* add block */ list_move(&block->list, &dsp->used_block_list); list_add(&block->module_list, block_list); dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n", block->type, block->index, block->offset); return 0; } /* does block span more than 1 section */ if (ba->offset >= block->offset && ba->offset < block_end) { /* add block */ list_move(&block->list, &dsp->used_block_list); list_add(&block->module_list, block_list); /* align ba to block boundary */ ba_tmp.size -= block_end - ba->offset; ba_tmp.offset = block_end; err = block_alloc_contiguous(dsp, &ba_tmp, block_list); if (err < 0) return -ENOMEM; return 0; } } return -ENOMEM; } /* Load fixed module data into DSP memory blocks */ int sst_module_alloc_blocks(struct sst_module *module) { struct sst_dsp *dsp = module->dsp; struct sst_fw *sst_fw = module->sst_fw; struct sst_block_allocator ba; int ret; memset(&ba, 0, sizeof(ba)); ba.size = module->size; ba.type = module->type; ba.offset = module->offset; dev_dbg(dsp->dev, "block request 0x%x bytes at offset 0x%x type %d\n", ba.size, ba.offset, ba.type); mutex_lock(&dsp->mutex); /* alloc blocks that includes this section */ ret = block_alloc_fixed(dsp, &ba, &module->block_list); if (ret < 0) { dev_err(dsp->dev, "error: no free blocks for section at offset 0x%x size 0x%x\n", module->offset, module->size); mutex_unlock(&dsp->mutex); return -ENOMEM; } /* prepare DSP blocks for module copy */ ret = block_list_prepare(dsp, &module->block_list); if (ret < 0) { dev_err(dsp->dev, "error: fw module prepare failed\n"); goto err; } /* copy partial module data to blocks */ if (dsp->fw_use_dma) { ret = sst_dsp_dma_copyto(dsp, dsp->addr.lpe_base + module->offset, sst_fw->dmable_fw_paddr + module->data_offset, module->size); if (ret < 0) { dev_err(dsp->dev, "error: module copy failed\n"); goto err; } } else sst_memcpy32(dsp->addr.lpe + module->offset, module->data, module->size); mutex_unlock(&dsp->mutex); return ret; err: block_list_remove(dsp, &module->block_list); mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_module_alloc_blocks); /* Unload entire module from DSP memory */ int sst_module_free_blocks(struct sst_module *module) { struct sst_dsp *dsp = module->dsp; mutex_lock(&dsp->mutex); block_list_remove(dsp, &module->block_list); mutex_unlock(&dsp->mutex); return 0; } EXPORT_SYMBOL_GPL(sst_module_free_blocks); int sst_module_runtime_alloc_blocks(struct sst_module_runtime *runtime, int offset) { struct sst_dsp *dsp = runtime->dsp; struct sst_module *module = runtime->module; struct sst_block_allocator ba; int ret; if (module->persistent_size == 0) return 0; memset(&ba, 0, sizeof(ba)); ba.size = module->persistent_size; ba.type = SST_MEM_DRAM; mutex_lock(&dsp->mutex); /* do we need to allocate at a fixed address ? */ if (offset != 0) { ba.offset = offset; dev_dbg(dsp->dev, "persistent fixed block request 0x%x bytes type %d offset 0x%x\n", ba.size, ba.type, ba.offset); /* alloc blocks that includes this section */ ret = block_alloc_fixed(dsp, &ba, &runtime->block_list); } else { dev_dbg(dsp->dev, "persistent block request 0x%x bytes type %d\n", ba.size, ba.type); /* alloc blocks that includes this section */ ret = block_alloc(dsp, &ba, &runtime->block_list); } if (ret < 0) { dev_err(dsp->dev, "error: no free blocks for runtime module size 0x%x\n", module->persistent_size); mutex_unlock(&dsp->mutex); return -ENOMEM; } runtime->persistent_offset = ba.offset; /* prepare DSP blocks for module copy */ ret = block_list_prepare(dsp, &runtime->block_list); if (ret < 0) { dev_err(dsp->dev, "error: runtime block prepare failed\n"); goto err; } mutex_unlock(&dsp->mutex); return ret; err: block_list_remove(dsp, &module->block_list); mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_module_runtime_alloc_blocks); int sst_module_runtime_free_blocks(struct sst_module_runtime *runtime) { struct sst_dsp *dsp = runtime->dsp; mutex_lock(&dsp->mutex); block_list_remove(dsp, &runtime->block_list); mutex_unlock(&dsp->mutex); return 