Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ola Lilja | 3341 | 93.04% | 2 | 16.67% |
Lee Jones | 203 | 5.65% | 4 | 33.33% |
Fabio Baltieri | 30 | 0.84% | 2 | 16.67% |
Julia Lawall | 13 | 0.36% | 1 | 8.33% |
Mark Brown | 2 | 0.06% | 1 | 8.33% |
Arnd Bergmann | 1 | 0.03% | 1 | 8.33% |
Wei Yongjun | 1 | 0.03% | 1 | 8.33% |
Total | 3591 | 12 |
/* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja <ola.o.lilja@stericsson.com>, * Roger Nilsson <roger.xr.nilsson@stericsson.com>, * Sandeep Kaushik <sandeep.kaushik@st.com> * for ST-Ericsson. * * License terms: * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of.h> #include <linux/platform_data/asoc-ux500-msp.h> #include <sound/soc.h> #include "ux500_msp_i2s.h" /* Protocol desciptors */ static const struct msp_protdesc prot_descs[] = { { /* I2S */ MSP_SINGLE_PHASE, MSP_SINGLE_PHASE, MSP_PHASE2_START_MODE_IMEDIATE, MSP_PHASE2_START_MODE_IMEDIATE, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_DELAY_1, MSP_DELAY_1, MSP_RISING_EDGE, MSP_FALLING_EDGE, MSP_FSYNC_POL_ACT_LO, MSP_FSYNC_POL_ACT_LO, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 31, 15, 32, }, { /* PCM */ MSP_DUAL_PHASE, MSP_DUAL_PHASE, MSP_PHASE2_START_MODE_FSYNC, MSP_PHASE2_START_MODE_FSYNC, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_DELAY_0, MSP_DELAY_0, MSP_RISING_EDGE, MSP_FALLING_EDGE, MSP_FSYNC_POL_ACT_HI, MSP_FSYNC_POL_ACT_HI, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 255, 0, 256, }, { /* Companded PCM */ MSP_SINGLE_PHASE, MSP_SINGLE_PHASE, MSP_PHASE2_START_MODE_FSYNC, MSP_PHASE2_START_MODE_FSYNC, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_DELAY_0, MSP_DELAY_0, MSP_RISING_EDGE, MSP_RISING_EDGE, MSP_FSYNC_POL_ACT_HI, MSP_FSYNC_POL_ACT_HI, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 255, 0, 256, }, }; static void set_prot_desc_tx(struct ux500_msp *msp, struct msp_protdesc *protdesc, enum msp_data_size data_size) { u32 temp_reg = 0; temp_reg |= MSP_P2_ENABLE_BIT(protdesc->tx_phase_mode); temp_reg |= MSP_P2_START_MODE_BIT(protdesc->tx_phase2_start_mode); temp_reg |= MSP_P1_FRAME_LEN_BITS(protdesc->tx_frame_len_1); temp_reg |= MSP_P2_FRAME_LEN_BITS(protdesc->tx_frame_len_2); if (msp->def_elem_len) { temp_reg |= MSP_P1_ELEM_LEN_BITS(protdesc->tx_elem_len_1); temp_reg |= MSP_P2_ELEM_LEN_BITS(protdesc->tx_elem_len_2); } else { temp_reg |= MSP_P1_ELEM_LEN_BITS(data_size); temp_reg |= MSP_P2_ELEM_LEN_BITS(data_size); } temp_reg |= MSP_DATA_DELAY_BITS(protdesc->tx_data_delay); temp_reg |= MSP_SET_ENDIANNES_BIT(protdesc->tx_byte_order); temp_reg |= MSP_FSYNC_POL(protdesc->tx_fsync_pol); temp_reg |= MSP_DATA_WORD_SWAP(protdesc->tx_half_word_swap); temp_reg |= MSP_SET_COMPANDING_MODE(protdesc->compression_mode); temp_reg |= MSP_SET_FSYNC_IGNORE(protdesc->frame_sync_ignore); writel(temp_reg, msp->registers + MSP_TCF); } static void set_prot_desc_rx(struct ux500_msp *msp, struct msp_protdesc *protdesc, enum msp_data_size data_size) { u32 temp_reg = 0; temp_reg |= MSP_P2_ENABLE_BIT(protdesc->rx_phase_mode); temp_reg |= MSP_P2_START_MODE_BIT(protdesc->rx_phase2_start_mode); temp_reg |= MSP_P1_FRAME_LEN_BITS(protdesc->rx_frame_len_1); temp_reg |= MSP_P2_FRAME_LEN_BITS(protdesc->rx_frame_len_2); if (msp->def_elem_len) { temp_reg |= MSP_P1_ELEM_LEN_BITS(protdesc->rx_elem_len_1); temp_reg |= MSP_P2_ELEM_LEN_BITS(protdesc->rx_elem_len_2); } else { temp_reg |= MSP_P1_ELEM_LEN_BITS(data_size); temp_reg |= MSP_P2_ELEM_LEN_BITS(data_size); } temp_reg |= MSP_DATA_DELAY_BITS(protdesc->rx_data_delay); temp_reg |= MSP_SET_ENDIANNES_BIT(protdesc->rx_byte_order); temp_reg |= MSP_FSYNC_POL(protdesc->rx_fsync_pol); temp_reg |= MSP_DATA_WORD_SWAP(protdesc->rx_half_word_swap); temp_reg |= MSP_SET_COMPANDING_MODE(protdesc->expansion_mode); temp_reg |= MSP_SET_FSYNC_IGNORE(protdesc->frame_sync_ignore); writel(temp_reg, msp->registers + MSP_RCF); } static int configure_protocol(struct ux500_msp *msp, struct ux500_msp_config *config) { struct msp_protdesc *protdesc; enum msp_data_size data_size; u32 temp_reg = 0; data_size = config->data_size; msp->def_elem_len = config->def_elem_len; if (config->default_protdesc == 1) { if (config->protocol >= MSP_INVALID_PROTOCOL) { dev_err(msp->dev, "%s: ERROR: Invalid protocol!\n", __func__); return -EINVAL; } protdesc = (struct msp_protdesc *)&prot_descs[config->protocol]; } else { protdesc = (struct msp_protdesc *)&config->protdesc; } if (data_size < MSP_DATA_BITS_DEFAULT || data_size > MSP_DATA_BITS_32) { dev_err(msp->dev, "%s: ERROR: Invalid data-size requested (data_size = %d)!\n", __func__, data_size); return -EINVAL; } if (config->direction & MSP_DIR_TX) set_prot_desc_tx(msp, protdesc, data_size); if (config->direction & MSP_DIR_RX) set_prot_desc_rx(msp, protdesc, data_size); /* The code below should not be separated. */ temp_reg = readl(msp->registers + MSP_GCR) & ~TX_CLK_POL_RISING; temp_reg |= MSP_TX_CLKPOL_BIT(~protdesc->tx_clk_pol); writel(temp_reg, msp->registers + MSP_GCR); temp_reg = readl(msp->registers + MSP_GCR) & ~RX_CLK_POL_RISING; temp_reg |= MSP_RX_CLKPOL_BIT(protdesc->rx_clk_pol); writel(temp_reg, msp->registers + MSP_GCR); return 0; } static int setup_bitclk(struct ux500_msp *msp, struct ux500_msp_config *config) { u32 reg_val_GCR; u32 frame_per = 0; u32 sck_div = 0; u32 frame_width = 0; u32 temp_reg = 0; struct msp_protdesc *protdesc = NULL; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~SRG_ENABLE, msp->registers + MSP_GCR); if (config->default_protdesc) protdesc = (struct msp_protdesc *)&prot_descs[config->protocol]; else protdesc = (struct msp_protdesc *)&config->protdesc; switch (config->protocol) { case MSP_PCM_PROTOCOL: case MSP_PCM_COMPAND_PROTOCOL: frame_width = protdesc->frame_width; sck_div = config->f_inputclk / (config->frame_freq * (protdesc->clocks_per_frame)); frame_per = protdesc->frame_period; break; case MSP_I2S_PROTOCOL: frame_width = protdesc->frame_width; sck_div = config->f_inputclk / (config->frame_freq * (protdesc->clocks_per_frame)); frame_per = protdesc->frame_period; break; default: dev_err(msp->dev, "%s: ERROR: Unknown protocol (%d)!