Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Brown | 1589 | 42.78% | 4 | 7.27% |
Daniel Mack | 1261 | 33.95% | 17 | 30.91% |
Eric Miao | 347 | 9.34% | 4 | 7.27% |
Haojian Zhuang | 101 | 2.72% | 2 | 3.64% |
Daniel Ribeiro | 100 | 2.69% | 3 | 5.45% |
Philipp Zabel | 97 | 2.61% | 3 | 5.45% |
Liam Girdwood | 80 | 2.15% | 1 | 1.82% |
Qiao Zhou | 36 | 0.97% | 2 | 3.64% |
guoyh | 27 | 0.73% | 1 | 1.82% |
Kuninori Morimoto | 18 | 0.48% | 1 | 1.82% |
Dmitry Eremin-Solenikov | 8 | 0.22% | 1 | 1.82% |
Luis de Bethencourt | 7 | 0.19% | 1 | 1.82% |
Axel Lin | 7 | 0.19% | 3 | 5.45% |
Russell King | 6 | 0.16% | 1 | 1.82% |
Dan Carpenter | 6 | 0.16% | 1 | 1.82% |
Andrea Adami | 5 | 0.13% | 1 | 1.82% |
Stephen Boyd | 3 | 0.08% | 1 | 1.82% |
Tejun Heo | 3 | 0.08% | 1 | 1.82% |
Robert Jarzmik | 3 | 0.08% | 1 | 1.82% |
Sebastian Andrzej Siewior | 3 | 0.08% | 1 | 1.82% |
Roel Kluin | 2 | 0.05% | 1 | 1.82% |
Graeme Gregory | 2 | 0.05% | 1 | 1.82% |
Codrut Grosu | 1 | 0.03% | 1 | 1.82% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 1.82% |
Lars-Peter Clausen | 1 | 0.03% | 1 | 1.82% |
Total | 3714 | 55 |
/* * pxa-ssp.c -- ALSA Soc Audio Layer * * Copyright 2005,2008 Wolfson Microelectronics PLC. * Author: Liam Girdwood * Mark Brown <broonie@opensource.wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * TODO: * o Test network mode for > 16bit sample size */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/pxa2xx_ssp.h> #include <linux/of.h> #include <linux/dmaengine.h> #include <asm/irq.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/initval.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/pxa2xx-lib.h> #include <sound/dmaengine_pcm.h> #include "pxa-ssp.h" /* * SSP audio private data */ struct ssp_priv { struct ssp_device *ssp; struct clk *extclk; unsigned long ssp_clk; unsigned int sysclk; unsigned int dai_fmt; unsigned int configured_dai_fmt; #ifdef CONFIG_PM uint32_t cr0; uint32_t cr1; uint32_t to; uint32_t psp; #endif }; static void dump_registers(struct ssp_device *ssp) { dev_dbg(&ssp->pdev->dev, "SSCR0 0x%08x SSCR1 0x%08x SSTO 0x%08x\n", pxa_ssp_read_reg(ssp, SSCR0), pxa_ssp_read_reg(ssp, SSCR1), pxa_ssp_read_reg(ssp, SSTO)); dev_dbg(&ssp->pdev->dev, "SSPSP 0x%08x SSSR 0x%08x SSACD 0x%08x\n", pxa_ssp_read_reg(ssp, SSPSP), pxa_ssp_read_reg(ssp, SSSR), pxa_ssp_read_reg(ssp, SSACD)); } static void pxa_ssp_enable(struct ssp_device *ssp) { uint32_t sscr0; sscr0 = __raw_readl(ssp->mmio_base + SSCR0) | SSCR0_SSE; __raw_writel(sscr0, ssp->mmio_base + SSCR0); } static void pxa_ssp_disable(struct ssp_device *ssp) { uint32_t sscr0; sscr0 = __raw_readl(ssp->mmio_base + SSCR0) & ~SSCR0_SSE; __raw_writel(sscr0, ssp->mmio_base + SSCR0); } static void pxa_ssp_set_dma_params(struct ssp_device *ssp, int width4, int out, struct snd_dmaengine_dai_dma_data *dma) { dma->addr_width = width4 ? DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_2_BYTES; dma->maxburst = 16; dma->addr = ssp->phys_base + SSDR; } static int pxa_ssp_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; struct snd_dmaengine_dai_dma_data *dma; int ret = 0; if (!cpu_dai->active) { clk_prepare_enable(ssp->clk); pxa_ssp_disable(ssp); } if (priv->extclk) clk_prepare_enable(priv->extclk); dma = kzalloc(sizeof(struct snd_dmaengine_dai_dma_data), GFP_KERNEL); if (!dma) return -ENOMEM; dma->chan_name = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? "tx" : "rx"; snd_soc_dai_set_dma_data(cpu_dai, substream, dma); return ret; } static void pxa_ssp_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; if (!cpu_dai->active) { pxa_ssp_disable(ssp); clk_disable_unprepare(ssp->clk); } if (priv->extclk) clk_disable_unprepare(priv->extclk); kfree(snd_soc_dai_get_dma_data(cpu_dai, substream)); snd_soc_dai_set_dma_data(cpu_dai, substream, NULL); } #ifdef CONFIG_PM static int pxa_ssp_suspend(struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; if (!cpu_dai->active) clk_prepare_enable(ssp->clk); priv->cr0 = __raw_readl(ssp->mmio_base + SSCR0); priv->cr1 = __raw_readl(ssp->mmio_base + SSCR1); priv->to = __raw_readl(ssp->mmio_base + SSTO); priv->psp = __raw_readl(ssp->mmio_base + SSPSP); pxa_ssp_disable(ssp); clk_disable_unprepare(ssp->clk); return 0; } static int pxa_ssp_resume(struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; uint32_t sssr = SSSR_ROR | SSSR_TUR | SSSR_BCE; clk_prepare_enable(ssp->clk); __raw_writel(sssr, ssp->mmio_base + SSSR); __raw_writel(priv->cr0 & ~SSCR0_SSE, ssp->mmio_base + SSCR0); __raw_writel(priv->cr1, ssp->mmio_base + SSCR1); __raw_writel(priv->to, ssp->mmio_base + SSTO); __raw_writel(priv->psp, ssp->mmio_base + SSPSP); if (cpu_dai->active) pxa_ssp_enable(ssp); else clk_disable_unprepare(ssp->clk); return 0; } #else #define pxa_ssp_suspend NULL #define pxa_ssp_resume NULL #endif /** * ssp_set_clkdiv - set SSP clock divider * @div: serial clock rate divider */ static void pxa_ssp_set_scr(struct ssp_device *ssp, u32 div) { u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0); if (ssp->type == PXA25x_SSP) { sscr0 &= ~0x0000ff00; sscr0 |= ((div - 2)/2) << 8; /* 2..512 */ } else { sscr0 &= ~0x000fff00; sscr0 |= (div - 1) << 8; /* 1..4096 */ } pxa_ssp_write_reg(ssp, SSCR0, sscr0); } /* * Set the SSP ports SYSCLK. */ static int pxa_ssp_set_dai_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0) & ~(SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS); if (priv->extclk) { int ret; /* * For DT based boards, if an extclk is given, use it * here and configure PXA_SSP_CLK_EXT. */ ret = clk_set_rate(priv->extclk, freq); if (ret < 0) return ret; clk_id = PXA_SSP_CLK_EXT; } dev_dbg(&ssp->pdev->dev, "pxa_ssp_set_dai_sysclk id: %d, clk_id %d, freq %u\n", cpu_dai->id, clk_id, freq); switch (clk_id) { case PXA_SSP_CLK_NET_PLL: sscr0 |= SSCR0_MOD; break; case PXA_SSP_CLK_PLL: /* Internal PLL is fixed */ if (ssp->type == PXA25x_SSP) priv->sysclk = 1843200; else priv->sysclk = 13000000; break; case PXA_SSP_CLK_EXT: priv->sysclk = freq; sscr0 |= SSCR0_ECS; break; case PXA_SSP_CLK_NET: priv->sysclk = freq; sscr0 |= SSCR0_NCS | SSCR0_MOD; break; case PXA_SSP_CLK_AUDIO: priv->sysclk = 0; pxa_ssp_set_scr(ssp, 1); sscr0 |= SSCR0_ACS; break; default: return -ENODEV; } /* The SSP clock must be disabled when changing SSP clock mode * on PXA2xx. On PXA3xx it must be enabled when doing so. */ if (ssp->type != PXA3xx_SSP) clk_disable_unprepare(ssp->clk); pxa_ssp_write_reg(ssp, SSCR0, sscr0); if (ssp->type != PXA3xx_SSP) clk_prepare_enable(ssp->clk); return 0; } /* * Configure the PLL frequency pxa27x and (afaik - pxa320 only) */ static int pxa_ssp_set_pll(struct ssp_priv *priv, unsigned int freq) { struct ssp_device *ssp = priv->ssp; u32 ssacd = pxa_ssp_read_reg(ssp, SSACD) & ~0x70; if (ssp->type == PXA3xx_SSP) pxa_ssp_write_reg(ssp, SSACDD, 0); switch (freq) { case 5622000: break; case 11345000: ssacd |= (0x1 << 4); break; case 12235000: ssacd |= (0x2 << 4); break; case 14857000: ssacd |= (0x3 << 4); break; case 32842000: ssacd |= (0x4 << 4); break; case 48000000: ssacd |= (0x5 << 4); break; case 0: /* Disable */ break; default: /* PXA3xx has a clock ditherer which can be used to generate * a wider range of frequencies - calculate a value for it. */ if (ssp->type == PXA3xx_SSP) { u32 val; u64 tmp = 19968; tmp *= 1000000; do_div(tmp, freq); val = tmp; val = (val << 16) | 64; pxa_ssp_write_reg(ssp, SSACDD, val); ssacd |= (0x6 << 4); dev_dbg(&ssp->pdev->dev, "Using SSACDD %x to supply %uHz\n", val, freq); break; } return -EINVAL; } pxa_ssp_write_reg(ssp, SSACD, ssacd); return 0; } /* * Set the active slots in TDM/Network mode */ static int pxa_ssp_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; u32 sscr0; sscr0 = pxa_ssp_read_reg(ssp, SSCR0); sscr0 &= ~(SSCR0_MOD | SSCR0_SlotsPerFrm(8) | SSCR0_EDSS | SSCR0_DSS); /* set slot width */ if (slot_width > 16) sscr0 |= SSCR0_EDSS | SSCR0_DataSize(slot_width - 16); else sscr0 |= SSCR0_DataSize(slot_width); if (slots > 1) { /* enable network mode */ sscr0 |= SSCR0_MOD; /* set number of active slots */ sscr0 |= SSCR0_SlotsPerFrm(slots); /* set active slot mask */ pxa_ssp_write_reg(ssp, SSTSA, tx_mask); pxa_ssp_write_reg(ssp, SSRSA, rx_mask); } pxa_ssp_write_reg(ssp, SSCR0, sscr0); return 0; } /* * Tristate the SSP DAI lines */ static int pxa_ssp_set_dai_tristate(struct snd_soc_dai *cpu_dai, int tristate) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; u32 sscr1; sscr1 = pxa_ssp_read_reg(ssp, SSCR1); if (tristate) sscr1 &= ~SSCR1_TTE; else sscr1 |= SSCR1_TTE; pxa_ssp_write_reg(ssp, SSCR1, sscr1); return 0; } static int pxa_ssp_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: case SND_SOC_DAIFMT_CBM_CFS: case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: case SND_SOC_DAIFMT_NB_IF: case SND_SOC_DAIFMT_IB_IF: case SND_SOC_DAIFMT_IB_NF: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: break; default: return -EINVAL; } /* Settings will be applied in hw_params() */ priv->dai_fmt = fmt; return 0; } /* * Set up the SSP DAI format. * The SSP Port must be inactive before calling this function as the * physical interface format is changed. */ static int pxa_ssp_configure_dai_fmt(struct ssp_priv *priv) { struct ssp_device *ssp = priv->ssp; u32 sscr0, sscr1, sspsp, scfr; /* check if we need to change anything at all */ if (priv->configured_dai_fmt == priv->dai_fmt) return 0; /* reset port settings */ sscr0 = pxa_ssp_read_reg(ssp, SSCR0) & ~(SSCR0_PSP | SSCR0_MOD); sscr1 = pxa_ssp_read_reg(ssp, SSCR1) & ~(SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_TFT | SSCR1_RFT); sspsp = pxa_ssp_read_reg(ssp, SSPSP) & ~(SSPSP_SFRMP | SSPSP_SCMODE(3)); sscr1 |= SSCR1_RxTresh(8) | SSCR1_TxTresh(7); switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: sscr1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR; break; case SND_SOC_DAIFMT_CBM_CFS: sscr1 |= SSCR1_SCLKDIR | SSCR1_SCFR; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (priv->dai_fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: sspsp |= SSPSP_SFRMP; break; case SND_SOC_DAIFMT_NB_IF: break; case SND_SOC_DAIFMT_IB_IF: sspsp |= SSPSP_SCMODE(2); break; case SND_SOC_DAIFMT_IB_NF: sspsp |= SSPSP_SCMODE(2) | SSPSP_SFRMP; break; default: return -EINVAL; } switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: sscr0 |= SSCR0_PSP; sscr1 |= SSCR1_RWOT | SSCR1_TRAIL; /* See hw_params() */ break; case SND_SOC_DAIFMT_DSP_A: sspsp |= SSPSP_FSRT; /* fall through */ case SND_SOC_DAIFMT_DSP_B: sscr0 |= SSCR0_MOD | SSCR0_PSP; sscr1 |= SSCR1_TRAIL | SSCR1_RWOT; break; default: return -EINVAL; } pxa_ssp_write_reg(ssp, SSCR0, sscr0); pxa_ssp_write_reg(ssp, SSCR1, sscr1); pxa_ssp_write_reg(ssp, SSPSP, sspsp); switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: case SND_SOC_DAIFMT_CBM_CFS: scfr = pxa_ssp_read_reg(ssp, SSCR1) | SSCR1_SCFR; pxa_ssp_write_reg(ssp, SSCR1, scfr); while (pxa_ssp_read_reg(ssp, SSSR) & SSSR_BSY) cpu_relax(); break; } dump_registers(ssp); /* Since we are configuring the timings for the format by hand * we have to defer some things until hw_params() where we * know parameters like the sample size. */ priv->configured_dai_fmt = priv->dai_fmt; return 0; } struct pxa_ssp_clock_mode { int rate; int pll; u8 acds; u8 scdb; }; static const struct pxa_ssp_clock_mode pxa_ssp_clock_modes[] = { { .rate = 8000, .pll = 32842000, .acds = SSACD_ACDS_32, .scdb = SSACD_SCDB_4X }, { .rate = 11025, .pll = 5622000, .acds = SSACD_ACDS_4, .scdb = SSACD_SCDB_4X }, { .rate = 16000, .pll = 32842000, .acds = SSACD_ACDS_16, .scdb = SSACD_SCDB_4X }, { .rate = 22050, .pll = 5622000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X }, { .rate = 44100, .pll = 11345000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X }, { .rate = 48000, .pll = 12235000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X }, { .rate = 96000, .pll = 12235000, .acds = SSACD_ACDS_4, .scdb = SSACD_SCDB_1X }, {} }; /* * Set the SSP audio DMA parameters and sample size. * Can be called multiple times by oss emulation. */ static int pxa_ssp_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; int chn = params_channels(params); u32 sscr0, sspsp; int width = snd_pcm_format_physical_width(params_format(params)); int ttsa = pxa_ssp_read_reg(ssp, SSTSA) & 0xf; struct snd_dmaengine_dai_dma_data *dma_data; int rate = params_rate(params); int bclk = rate * chn * (width / 8); int ret; dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream); /* Network mode with one active slot (ttsa == 1) can be used * to force 16-bit frame width on the wire (for S16_LE), even * with two channels. Use 16-bit DMA transfers for this case. */ pxa_ssp_set_dma_params(ssp, ((chn == 2) && (ttsa != 1)) || (width == 32), substream->stream == SNDRV_PCM_STREAM_PLAYBACK, dma_data); /* we can only change the settings if the port is not in use */ if (pxa_ssp_read_reg(ssp, SSCR0) & SSCR0_SSE) return 0; ret = pxa_ssp_configure_dai_fmt(priv); if (ret < 0) return ret; /* clear selected SSP bits */ sscr0 = pxa_ssp_read_reg(ssp, SSCR0) & ~(SSCR0_DSS | SSCR0_EDSS); /* bit size */ switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: if (ssp->type == PXA3xx_SSP) sscr0 |= SSCR0_FPCKE; sscr0 |= SSCR0_DataSize(16); break; case SNDRV_PCM_FORMAT_S24_LE: sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(8)); break; case SNDRV_PCM_FORMAT_S32_LE: sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(16)); break; } pxa_ssp_write_reg(ssp, SSCR0, sscr0); if (sscr0 & SSCR0_ACS) { ret = pxa_ssp_set_pll(priv, bclk); /* * If we were able to generate the bclk directly, * all is fine. Otherwise, look up the closest rate * from the table and also set the dividers. */ if (ret < 0) { const struct pxa_ssp_clock_mode *m; int ssacd, acds; for (m = pxa_ssp_clock_modes; m->rate; m++) { if (m->rate == rate) break; } if (!m->rate) return -EINVAL; acds = m->acds; /* The values in the table are for 16 bits */ if (width == 32) acds--; ret = pxa_ssp_set_pll(priv, bclk); if (ret < 0) return ret; ssacd = pxa_ssp_read_reg(ssp, SSACD); ssacd &= ~(SSACD_ACDS(7) | SSACD_SCDB_1X); ssacd |= SSACD_ACDS(m->acds); ssacd |= m->scdb; pxa_ssp_write_reg(ssp, SSACD, ssacd); } } else if (sscr0 & SSCR0_ECS) { /* * For setups with external clocking, the PLL and its diviers * are not active. Instead, the SCR bits in SSCR0 can be used * to divide the clock. */ pxa_ssp_set_scr(ssp, bclk / rate); } switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: sspsp = pxa_ssp_read_reg(ssp, SSPSP); if (((priv->sysclk / bclk) == 64) && (width == 16)) { /* This is a special case where the bitclk is 64fs * and we're not dealing with 2*32 bits of audio * samples. * * The SSP values used for that are all found out by * trying and failing a lot; some of the registers * needed for that mode are only available on PXA3xx. */ if (ssp->type != PXA3xx_SSP) return -EINVAL; sspsp |= SSPSP_SFRMWDTH(width * 2); sspsp |= SSPSP_SFRMDLY(width * 4); sspsp |= SSPSP_EDMYSTOP(3); sspsp |= SSPSP_DMYSTOP(3); sspsp |= SSPSP_DMYSTRT(1); } else { /* The frame width is the width the LRCLK is * asserted for; the delay is expressed in * half cycle units. We need the extra cycle * because the data starts clocking out one BCLK * after LRCLK changes polarity. */ sspsp |= SSPSP_SFRMWDTH(width + 1); sspsp |= SSPSP_SFRMDLY((width + 1) * 2); sspsp |= SSPSP_DMYSTRT(1); } pxa_ssp_write_reg(ssp, SSPSP, sspsp); break; default: break; } /* When we use a network mode, we always require TDM slots * - complain loudly and fail if they've not been set up yet. */ if ((sscr0 & SSCR0_MOD) && !ttsa) { dev_err(&ssp->pdev->dev, "No TDM timeslot configured\n"); return -EINVAL; } dump_registers(ssp); return 0; } static void pxa_ssp_set_running_bit(struct snd_pcm_substream *substream, struct ssp_device *ssp, int value) { uint32_t sscr0 = pxa_ssp_read_reg(ssp, SSCR0); uint32_t sscr1 = pxa_ssp_read_reg(ssp, SSCR1); uint32_t sspsp = pxa_ssp_read_reg(ssp, SSPSP); uint32_t sssr = pxa_ssp_read_reg(ssp, SSSR); if (value && (sscr0 & SSCR0_SSE)) pxa_ssp_write_reg(ssp, SSCR0, sscr0 & ~SSCR0_SSE); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (value) sscr1 |= SSCR1_TSRE; else sscr1 &= ~SSCR1_TSRE; } else { if (value) sscr1 |= SSCR1_RSRE; else sscr1 &= ~SSCR1_RSRE; } pxa_ssp_write_reg(ssp, SSCR1, sscr1); if (value) { pxa_ssp_write_reg(ssp, SSSR, sssr); pxa_ssp_write_reg(ssp, SSPSP, sspsp); pxa_ssp_write_reg(ssp, SSCR0, sscr0 | SSCR0_SSE); } } static int pxa_ssp_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { int ret = 0; struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai); struct ssp_device *ssp = priv->ssp; int val; switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: pxa_ssp_enable(ssp); break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: pxa_ssp_set_running_bit(substream, ssp, 1); val = pxa_ssp_read_reg(ssp, SSSR); pxa_ssp_write_reg(ssp, SSSR, val); break; case SNDRV_PCM_TRIGGER_START: pxa_ssp_set_running_bit(substream, ssp, 1); break; case SNDRV_PCM_TRIGGER_STOP: pxa_ssp_set_running_bit(substream, ssp, 0); break; case SNDRV_PCM_TRIGGER_SUSPEND: pxa_ssp_disable(ssp); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: pxa_ssp_set_running_bit(substream, ssp, 0); break; default: ret = -EINVAL; } dump_registers(ssp); return ret; } static int pxa_ssp_probe(struct snd_soc_dai *dai) { struct device *dev = dai->dev; struct ssp_priv *priv; int ret; priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL); if (!priv) return -ENOMEM; if (dev->of_node) { struct device_node *ssp_handle; ssp_handle = of_parse_phandle(dev->of_node, "port", 0); if (!ssp_handle) { dev_err(dev, "unable to get 'port' phandle\n"); ret = -ENODEV; goto err_priv; } priv->ssp = pxa_ssp_request_of(ssp_handle, "SoC audio"); if (priv->ssp == NULL) { ret = -ENODEV; goto err_priv; } priv->extclk = devm_clk_get(dev, "extclk"); if (IS_ERR(priv->extclk)) { ret = PTR_ERR(priv->extclk); if (ret == -EPROBE_DEFER) return ret; priv->extclk = NULL; } } else { priv->ssp = pxa_ssp_request(dai->id + 1, "SoC audio"); if (priv->ssp == NULL) { ret = -ENODEV; goto err_priv; } } priv->dai_fmt = (unsigned int) -1; snd_soc_dai_set_drvdata(dai, priv); return 0; err_priv: kfree(priv); return ret; } static int pxa_ssp_remove(struct snd_soc_dai *dai) { struct ssp_priv *priv = snd_soc_dai_get_drvdata(dai); pxa_ssp_free(priv->ssp); kfree(priv); return 0; } #define PXA_SSP_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\ SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000) #define PXA_SSP_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops pxa_ssp_dai_ops = { .startup = pxa_ssp_startup, .shutdown = pxa_ssp_shutdown, .trigger = pxa_ssp_trigger, .hw_params = pxa_ssp_hw_params, .set_sysclk = pxa_ssp_set_dai_sysclk, .set_fmt = pxa_ssp_set_dai_fmt, .set_tdm_slot = pxa_ssp_set_dai_tdm_slot, .set_tristate = pxa_ssp_set_dai_tristate, }; static struct snd_soc_dai_driver pxa_ssp_dai = { .probe = pxa_ssp_probe, .remove = pxa_ssp_remove, .suspend = pxa_ssp_suspend, .resume = pxa_ssp_resume, .playback = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .capture = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .ops = &pxa_ssp_dai_ops, }; static const struct snd_soc_component_driver pxa_ssp_component = { .name = "pxa-ssp", .ops = &pxa2xx_pcm_ops, .pcm_new = pxa2xx_soc_pcm_new, .pcm_free = pxa2xx_pcm_free_dma_buffers, }; #ifdef CONFIG_OF static const struct of_device_id pxa_ssp_of_ids[] = { { .compatible = "mrvl,pxa-ssp-dai" }, {} }; MODULE_DEVICE_TABLE(of, pxa_ssp_of_ids); #endif static int asoc_ssp_probe(struct platform_device *pdev) { return devm_snd_soc_register_component(&pdev->dev, &pxa_ssp_component, &pxa_ssp_dai, 1); } static struct platform_driver asoc_ssp_driver = { .driver = { .name = "pxa-ssp-dai", .of_match_table = of_match_ptr(pxa_ssp_of_ids), }, .probe = asoc_ssp_probe, }; module_platform_driver(asoc_ssp_driver); /* Module information */ MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>"); MODULE_DESCRIPTION("PXA SSP/PCM SoC Interface"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa-ssp-dai");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1