Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Brown | 4309 | 98.04% | 1 | 10.00% |
Charles Keepax | 59 | 1.34% | 2 | 20.00% |
Kuninori Morimoto | 12 | 0.27% | 1 | 10.00% |
Lars-Peter Clausen | 5 | 0.11% | 1 | 10.00% |
Mythri P K | 4 | 0.09% | 1 | 10.00% |
Banajit Goswami | 2 | 0.05% | 1 | 10.00% |
Rohit kumar | 2 | 0.05% | 1 | 10.00% |
Randy Dunlap | 1 | 0.02% | 1 | 10.00% |
Jaswinder Jassal | 1 | 0.02% | 1 | 10.00% |
Total | 4395 | 10 |
// SPDX-License-Identifier: GPL-2.0+ // // soc-ops.c -- Generic ASoC operations // // Copyright 2005 Wolfson Microelectronics PLC. // Copyright 2005 Openedhand Ltd. // Copyright (C) 2010 Slimlogic Ltd. // Copyright (C) 2010 Texas Instruments Inc. // // Author: Liam Girdwood <lrg@slimlogic.co.uk> // with code, comments and ideas from :- // Richard Purdie <richard@openedhand.com> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/bitops.h> #include <linux/ctype.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dpcm.h> #include <sound/initval.h> /** * snd_soc_info_enum_double - enumerated double mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a double enumerated * mixer control. * * Returns 0 for success. */ int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2, e->items, e->texts); } EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); /** * snd_soc_get_enum_double - enumerated double mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int val, item; unsigned int reg_val; int ret; ret = snd_soc_component_read(component, e->reg, ®_val); if (ret) return ret; val = (reg_val >> e->shift_l) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[0] = item; if (e->shift_l != e->shift_r) { val = (reg_val >> e->shift_r) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[1] = item; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); /** * snd_soc_put_enum_double - enumerated double mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = ucontrol->value.enumerated.item; unsigned int val; unsigned int mask; if (item[0] >= e->items) return -EINVAL; val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; mask = e->mask << e->shift_l; if (e->shift_l != e->shift_r) { if (item[1] >= e->items) return -EINVAL; val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; mask |= e->mask << e->shift_r; } return snd_soc_component_update_bits(component, e->reg, mask, val); } EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); /** * snd_soc_read_signed - Read a codec register and interpret as signed value * @component: component * @reg: Register to read * @mask: Mask to use after shifting the register value * @shift: Right shift of register value * @sign_bit: Bit that describes if a number is negative or not. * @signed_val: Pointer to where the read value should be stored * * This functions reads a codec register. The register value is shifted right * by 'shift' bits and masked with the given 'mask'. Afterwards it translates * the given registervalue into a signed integer if sign_bit is non-zero. * * Returns 0 on sucess, otherwise an error value */ static int snd_soc_read_signed(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int shift, unsigned int sign_bit, int *signed_val) { int ret; unsigned int val; ret = snd_soc_component_read(component, reg, &val); if (ret < 0) return ret; val = (val >> shift) & mask; if (!sign_bit) { *signed_val = val; return 0; } /* non-negative number */ if (!(val & BIT(sign_bit))) { *signed_val = val; return 0; } ret = val; /* * The register most probably does not contain a full-sized int. * Instead we have an arbitrary number of bits in a signed * representation which has to be translated into a full-sized int. * This is done by filling up all bits above the sign-bit. */ ret |= ~((int)(BIT(sign_bit) - 1)); *signed_val = ret; return 0; } /** * snd_soc_info_volsw - single mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a single mixer control, or a double * mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int platform_max; if (!mc->platform_max) mc->platform_max = mc->max; platform_max = mc->platform_max; if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; else uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = platform_max - mc->min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw); /** * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a single mixer control, or a double * mixer control that spans 2 registers of the SX TLV type. SX TLV controls * have a range that represents both positive and negative values either side * of zero but without a sign bit. * * Returns 0 for success. */ int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; snd_soc_info_volsw(kcontrol, uinfo); /* Max represents the number of levels in an SX control not the * maximum value, so add the minimum value back on */ uinfo->value.integer.max += mc->min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx); /** * snd_soc_get_volsw - single mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; int sign_bit = mc->sign_bit; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; int val; int ret; if (sign_bit) mask = BIT(sign_bit + 1) - 1; ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val); if (ret) return ret; ucontrol->value.integer.value[0] = val - min; if (invert) ucontrol->value.integer.value[0] = max - ucontrol->value.integer.value[0]; if (snd_soc_volsw_is_stereo(mc)) { if (reg == reg2) ret = snd_soc_read_signed(component, reg, mask, rshift, sign_bit, &val); else ret = snd_soc_read_signed(component, reg2, mask, shift, sign_bit, &val); if (ret) return ret; ucontrol->value.integer.value[1] = val - min; if (invert) ucontrol->value.integer.value[1] = max - ucontrol->value.integer.value[1]; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw); /** * snd_soc_put_volsw - single mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; unsigned int sign_bit = mc->sign_bit; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; int err; bool type_2r = false; unsigned int val2 = 0; unsigned int val, val_mask; if (sign_bit) mask = BIT(sign_bit + 1) - 1; val = ((ucontrol->value.integer.value[0] + min) & mask); if (invert) val = max - val; val_mask = mask << shift; val = val << shift; if (snd_soc_volsw_is_stereo(mc)) { val2 = ((ucontrol->value.integer.value[1] + min) & mask); if (invert) val2 = max - val2; if (reg == reg2) { val_mask |= mask << rshift; val |= val2 << rshift; } else { val2 = val2 << shift; type_2r = true; } } err = snd_soc_component_update_bits(component, reg, val_mask, val); if (err < 0) return err; if (type_2r) err = snd_soc_component_update_bits(component, reg2, val_mask, val2); return err; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw); /** * snd_soc_get_volsw_sx - single mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; unsigned int mask = (1U << (fls(min + max) - 1)) - 1; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret < 0) return ret; ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask; if (snd_soc_volsw_is_stereo(mc)) { ret = snd_soc_component_read(component, reg2, &val); if (ret < 0) return ret; val = ((val >> rshift) - min) & mask; ucontrol->value.integer.value[1] = val; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); /** * snd_soc_put_volsw_sx - double mixer set callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; unsigned int mask = (1U << (fls(min + max) - 1)) - 1; int err = 0; unsigned int val, val_mask, val2 = 0; val_mask = mask << shift; val = (ucontrol->value.integer.value[0] + min) & mask; val = val << shift; err = snd_soc_component_update_bits(component, reg, val_mask, val); if (err < 0) return err; if (snd_soc_volsw_is_stereo(mc)) { val_mask = mask << rshift; val2 = (ucontrol->value.integer.value[1] + min) & mask; val2 = val2 << rshift; err = snd_soc_component_update_bits(component, reg2, val_mask, val2); } return err; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); /** * snd_soc_info_volsw_range - single mixer info callback with range. * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information, within a range, about a single * mixer control. * * returns 0 for success. */ int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int platform_max; int min = mc->min; if (!mc->platform_max) mc->platform_max = mc->max; platform_max = mc->platform_max; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = platform_max - min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range); /** * snd_soc_put_volsw_range - single mixer put value callback with range. * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value, within a range, for a single mixer control. * * Returns 0 for success. */ int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int reg = mc->reg; unsigned int rreg = mc->rreg; unsigned int shift = mc->shift; int min = mc->min; int max = mc->max; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; unsigned int val, val_mask; int ret; if (invert) val = (max - ucontrol->value.integer.value[0]) & mask; else val = ((ucontrol->value.integer.value[0] + min) & mask); val_mask = mask << shift; val = val << shift; ret = snd_soc_component_update_bits(component, reg, val_mask, val); if (ret < 0) return ret; if (snd_soc_volsw_is_stereo(mc)) { if (invert) val = (max - ucontrol->value.integer.value[1]) & mask; else val = ((ucontrol->value.integer.value[1] + min) & mask); val_mask = mask << shift; val = val << shift; ret = snd_soc_component_update_bits(component, rreg, val_mask, val); } return ret; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range); /** * snd_soc_get_volsw_range - single mixer get callback with range * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value, within a range, of a single mixer control. * * Returns 0 for success. */ int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int rreg = mc->rreg; unsigned int shift = mc->shift; int min = mc->min; int max = mc->max; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret) return ret; ucontrol->value.integer.value[0] = (val >> shift) & mask; if (invert) ucontrol->value.integer.value[0] = max - ucontrol->value.integer.value[0]; else ucontrol->value.integer.value[0] = ucontrol->value.integer.value[0] - min; if (snd_soc_volsw_is_stereo(mc)) { ret = snd_soc_component_read(component, rreg, &val); if (ret) return ret; ucontrol->value.integer.value[1] = (val >> shift) & mask; if (invert) ucontrol->value.integer.value[1] = max - ucontrol->value.integer.value[1]; else ucontrol->value.integer.value[1] = ucontrol->value.integer.value[1] - min; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range); /** * snd_soc_limit_volume - Set new limit to an existing volume control. * * @card: where to look for the control * @name: Name of the control * @max: new maximum limit * * Return 0 for success, else error. */ int snd_soc_limit_volume(struct snd_soc_card *card, const char *name, int max) { struct snd_card *snd_card = card->snd_card; struct snd_kcontrol *kctl; struct soc_mixer_control *mc; int found = 0; int ret = -EINVAL; /* Sanity check for name and max */ if (unlikely(!name || max <= 0)) return -EINVAL; list_for_each_entry(kctl, &snd_card->controls, list) { if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { found = 1; break; } } if (found) { mc = (struct soc_mixer_control *)kctl->private_value; if (max <= mc->max) { mc->platform_max = max; ret = 0; } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_limit_volume); int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = params->num_regs * component->val_bytes; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info); int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; int ret; if (component->regmap) ret = regmap_raw_read(component->regmap, params->base, ucontrol->value.bytes.data, params->num_regs * component->val_bytes); else ret = -EINVAL; /* Hide any masked bytes to ensure consistent data reporting */ if (ret == 0 && params->mask) { switch (component->val_bytes) { case 1: ucontrol->value.bytes.data[0] &= ~params->mask; break; case 2: ((u16 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be16(~params->mask); break; case 4: ((u32 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be32(~params->mask); break; default: return -EINVAL; } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_get); int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; int ret, len; unsigned int val, mask; void *data; if (!component->regmap || !params->num_regs) return -EINVAL; len = params->num_regs * component->val_bytes; data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; /* * If we've got a mask then we need to preserve the register * bits. We shouldn't modify the incoming data so take a * copy. */ if (params->mask) { ret = regmap_read(component->regmap, params->base, &val); if (ret != 0) goto out; val &= params->mask; switch (component->val_bytes) { case 1: ((u8 *)data)[0] &= ~params->mask; ((u8 *)data)[0] |= val; break; case 2: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) goto out; ((u16 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) goto out; ((u16 *)data)[0] |= val; break; case 4: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) goto out; ((u32 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) goto out; ((u32 *)data)[0] |= val; break; default: ret = -EINVAL; goto out; } } ret = regmap_raw_write(component->regmap, params->base, data, len); out: kfree(data); return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_put); int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext); int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; unsigned int count = size < params->max ? size : params->max; int ret = -ENXIO; switch (op_flag) { case SNDRV_CTL_TLV_OP_READ: if (params->get) ret = params->get(kcontrol, tlv, count); break; case SNDRV_CTL_TLV_OP_WRITE: if (params->put) ret = params->put(kcontrol, tlv, count); break; } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback); /** * snd_soc_info_xr_sx - signed multi register info callback * @kcontrol: mreg control * @uinfo: control element information * * Callback to provide information of a control that can * span multiple codec registers which together * forms a single signed value in a MSB/LSB manner. * * Returns 0 for success. */ int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = mc->min; uinfo->value.integer.max = mc->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); /** * snd_soc_get_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to get the value of a control that can span * multiple codec registers which together forms a single * signed value in a MSB/LSB manner. The control supports * specifying total no of bits used to allow for bitfields * across the multiple codec registers. * * Returns 0 for success. */ int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = (1<<regwshift)-1; unsigned int invert = mc->invert; unsigned long mask = (1UL<<mc->nbits)-1; long min = mc->min; long max = mc->max; long val = 0; unsigned int regval; unsigned int i; int ret; for (i = 0; i < regcount; i++) { ret = snd_soc_component_read(component, regbase+i, ®val); if (ret) return ret; val |= (regval & regwmask) << (regwshift*(regcount-i-1)); } val &= mask; if (min < 0 && val > max) val |= ~mask; if (invert) val = max - val; ucontrol->value.integer.value[0] = val; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); /** * snd_soc_put_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to set the value of a control that can span * multiple codec registers which together forms a single * signed value in a MSB/LSB manner. The control supports * specifying total no of bits used to allow for bitfields * across the multiple codec registers. * * Returns 0 for success. */ int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = (1<<regwshift)-1; unsigned int invert = mc->invert; unsigned long mask = (1UL<<mc->nbits)-1; long max = mc->max; long val = ucontrol->value.integer.value[0]; unsigned int i, regval, regmask; int err; if (invert) val = max - val; val &= mask; for (i = 0; i < regcount; i++) { regval = (val >> (regwshift*(regcount-i-1))) & regwmask; regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask; err = snd_soc_component_update_bits(component, regbase+i, regmask, regval); if (err < 0) return err; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); /** * snd_soc_get_strobe - strobe get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback get the value of a strobe mixer control. * * Returns 0 for success. */ int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int shift = mc->shift; unsigned int mask = 1 << shift; unsigned int invert = mc->invert != 0; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret) return ret; val &= mask; if (shift != 0 && val != 0) val = val >> shift; ucontrol->value.enumerated.item[0] = val ^ invert; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_strobe); /** * snd_soc_put_strobe - strobe put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback strobe a register bit to high then low (or the inverse) * in one pass of a single mixer enum control. * * Returns 1 for success. */ int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int shift = mc->shift; unsigned int mask = 1 << shift; unsigned int invert = mc->invert != 0; unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; unsigned int val1 = (strobe ^ invert) ? mask : 0; unsigned int val2 = (strobe ^ invert) ? 0 : mask; int err; err = snd_soc_component_update_bits(component, reg, mask, val1); if (err < 0) return err; return snd_soc_component_update_bits(component, reg, mask, val2); } EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1