\n", __func__, config->protocol); return -EINVAL; } temp_reg = (sck_div - 1) & SCK_DIV_MASK; temp_reg |= FRAME_WIDTH_BITS(frame_width); temp_reg |= FRAME_PERIOD_BITS(frame_per); writel(temp_reg, msp->registers + MSP_SRG); msp->f_bitclk = (config->f_inputclk)/(sck_div + 1); /* Enable bit-clock */ udelay(100); reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | SRG_ENABLE, msp->registers + MSP_GCR); udelay(100); return 0; } static int configure_multichannel(struct ux500_msp *msp, struct ux500_msp_config *config) { struct msp_protdesc *protdesc; struct msp_multichannel_config *mcfg; u32 reg_val_MCR; if (config->default_protdesc == 1) { if (config->protocol >= MSP_INVALID_PROTOCOL) { dev_err(msp->dev, "%s: ERROR: Invalid protocol (%d)!\n", __func__, config->protocol); return -EINVAL; } protdesc = (struct msp_protdesc *) &prot_descs[config->protocol]; } else { protdesc = (struct msp_protdesc *)&config->protdesc; } mcfg = &config->multichannel_config; if (mcfg->tx_multichannel_enable) { if (protdesc->tx_phase_mode == MSP_SINGLE_PHASE) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->tx_multichannel_enable ? 1 << TMCEN_BIT : 0), msp->registers + MSP_MCR); writel(mcfg->tx_channel_0_enable, msp->registers + MSP_TCE0); writel(mcfg->tx_channel_1_enable, msp->registers + MSP_TCE1); writel(mcfg->tx_channel_2_enable, msp->registers + MSP_TCE2); writel(mcfg->tx_channel_3_enable, msp->registers + MSP_TCE3); } else { dev_err(msp->dev, "%s: ERROR: Only single-phase supported (TX-mode: %d)!\n", __func__, protdesc->tx_phase_mode); return -EINVAL; } } if (mcfg->rx_multichannel_enable) { if (protdesc->rx_phase_mode == MSP_SINGLE_PHASE) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->rx_multichannel_enable ? 1 << RMCEN_BIT : 0), msp->registers + MSP_MCR); writel(mcfg->rx_channel_0_enable, msp->registers + MSP_RCE0); writel(mcfg->rx_channel_1_enable, msp->registers + MSP_RCE1); writel(mcfg->rx_channel_2_enable, msp->registers + MSP_RCE2); writel(mcfg->rx_channel_3_enable, msp->registers + MSP_RCE3); } else { dev_err(msp->dev, "%s: ERROR: Only single-phase supported (RX-mode: %d)!\n", __func__, protdesc->rx_phase_mode); return -EINVAL; } if (mcfg->rx_comparison_enable_mode) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->rx_comparison_enable_mode << RCMPM_BIT), msp->registers + MSP_MCR); writel(mcfg->comparison_mask, msp->registers + MSP_RCM); writel(mcfg->comparison_value, msp->registers + MSP_RCV); } } return 0; } static int enable_msp(struct ux500_msp *msp, struct ux500_msp_config *config) { int status = 0; u32 reg_val_DMACR, reg_val_GCR; /* Configure msp with protocol dependent settings */ configure_protocol(msp, config); setup_bitclk(msp, config); if (config->multichannel_configured == 1) { status = configure_multichannel(msp, config); if (status) dev_warn(msp->dev, "%s: WARN: configure_multichannel failed (%d)!