Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arnaldo Carvalho de Melo | 266 | 97.08% | 1 | 50.00% |
Hitoshi Mitake | 8 | 2.92% | 1 | 50.00% |
Total | 274 | 2 |
#ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ #include <asm/types.h> #include <linux/compiler.h> /* * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and * fs/inode.c. It's not actually prime any more (the previous primes * were actively bad for hashing), but the name remains. */ #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 #else #error Wordsize not 32 or 64 #endif /* * This hash multiplies the input by a large odd number and takes the * high bits. Since multiplication propagates changes to the most * significant end only, it is essential that the high bits of the * product be used for the hash value. * * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. (See Knuth vol 3, section 6.4, exercise 9.) * * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, * which is very slightly easier to multiply by and makes no * difference to the hash distribution. */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull #ifdef CONFIG_HAVE_ARCH_HASH /* This header may use the GOLDEN_RATIO_xx constants */ #include <asm/hash.h> #endif /* * The _generic versions exist only so lib/test_hash.c can compare * the arch-optimized versions with the generic. * * Note that if you change these, any <asm/hash.h> that aren't updated * to match need to have their HAVE_ARCH_* define values updated so the * self-test will not false-positive. */ #ifndef HAVE_ARCH__HASH_32 #define __hash_32 __hash_32_generic #endif static inline u32 __hash_32_generic(u32 val) { return val * GOLDEN_RATIO_32; } #ifndef HAVE_ARCH_HASH_32 #define hash_32 hash_32_generic #endif static inline u32 hash_32_generic(u32 val, unsigned int bits) { /* High bits are more random, so use them. */ return __hash_32(val) >> (32 - bits); } #ifndef HAVE_ARCH_HASH_64 #define hash_64 hash_64_generic #endif static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) { #if BITS_PER_LONG == 64 /* 64x64-bit multiply is efficient on all 64-bit processors */ return val * GOLDEN_RATIO_64 >> (64 - bits); #else /* Hash 64 bits using only 32x32-bit multiply. */ return hash_32((u32)val ^ __hash_32(val >> 32), bits); #endif } static inline u32 hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } /* This really should be called fold32_ptr; it does no hashing to speak of. */ static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1