0; } EXPORT_SYMBOL_GPL(sst_module_runtime_free_blocks); int sst_module_runtime_save(struct sst_module_runtime *runtime, struct sst_module_runtime_context *context) { struct sst_dsp *dsp = runtime->dsp; struct sst_module *module = runtime->module; int ret = 0; dev_dbg(dsp->dev, "saving runtime %d memory at 0x%x size 0x%x\n", runtime->id, runtime->persistent_offset, module->persistent_size); context->buffer = dma_alloc_coherent(dsp->dma_dev, module->persistent_size, &context->dma_buffer, GFP_DMA | GFP_KERNEL); if (!context->buffer) { dev_err(dsp->dev, "error: DMA context alloc failed\n"); return -ENOMEM; } mutex_lock(&dsp->mutex); if (dsp->fw_use_dma) { ret = sst_dsp_dma_get_channel(dsp, 0); if (ret < 0) goto err; ret = sst_dsp_dma_copyfrom(dsp, context->dma_buffer, dsp->addr.lpe_base + runtime->persistent_offset, module->persistent_size); sst_dsp_dma_put_channel(dsp); if (ret < 0) { dev_err(dsp->dev, "error: context copy failed\n"); goto err; } } else sst_memcpy32(context->buffer, dsp->addr.lpe + runtime->persistent_offset, module->persistent_size); err: mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_module_runtime_save); int sst_module_runtime_restore(struct sst_module_runtime *runtime, struct sst_module_runtime_context *context) { struct sst_dsp *dsp = runtime->dsp; struct sst_module *module = runtime->module; int ret = 0; dev_dbg(dsp->dev, "restoring runtime %d memory at 0x%x size 0x%x\n", runtime->id, runtime->persistent_offset, module->persistent_size); mutex_lock(&dsp->mutex); if (!context->buffer) { dev_info(dsp->dev, "no context buffer need to restore!\n"); goto err; } if (dsp->fw_use_dma) { ret = sst_dsp_dma_get_channel(dsp, 0); if (ret < 0) goto err; ret = sst_dsp_dma_copyto(dsp, dsp->addr.lpe_base + runtime->persistent_offset, context->dma_buffer, module->persistent_size); sst_dsp_dma_put_channel(dsp); if (ret < 0) { dev_err(dsp->dev, "error: module copy failed\n"); goto err; } } else sst_memcpy32(dsp->addr.lpe + runtime->persistent_offset, context->buffer, module->persistent_size); dma_free_coherent(dsp->dma_dev, module->persistent_size, context->buffer, context->dma_buffer); context->buffer = NULL; err: mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_module_runtime_restore); /* register a DSP memory block for use with FW based modules */ struct sst_mem_block *sst_mem_block_register(struct sst_dsp *dsp, u32 offset, u32 size, enum sst_mem_type type, const struct sst_block_ops *ops, u32 index, void *private) { struct sst_mem_block *block; block = kzalloc(sizeof(*block), GFP_KERNEL); if (block == NULL) return NULL; block->offset = offset; block->size = size; block->index = index; block->type = type; block->dsp = dsp; block->private = private; block->ops = ops; mutex_lock(&dsp->mutex); list_add(&block->list, &dsp->free_block_list); mutex_unlock(&dsp->mutex); return block; } EXPORT_SYMBOL_GPL(sst_mem_block_register); /* unregister all DSP memory blocks */ void sst_mem_block_unregister_all(struct sst_dsp *dsp) { struct sst_mem_block *block, *tmp; mutex_lock(&dsp->mutex); /* unregister used blocks */ list_for_each_entry_safe(block, tmp, &dsp->used_block_list, list) { list_del(&block->list); kfree(block); } /* unregister free blocks */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { list_del(&block->list); kfree(block); } mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_mem_block_unregister_all); /* allocate scratch buffer blocks */ int sst_block_alloc_scratch(struct sst_dsp *dsp) { struct sst_module *module; struct sst_block_allocator ba; int ret; mutex_lock(&dsp->mutex); /* calculate required scratch size */ dsp->scratch_size = 0; list_for_each_entry(module, &dsp->module_list, list) { dev_dbg(dsp->dev, "module %d scratch req 0x%x bytes\n", module->id, module->scratch_size); if (dsp->scratch_size < module->scratch_size) dsp->scratch_size = module->scratch_size; } dev_dbg(dsp->dev, "scratch buffer required is 0x%x bytes\n", dsp->scratch_size); if (dsp->scratch_size == 0) { dev_info(dsp->dev, "no modules need scratch