\n", __func__, status); } /* Make sure the correct DMA-directions are configured */ if ((config->direction & MSP_DIR_RX) && !msp->capture_dma_data.dma_cfg) { dev_err(msp->dev, "%s: ERROR: MSP RX-mode is not configured!", __func__); return -EINVAL; } if ((config->direction == MSP_DIR_TX) && !msp->playback_dma_data.dma_cfg) { dev_err(msp->dev, "%s: ERROR: MSP TX-mode is not configured!", __func__); return -EINVAL; } reg_val_DMACR = readl(msp->registers + MSP_DMACR); if (config->direction & MSP_DIR_RX) reg_val_DMACR |= RX_DMA_ENABLE; if (config->direction & MSP_DIR_TX) reg_val_DMACR |= TX_DMA_ENABLE; writel(reg_val_DMACR, msp->registers + MSP_DMACR); writel(config->iodelay, msp->registers + MSP_IODLY); /* Enable frame generation logic */ reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | FRAME_GEN_ENABLE, msp->registers + MSP_GCR); return status; } static void flush_fifo_rx(struct ux500_msp *msp) { u32 reg_val_DR, reg_val_GCR, reg_val_FLR; u32 limit = 32; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | RX_ENABLE, msp->registers + MSP_GCR); reg_val_FLR = readl(msp->registers + MSP_FLR); while (!(reg_val_FLR & RX_FIFO_EMPTY) && limit--) { reg_val_DR = readl(msp->registers + MSP_DR); reg_val_FLR = readl(msp->registers + MSP_FLR); } writel(reg_val_GCR, msp->registers + MSP_GCR); } static void flush_fifo_tx(struct ux500_msp *msp) { u32 reg_val_TSTDR, reg_val_GCR, reg_val_FLR; u32 limit = 32; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | TX_ENABLE, msp->registers + MSP_GCR); writel(MSP_ITCR_ITEN | MSP_ITCR_TESTFIFO, msp->registers + MSP_ITCR); reg_val_FLR = readl(msp->registers + MSP_FLR); while (!(reg_val_FLR & TX_FIFO_EMPTY) && limit--) { reg_val_TSTDR = readl(msp->registers + MSP_TSTDR); reg_val_FLR = readl(msp->registers + MSP_FLR); } writel(0x0, msp->registers + MSP_ITCR); writel(reg_val_GCR, msp->registers + MSP_GCR); } int ux500_msp_i2s_open(struct ux500_msp *msp, struct ux500_msp_config *config) { u32 old_reg, new_reg, mask; int res; unsigned int tx_sel, rx_sel, tx_busy, rx_busy; if (in_interrupt()) { dev_err(msp->dev, "%s: ERROR: Open called in interrupt context!\n", __func__); return -1; } tx_sel = (config->direction & MSP_DIR_TX) > 0; rx_sel = (config->direction & MSP_DIR_RX) > 0; if (!tx_sel && !rx_sel) { dev_err(msp->dev, "%s: Error: No direction selected!\n", __func__); return -EINVAL; } tx_busy = (msp->dir_busy & MSP_DIR_TX) > 0; rx_busy = (msp->dir_busy & MSP_DIR_RX) > 0; if (tx_busy && tx_sel) { dev_err(msp->dev, "%s: Error: TX is in use!\n", __func__); return -EBUSY; } if (rx_busy && rx_sel) { dev_err(msp->dev, "%s: Error: RX is in use!\n", __func__); return -EBUSY; } msp->dir_busy |= (tx_sel ? MSP_DIR_TX : 0) | (rx_sel ? MSP_DIR_RX : 0); /* First do the global config register */ mask = RX_CLK_SEL_MASK | TX_CLK_SEL_MASK | RX_FSYNC_MASK | TX_FSYNC_MASK | RX_SYNC_SEL_MASK | TX_SYNC_SEL_MASK | RX_FIFO_ENABLE_MASK | TX_FIFO_ENABLE_MASK | SRG_CLK_SEL_MASK | LOOPBACK_MASK | TX_EXTRA_DELAY_MASK; new_reg = (config->tx_clk_sel | config->rx_clk_sel | config->rx_fsync_pol | config->tx_fsync_pol | config->rx_fsync_sel | config->tx_fsync_sel | config->rx_fifo_config | config->tx_fifo_config | config->srg_clk_sel | config->loopback_enable | config->tx_data_enable); old_reg = readl(msp->registers + MSP_GCR); old_reg &= ~mask; new_reg |= old_reg; writel(new_reg, msp->registers + MSP_GCR); res = enable_msp(msp, config); if (res < 0) { dev_err(msp->dev, "%s: ERROR: enable_msp failed (%d)!