Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 10904 | 61.12% | 47 | 67.14% |
Dave Jiang | 4141 | 23.21% | 7 | 10.00% |
Vishal Verma | 1810 | 10.15% | 6 | 8.57% |
Ross Zwisler | 510 | 2.86% | 4 | 5.71% |
Yasunori Goto | 453 | 2.54% | 2 | 2.86% |
Masayoshi Mizuma | 16 | 0.09% | 1 | 1.43% |
Andy Shevchenko | 2 | 0.01% | 1 | 1.43% |
Robin Murphy | 2 | 0.01% | 1 | 1.43% |
Linda Knippers | 1 | 0.01% | 1 | 1.43% |
Total | 17839 | 70 |
/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/workqueue.h> #include <linux/libnvdimm.h> #include <linux/genalloc.h> #include <linux/vmalloc.h> #include <linux/device.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/ndctl.h> #include <linux/sizes.h> #include <linux/list.h> #include <linux/slab.h> #include <nd-core.h> #include <intel.h> #include <nfit.h> #include <nd.h> #include "nfit_test.h" #include "../watermark.h" #include <asm/mcsafe_test.h> /* * Generate an NFIT table to describe the following topology: * * BUS0: Interleaved PMEM regions, and aliasing with BLK regions * * (a) (b) DIMM BLK-REGION * +----------+--------------+----------+---------+ * +------+ | blk2.0 | pm0.0 | blk2.1 | pm1.0 | 0 region2 * | imc0 +--+- - - - - region0 - - - -+----------+ + * +--+---+ | blk3.0 | pm0.0 | blk3.1 | pm1.0 | 1 region3 * | +----------+--------------v----------v v * +--+---+ | | * | cpu0 | region1 * +--+---+ | | * | +-------------------------^----------^ ^ * +--+---+ | blk4.0 | pm1.0 | 2 region4 * | imc1 +--+-------------------------+----------+ + * +------+ | blk5.0 | pm1.0 | 3 region5 * +-------------------------+----------+-+-------+ * * +--+---+ * | cpu1 | * +--+---+ (Hotplug DIMM) * | +----------------------------------------------+ * +--+---+ | blk6.0/pm7.0 | 4 region6/7 * | imc0 +--+----------------------------------------------+ * +------+ * * * *) In this layout we have four dimms and two memory controllers in one * socket. Each unique interface (BLK or PMEM) to DPA space * is identified by a region device with a dynamically assigned id. * * *) The first portion of dimm0 and dimm1 are interleaved as REGION0. * A single PMEM namespace "pm0.0" is created using half of the * REGION0 SPA-range. REGION0 spans dimm0 and dimm1. PMEM namespace * allocate from from the bottom of a region. The unallocated * portion of REGION0 aliases with REGION2 and REGION3. That * unallacted capacity is reclaimed as BLK namespaces ("blk2.0" and * "blk3.0") starting at the base of each DIMM to offset (a) in those * DIMMs. "pm0.0", "blk2.0" and "blk3.0" are free-form readable * names that can be assigned to a namespace. * * *) In the last portion of dimm0 and dimm1 we have an interleaved * SPA range, REGION1, that spans those two dimms as well as dimm2 * and dimm3. Some of REGION1 allocated to a PMEM namespace named * "pm1.0" the rest is reclaimed in 4 BLK namespaces (for each * dimm in the interleave set), "blk2.1", "blk3.1", "blk4.0", and * "blk5.0". * * *) The portion of dimm2 and dimm3 that do not participate in the * REGION1 interleaved SPA range (i.e. the DPA address below offset * (b) are also included in the "blk4.0" and "blk5.0" namespaces. * Note, that BLK namespaces need not be contiguous in DPA-space, and * can consume aliased capacity from multiple interleave sets. * * BUS1: Legacy NVDIMM (single