buffer\n"); mutex_unlock(&dsp->mutex); return 0; } /* allocate blocks for module scratch buffers */ dev_dbg(dsp->dev, "allocating scratch blocks\n"); ba.size = dsp->scratch_size; ba.type = SST_MEM_DRAM; /* do we need to allocate at fixed offset */ if (dsp->scratch_offset != 0) { dev_dbg(dsp->dev, "block request 0x%x bytes type %d at 0x%x\n", ba.size, ba.type, ba.offset); ba.offset = dsp->scratch_offset; /* alloc blocks that includes this section */ ret = block_alloc_fixed(dsp, &ba, &dsp->scratch_block_list); } else { dev_dbg(dsp->dev, "block request 0x%x bytes type %d\n", ba.size, ba.type); ba.offset = 0; ret = block_alloc(dsp, &ba, &dsp->scratch_block_list); } if (ret < 0) { dev_err(dsp->dev, "error: can't alloc scratch blocks\n"); mutex_unlock(&dsp->mutex); return ret; } ret = block_list_prepare(dsp, &dsp->scratch_block_list); if (ret < 0) { dev_err(dsp->dev, "error: scratch block prepare failed\n"); mutex_unlock(&dsp->mutex); return ret; } /* assign the same offset of scratch to each module */ dsp->scratch_offset = ba.offset; mutex_unlock(&dsp->mutex); return dsp->scratch_size; } EXPORT_SYMBOL_GPL(sst_block_alloc_scratch); /* free all scratch blocks */ void sst_block_free_scratch(struct sst_dsp *dsp) { mutex_lock(&dsp->mutex); block_list_remove(dsp, &dsp->scratch_block_list); mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_block_free_scratch); /* get a module from it's unique ID */ struct sst_module *sst_module_get_from_id(struct sst_dsp *dsp, u32 id) { struct sst_module *module; mutex_lock(&dsp->mutex); list_for_each_entry(module, &dsp->module_list, list) { if (module->id == id) { mutex_unlock(&dsp->mutex); return module; } } mutex_unlock(&dsp->mutex); return NULL; } EXPORT_SYMBOL_GPL(sst_module_get_from_id); struct sst_module_runtime *sst_module_runtime_get_from_id( struct sst_module *module, u32 id) { struct sst_module_runtime *runtime; struct sst_dsp *dsp = module->dsp; mutex_lock(&dsp->mutex); list_for_each_entry(runtime, &module->runtime_list, list) { if (runtime->id == id) { mutex_unlock(&dsp->mutex); return runtime; } } mutex_unlock(&dsp->mutex); return NULL; } EXPORT_SYMBOL_GPL(sst_module_runtime_get_from_id); /* returns block address in DSP address space */ u32 sst_dsp_get_offset(struct sst_dsp *dsp, u32 offset, enum sst_mem_type type) { switch (type) { case SST_MEM_IRAM: return offset - dsp->addr.iram_offset + dsp->addr.dsp_iram_offset; case SST_MEM_DRAM: return offset - dsp->addr.dram_offset + dsp->addr.dsp_dram_offset; default: return 0; } } EXPORT_SYMBOL_GPL(sst_dsp_get_offset); struct sst_dsp *sst_dsp_new(struct device *dev, struct sst_dsp_device *sst_dev, struct sst_pdata *pdata) { struct sst_dsp *sst; int err; dev_dbg(dev, "initialising audio DSP id 0x%x\n", pdata->id); sst = devm_kzalloc(dev, sizeof(*sst), GFP_KERNEL); if (sst == NULL) return NULL; spin_lock_init(&sst->spinlock); mutex_init(&sst->mutex); sst->dev = dev; sst->dma_dev = pdata->dma_dev; sst->thread_context = sst_dev->thread_context; sst->sst_dev = sst_dev; sst->id = pdata->id; sst->irq = pdata->irq; sst->ops = sst_dev->ops; sst->pdata = pdata; INIT_LIST_HEAD(&sst->used_block_list); INIT_LIST_HEAD(&sst->free_block_list); INIT_LIST_HEAD(&sst->module_list); INIT_LIST_HEAD(&sst->fw_list); INIT_LIST_HEAD(&sst->scratch_block_list); /* Initialise SST Audio DSP */ if (sst->ops->init) { err = sst->ops->init(sst, pdata); if (err < 0) return NULL; } /* Register the ISR */ err = request_threaded_irq(sst->irq, sst->ops->irq_handler, sst_dev->thread, IRQF_SHARED, "AudioDSP", sst); if (err) goto irq_err; err = sst_dma_new(sst); if (err) dev_warn(dev, "sst_dma_new failed %d\n", err); return sst; irq_err: if (sst->ops->free) sst->ops->free(sst); return NULL; } EXPORT_SYMBOL_GPL(sst_dsp_new); void sst_dsp_free(struct sst_dsp *sst) { free_irq(sst->irq, sst); if (sst->ops->free) sst->ops->free(sst); sst_dma_free(sst->dma); } EXPORT_SYMBOL_GPL(sst_dsp_free); MODULE_DESCRIPTION("Intel SST Firmware Loader"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1