\n", __func__, res); return -EBUSY; } if (config->loopback_enable & 0x80) msp->loopback_enable = 1; /* Flush FIFOs */ flush_fifo_tx(msp); flush_fifo_rx(msp); msp->msp_state = MSP_STATE_CONFIGURED; return 0; } static void disable_msp_rx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_DMACR, reg_val_IMSC; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~RX_ENABLE, msp->registers + MSP_GCR); reg_val_DMACR = readl(msp->registers + MSP_DMACR); writel(reg_val_DMACR & ~RX_DMA_ENABLE, msp->registers + MSP_DMACR); reg_val_IMSC = readl(msp->registers + MSP_IMSC); writel(reg_val_IMSC & ~(RX_SERVICE_INT | RX_OVERRUN_ERROR_INT), msp->registers + MSP_IMSC); msp->dir_busy &= ~MSP_DIR_RX; } static void disable_msp_tx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_DMACR, reg_val_IMSC; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~TX_ENABLE, msp->registers + MSP_GCR); reg_val_DMACR = readl(msp->registers + MSP_DMACR); writel(reg_val_DMACR & ~TX_DMA_ENABLE, msp->registers + MSP_DMACR); reg_val_IMSC = readl(msp->registers + MSP_IMSC); writel(reg_val_IMSC & ~(TX_SERVICE_INT | TX_UNDERRUN_ERR_INT), msp->registers + MSP_IMSC); msp->dir_busy &= ~MSP_DIR_TX; } static int disable_msp(struct ux500_msp *msp, unsigned int dir) { u32 reg_val_GCR; int status = 0; unsigned int disable_tx, disable_rx; reg_val_GCR = readl(msp->registers + MSP_GCR); disable_tx = dir & MSP_DIR_TX; disable_rx = dir & MSP_DIR_TX; if (disable_tx && disable_rx) { reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | LOOPBACK_MASK, msp->registers + MSP_GCR); /* Flush TX-FIFO */ flush_fifo_tx(msp); /* Disable TX-channel */ writel((readl(msp->registers + MSP_GCR) & (~TX_ENABLE)), msp->registers + MSP_GCR); /* Flush RX-FIFO */ flush_fifo_rx(msp); /* Disable Loopback and Receive channel */ writel((readl(msp->registers + MSP_GCR) & (~(RX_ENABLE | LOOPBACK_MASK))), msp->registers + MSP_GCR); disable_msp_tx(msp); disable_msp_rx(msp); } else if (disable_tx) disable_msp_tx(msp); else if (disable_rx) disable_msp_rx(msp); return status; } int ux500_msp_i2s_trigger(struct ux500_msp *msp, int cmd, int direction) { u32 reg_val_GCR, enable_bit; if (msp->msp_state == MSP_STATE_IDLE) { dev_err(msp->dev, "%s: ERROR: MSP is not configured!\n", __func__); return -EINVAL; } switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (direction == SNDRV_PCM_STREAM_PLAYBACK) enable_bit = TX_ENABLE; else enable_bit = RX_ENABLE; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | enable_bit, msp->registers + MSP_GCR); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (direction == SNDRV_PCM_STREAM_PLAYBACK) disable_msp_tx(msp); else disable_msp_rx(msp); break; default: return -EINVAL; } return 0; } int ux500_msp_i2s_close(struct ux500_msp *msp, unsigned int dir) { int status = 0; dev_dbg(msp->dev, "%s: Enter (dir = 0x%01x).