contiguous range) * * region2 * +---------------------+ * |---------------------| * || pm2.0 || * |---------------------| * +---------------------+ * * *) A NFIT-table may describe a simple system-physical-address range * with no BLK aliasing. This type of region may optionally * reference an NVDIMM. */ enum { NUM_PM = 3, NUM_DCR = 5, NUM_HINTS = 8, NUM_BDW = NUM_DCR, NUM_SPA = NUM_PM + NUM_DCR + NUM_BDW, NUM_MEM = NUM_DCR + NUM_BDW + 2 /* spa0 iset */ + 4 /* spa1 iset */ + 1 /* spa11 iset */, DIMM_SIZE = SZ_32M, LABEL_SIZE = SZ_128K, SPA_VCD_SIZE = SZ_4M, SPA0_SIZE = DIMM_SIZE, SPA1_SIZE = DIMM_SIZE*2, SPA2_SIZE = DIMM_SIZE, BDW_SIZE = 64 << 8, DCR_SIZE = 12, NUM_NFITS = 2, /* permit testing multiple NFITs per system */ }; struct nfit_test_dcr { __le64 bdw_addr; __le32 bdw_status; __u8 aperature[BDW_SIZE]; }; #define NFIT_DIMM_HANDLE(node, socket, imc, chan, dimm) \ (((node & 0xfff) << 16) | ((socket & 0xf) << 12) \ | ((imc & 0xf) << 8) | ((chan & 0xf) << 4) | (dimm & 0xf)) static u32 handle[] = { [0] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 0), [1] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 1), [2] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 0), [3] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 1), [4] = NFIT_DIMM_HANDLE(0, 1, 0, 0, 0), [5] = NFIT_DIMM_HANDLE(1, 0, 0, 0, 0), [6] = NFIT_DIMM_HANDLE(1, 0, 0, 0, 1), }; static unsigned long dimm_fail_cmd_flags[ARRAY_SIZE(handle)]; static int dimm_fail_cmd_code[ARRAY_SIZE(handle)]; struct nfit_test_sec { u8 state; u8 ext_state; u8 passphrase[32]; u8 master_passphrase[32]; u64 overwrite_end_time; } dimm_sec_info[NUM_DCR]; static const struct nd_intel_smart smart_def = { .flags = ND_INTEL_SMART_HEALTH_VALID | ND_INTEL_SMART_SPARES_VALID | ND_INTEL_SMART_ALARM_VALID | ND_INTEL_SMART_USED_VALID | ND_INTEL_SMART_SHUTDOWN_VALID | ND_INTEL_SMART_SHUTDOWN_COUNT_VALID | ND_INTEL_SMART_MTEMP_VALID | ND_INTEL_SMART_CTEMP_VALID, .health = ND_INTEL_SMART_NON_CRITICAL_HEALTH, .media_temperature = 23 * 16, .ctrl_temperature = 25 * 16, .pmic_temperature = 40 * 16, .spares = 75, .alarm_flags = ND_INTEL_SMART_SPARE_TRIP | ND_INTEL_SMART_TEMP_TRIP, .ait_status = 1, .life_used = 5, .shutdown_state = 0, .shutdown_count = 42, .vendor_size = 0, }; struct nfit_test_fw { enum intel_fw_update_state state; u32 context; u64 version; u32 size_received; u64 end_time; }; struct nfit_test { struct acpi_nfit_desc acpi_desc; struct platform_device pdev; struct list_head resources; void *nfit_buf; dma_addr_t nfit_dma; size_t nfit_size; size_t nfit_filled; int dcr_idx; int num_dcr; int num_pm; void **dimm; dma_addr_t *dimm_dma; void **flush; dma_addr_t *flush_dma; void **label; dma_addr_t *label_dma; void **spa_set; dma_addr_t *spa_set_dma; struct nfit_test_dcr **dcr; dma_addr_t *dcr_dma; int (*alloc)(struct nfit_test *t); void (*setup)(struct nfit_test *t); int setup_hotplug; union acpi_object **_fit; dma_addr_t _fit_dma; struct ars_state { struct nd_cmd_ars_status *ars_status; unsigned long deadline; spinlock_t lock; } ars_state; struct device *dimm_dev[ARRAY_SIZE(handle)]; struct nd_intel_smart *smart; struct nd_intel_smart_threshold *smart_threshold; struct badrange badrange; struct work_struct work; struct nfit_test_fw *fw; }; static struct workqueue_struct *nfit_wq; static struct