\n", __func__, dir); status = disable_msp(msp, dir); if (msp->dir_busy == 0) { /* disable sample rate and frame generators */ msp->msp_state = MSP_STATE_IDLE; writel((readl(msp->registers + MSP_GCR) & (~(FRAME_GEN_ENABLE | SRG_ENABLE))), msp->registers + MSP_GCR); writel(0, msp->registers + MSP_GCR); writel(0, msp->registers + MSP_TCF); writel(0, msp->registers + MSP_RCF); writel(0, msp->registers + MSP_DMACR); writel(0, msp->registers + MSP_SRG); writel(0, msp->registers + MSP_MCR); writel(0, msp->registers + MSP_RCM); writel(0, msp->registers + MSP_RCV); writel(0, msp->registers + MSP_TCE0); writel(0, msp->registers + MSP_TCE1); writel(0, msp->registers + MSP_TCE2); writel(0, msp->registers + MSP_TCE3); writel(0, msp->registers + MSP_RCE0); writel(0, msp->registers + MSP_RCE1); writel(0, msp->registers + MSP_RCE2); writel(0, msp->registers + MSP_RCE3); } return status; } static int ux500_msp_i2s_of_init_msp(struct platform_device *pdev, struct ux500_msp *msp, struct msp_i2s_platform_data **platform_data) { struct msp_i2s_platform_data *pdata; *platform_data = devm_kzalloc(&pdev->dev, sizeof(struct msp_i2s_platform_data), GFP_KERNEL); pdata = *platform_data; if (!pdata) return -ENOMEM; msp->playback_dma_data.dma_cfg = devm_kzalloc(&pdev->dev, sizeof(struct stedma40_chan_cfg), GFP_KERNEL); if (!msp->playback_dma_data.dma_cfg) return -ENOMEM; msp->capture_dma_data.dma_cfg = devm_kzalloc(&pdev->dev, sizeof(struct stedma40_chan_cfg), GFP_KERNEL); if (!msp->capture_dma_data.dma_cfg) return -ENOMEM; return 0; } int ux500_msp_i2s_init_msp(struct platform_device *pdev, struct ux500_msp **msp_p, struct msp_i2s_platform_data *platform_data) { struct resource *res = NULL; struct device_node *np = pdev->dev.of_node; struct ux500_msp *msp; int ret; *msp_p = devm_kzalloc(&pdev->dev, sizeof(struct ux500_msp), GFP_KERNEL); msp = *msp_p; if (!msp) return -ENOMEM; if (!platform_data) { if (np) { ret = ux500_msp_i2s_of_init_msp(pdev, msp, &platform_data); if (ret) return ret; } else return -EINVAL; } else { msp->playback_dma_data.dma_cfg = platform_data->msp_i2s_dma_tx; msp->capture_dma_data.dma_cfg = platform_data->msp_i2s_dma_rx; msp->id = platform_data->id; } msp->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "%s: ERROR: Unable to get resource!\n", __func__); return -ENOMEM; } msp->playback_dma_data.tx_rx_addr = res->start + MSP_DR; msp->capture_dma_data.tx_rx_addr = res->start + MSP_DR; msp->registers = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (msp->registers == NULL) { dev_err(&pdev->dev, "%s: ERROR: ioremap failed!\n", __func__); return -ENOMEM; } msp->msp_state = MSP_STATE_IDLE; msp->loopback_enable = 0; return 0; } void ux500_msp_i2s_cleanup_msp(struct platform_device *pdev, struct ux500_msp *msp) { dev_dbg(msp->dev, "%s: Enter (id = %d).\n", __func__, msp->id); } MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1