gen_pool *nfit_pool; static struct nfit_test *to_nfit_test(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); return container_of(pdev, struct nfit_test, pdev); } static int nd_intel_test_get_fw_info(struct nfit_test *t, struct nd_intel_fw_info *nd_cmd, unsigned int buf_len, int idx) { struct device *dev = &t->pdev.dev; struct nfit_test_fw *fw = &t->fw[idx]; dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p, buf_len: %u, idx: %d\n", __func__, t, nd_cmd, buf_len, idx); if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->status = 0; nd_cmd->storage_size = INTEL_FW_STORAGE_SIZE; nd_cmd->max_send_len = INTEL_FW_MAX_SEND_LEN; nd_cmd->query_interval = INTEL_FW_QUERY_INTERVAL; nd_cmd->max_query_time = INTEL_FW_QUERY_MAX_TIME; nd_cmd->update_cap = 0; nd_cmd->fis_version = INTEL_FW_FIS_VERSION; nd_cmd->run_version = 0; nd_cmd->updated_version = fw->version; return 0; } static int nd_intel_test_start_update(struct nfit_test *t, struct nd_intel_fw_start *nd_cmd, unsigned int buf_len, int idx) { struct device *dev = &t->pdev.dev; struct nfit_test_fw *fw = &t->fw[idx]; dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n", __func__, t, nd_cmd, buf_len, idx); if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (fw->state != FW_STATE_NEW) { /* extended status, FW update in progress */ nd_cmd->status = 0x10007; return 0; } fw->state = FW_STATE_IN_PROGRESS; fw->context++; fw->size_received = 0; nd_cmd->status = 0; nd_cmd->context = fw->context; dev_dbg(dev, "%s: context issued: %#x\n", __func__, nd_cmd->context); return 0; } static int nd_intel_test_send_data(struct nfit_test *t, struct nd_intel_fw_send_data *nd_cmd, unsigned int buf_len, int idx) { struct device *dev = &t->pdev.dev; struct nfit_test_fw *fw = &t->fw[idx]; u32 *status = (u32 *)&nd_cmd->data[nd_cmd->length]; dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n", __func__, t, nd_cmd, buf_len, idx); if (buf_len < sizeof(*nd_cmd)) return -EINVAL; dev_dbg(dev, "%s: cmd->status: %#x\n", __func__, *status); dev_dbg(dev, "%s: cmd->data[0]: %#x\n", __func__, nd_cmd->data[0]); dev_dbg(dev, "%s: cmd->data[%u]: %#x\n", __func__, nd_cmd->length-1, nd_cmd->data[nd_cmd->length-1]); if (fw->state != FW_STATE_IN_PROGRESS) { dev_dbg(dev, "%s: not in IN_PROGRESS state\n", __func__); *status = 0x5; return 0; } if (nd_cmd->context != fw->context) { dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n", __func__, nd_cmd->context, fw->context); *status = 0x10007; return 0; } /* * check offset + len > size of fw storage * check length is > max send length */ if (nd_cmd->offset + nd_cmd->length > INTEL_FW_STORAGE_SIZE || nd_cmd->length > INTEL_FW_MAX_SEND_LEN) { *status = 0x3; dev_dbg(dev, "%s: buffer boundary violation\n", __func__); return 0; } fw->size_received += nd_cmd->length; dev_dbg(dev, "%s: copying %u bytes, %u bytes so far\n", __func__, nd_cmd->length, fw->size_received); *status = 0; return 0; } static int nd_intel_test_finish_fw(struct nfit_test *t, struct nd_intel_fw_finish_update *nd_cmd, unsigned int buf_len, int idx) { struct device *dev = &t->pdev.dev; struct nfit_test_fw *fw = &t->fw[idx]; dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n", __func__, t, nd_cmd, buf_len, idx); if (fw->state == FW_STATE_UPDATED) { /* update already done, need cold boot */ nd_cmd->status = 0x20007; return 0; } dev_dbg(dev, "%s: context: %#x ctrl_flags: %#x\n", __func__, nd_cmd->context, nd_cmd->ctrl_flags); switch (nd_cmd->ctrl_flags) { case 0: /* finish */ if (nd_cmd->context != fw->context) { dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n", __func__, nd_cmd->context, fw->context); nd_cmd->status = 0x10007; return 0; } nd_cmd->status = 0; fw->state = FW_STATE_VERIFY; /* set 1 second of time for firmware "update" */ fw->end_time = jiffies + HZ; break; case 1: /* abort */ fw->size_received = 0; /* successfully aborted status */ nd_cmd->status = 0x40007; fw->state = FW_STATE_NEW; dev_dbg(dev, "%s: abort successful\n", __func__); break; default: /* bad control flag */ dev_warn(dev, "%s: unknown control flag: %#x\n", __func__, nd_cmd->ctrl_flags); return -EINVAL; } return 0; } static int nd_intel_test_finish_query(struct nfit_test *t, struct nd_intel_fw_finish_query *nd_cmd, unsigned int buf_len, int idx) { struct device *dev = &t->pdev.dev; struct nfit_test_fw *fw = &t->fw[idx]; dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n", __func__, t, nd_cmd, buf_len, idx); if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (nd_cmd->context != fw->context) { dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n", __func__, nd_cmd->context, fw->context); nd_cmd->status = 0x10007; return 0; } dev_dbg(dev, "%s context: %#x\n", __func__, nd_cmd->context); switch (fw->state) { case FW_STATE_NEW: nd_cmd->updated_fw_rev = 0; nd_cmd->status = 0; dev_dbg(dev, "%s: new state\n", __func__); break; case FW_STATE_IN_PROGRESS: /* sequencing error */ nd_cmd->status = 0x40007; nd_cmd->updated_fw_rev = 0; dev_dbg(dev, "%s: sequence error\n", __func__); break; case FW_STATE_VERIFY: if (time_is_after_jiffies64(fw->end_time)) { nd_cmd->updated_fw_rev = 0; nd_cmd->status = 0x20007; dev_dbg(dev, "%s: still verifying\n", __func__); break; } dev_dbg(dev, "%s: transition out verify\n", __func__); fw->state = FW_STATE_UPDATED; /* we are going to fall through if it's "done" */ case FW_STATE_UPDATED: nd_cmd->status = 0; /* bogus test version */ fw->version = nd_cmd->updated_fw_rev = INTEL_FW_FAKE_VERSION; dev_dbg(dev, "%s: updated\n", __func__); break; default: /* we should never get here */ return -EINVAL; } return 0; } static int nfit_test_cmd_get_config_size(struct nd_cmd_get_config_size *nd_cmd, unsigned int buf_len) { if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->status = 0; nd_cmd->config_size = LABEL_SIZE; nd_cmd->max_xfer = SZ_4K; return 0; } static int nfit_test_cmd_get_config_data(struct nd_cmd_get_config_data_hdr *nd_cmd, unsigned int buf_len, void *label) { unsigned int len, offset = nd_cmd->in_offset; int rc; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (offset >= LABEL_SIZE) return -EINVAL; if (nd_cmd->in_length + sizeof(*nd_cmd) > buf_len) return -EINVAL; nd_cmd->status = 0; len = min(nd_cmd->in_length, LABEL_SIZE - offset); memcpy(nd_cmd->out_buf, label + offset, len); rc = buf_len - sizeof(*nd_cmd) - len; return rc; } static int nfit_test_cmd_set_config_data(struct nd_cmd_set_config_hdr *nd_cmd, unsigned int buf_len, void *label) { unsigned int len, offset = nd_cmd->in_offset; u32 *status; int rc; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (offset >= LABEL_SIZE) return -EINVAL; if (nd_cmd->in_length + sizeof(*nd_cmd) + 4 > buf_len) return -EINVAL; status = (void *)nd_cmd + nd_cmd->in_length + sizeof(*nd_cmd); *status = 0; len = min(nd_cmd->in_length, LABEL_SIZE - offset); memcpy(label + offset, nd_cmd->in_buf, len); rc = buf_len - sizeof(*nd_cmd) - (len + 4); return rc; } #define NFIT_TEST_CLEAR_ERR_UNIT 256 static int nfit_test_cmd_ars_cap(struct nd_cmd_ars_cap *nd_cmd, unsigned int buf_len) { int ars_recs; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; /* for testing, only store up to n records that fit within 4k */ ars_recs = SZ_4K / sizeof(struct nd_ars_record); nd_cmd->max_ars_out = sizeof(struct nd_cmd_ars_status) + ars_recs * sizeof(struct nd_ars_record); nd_cmd->status = (ND_ARS_PERSISTENT | ND_ARS_VOLATILE) << 16; nd_cmd->clear_err_unit = NFIT_TEST_CLEAR_ERR_UNIT; return 0; } static void post_ars_status(struct ars_state *ars_state, struct badrange *badrange, u64 addr, u64 len) { struct nd_cmd_ars_status *ars_status; struct nd_ars_record *ars_record; struct badrange_entry *be; u64 end = addr + len - 1; int i = 0; ars_state->deadline = jiffies + 1*HZ; ars_status = ars_state->ars_status; ars_status->status = 0; ars_status->address = addr; ars_status->length = len; ars_status->type = ND_ARS_PERSISTENT; spin_lock(&badrange->lock); list_for_each_entry(be, &badrange->list, list) { u64 be_end = be->start + be->length - 1; u64 rstart, rend; /* skip entries outside the range */ if (be_end < addr || be->start > end) continue; rstart = (be->start < addr) ? addr : be->start; rend = (be_end < end) ? be_end : end; ars_record = &ars_status->records[i]; ars_record->handle = 0; ars_record->err_address = rstart; ars_record->length = rend - rstart + 1; i++; } spin_unlock(&badrange->lock); ars_status->num_records = i; ars_status->out_length = sizeof(struct nd_cmd_ars_status) + i * sizeof(struct nd_ars_record); } static int nfit_test_cmd_ars_start(struct nfit_test *t, struct ars_state *ars_state, struct nd_cmd_ars_start *ars_start, unsigned int buf_len, int *cmd_rc) { if (buf_len < sizeof(*ars_start)) return -EINVAL; spin_lock(&ars_state->lock); if (time_before(jiffies, ars_state->deadline)) { ars_start->status = NFIT_ARS_START_BUSY; *cmd_rc = -EBUSY; } else { ars_start->status = 0; ars_start->scrub_time = 1; post_ars_status(ars_state, &t->badrange, ars_start->address, ars_start->length); *cmd_rc = 0; } spin_unlock(&ars_state->lock); return 0; } static int nfit_test_cmd_ars_status(struct ars_state *ars_state, struct nd_cmd_ars_status *ars_status, unsigned int buf_len, int *cmd_rc) { if (buf_len < ars_state->ars_status->out_length) return -EINVAL; spin_lock(&ars_state->lock); if (time_before(jiffies, ars_state->deadline)) { memset(ars_status, 0, buf_len); ars_status->status = NFIT_ARS_STATUS_BUSY; ars_status->out_length = sizeof(*ars_status); *cmd_rc = -EBUSY; } else { memcpy(ars_status, ars_state->ars_status, ars_state->ars_status->out_length); *cmd_rc = 0; } spin_unlock(&ars_state->lock); return 0; } static int nfit_test_cmd_clear_error(struct nfit_test *t, struct nd_cmd_clear_error *clear_err, unsigned int buf_len, int *cmd_rc) { const u64 mask = NFIT_TEST_CLEAR_ERR_UNIT - 1; if (buf_len < sizeof(*clear_err)) return -EINVAL; if ((clear_err->address & mask) || (clear_err->length & mask)) return -EINVAL; badrange_forget(&t->badrange, clear_err->address, clear_err->length); clear_err->status = 0; clear_err->cleared = clear_err->length; *cmd_rc = 0; return 0; } struct region_search_spa { u64 addr; struct nd_region *region; }; static int is_region_device(struct device *dev) { return !strncmp(dev->kobj.name, "region", 6); } static int nfit_test_search_region_spa(struct device *dev, void *data) { struct region_search_spa *ctx = data; struct nd_region *nd_region; resource_size_t ndr_end; if (!is_region_device(dev)) return 0; nd_region = to_nd_region(dev); ndr_end = nd_region->ndr_start + nd_region->ndr_size; if (ctx->addr >= nd_region->ndr_start && ctx->addr < ndr_end) { ctx->region = nd_region; return 1; } return 0; } static int nfit_test_search_spa(struct nvdimm_bus *bus, struct nd_cmd_translate_spa *spa) { int ret; struct nd_region *nd_region = NULL; struct nvdimm *nvdimm = NULL; struct nd_mapping *nd_mapping = NULL; struct region_search_spa ctx = { .addr = spa->spa, .region = NULL, }; u64 dpa; ret = device_for_each_child(&bus->dev, &ctx, nfit_test_search_region_spa); if (!ret) return -ENODEV; nd_region = ctx.region; dpa = ctx.addr - nd_region->ndr_start; /* * last dimm is selected for test */ nd_mapping = &nd_region->mapping[nd_region->ndr_mappings - 1]; nvdimm = nd_mapping->nvdimm; spa->devices[0].nfit_device_handle = handle[nvdimm->id]; spa->num_nvdimms = 1; spa->devices[0].dpa = dpa; return 0; } static int nfit_test_cmd_translate_spa(struct nvdimm_bus *bus, struct nd_cmd_translate_spa *spa, unsigned int buf_len) { if (buf_len < spa->translate_length) return -EINVAL; if (nfit_test_search_spa(bus, spa) < 0 || !spa->num_nvdimms) spa->status = 2; return 0; } static int nfit_test_cmd_smart(struct nd_intel_smart *smart, unsigned int buf_len, struct nd_intel_smart *smart_data) { if (buf_len < sizeof(*smart)) return -EINVAL; memcpy(smart, smart_data, sizeof(*smart)); return 0; } static int nfit_test_cmd_smart_threshold( struct nd_intel_smart_threshold *out, unsigned int buf_len, struct nd_intel_smart_threshold *smart_t) { if (buf_len < sizeof(*smart_t)) return -EINVAL; memcpy(out, smart_t, sizeof(*smart_t)); return 0; } static void smart_notify(struct device *bus_dev, struct device *dimm_dev, struct nd_intel_smart *smart, struct nd_intel_smart_threshold *thresh) { dev_dbg(dimm_dev, "%s: alarm: %#x spares: %d (%d) mtemp: %d (%d) ctemp: %d (%d)\n", __func__, thresh->alarm_control, thresh->spares, smart->spares, thresh->media_temperature, smart->media_temperature, thresh->ctrl_temperature, smart->ctrl_temperature); if (((thresh->alarm_control & ND_INTEL_SMART_SPARE_TRIP) && smart->spares <= thresh->spares) || ((thresh->alarm_control & ND_INTEL_SMART_TEMP_TRIP) && smart->media_temperature >= thresh->media_temperature) || ((thresh->alarm_control & ND_INTEL_SMART_CTEMP_TRIP) && smart->ctrl_temperature >= thresh->ctrl_temperature) || (smart->health != ND_INTEL_SMART_NON_CRITICAL_HEALTH) || (smart->shutdown_state != 0)) { device_lock(bus_dev); __acpi_nvdimm_notify(dimm_dev, 0x81); device_unlock(bus_dev); } } static int nfit_test_cmd_smart_set_threshold( struct nd_intel_smart_set_threshold *in, unsigned int buf_len, struct nd_intel_smart_threshold *thresh, struct nd_intel_smart *smart, struct device *bus_dev, struct device *dimm_dev) { unsigned int size; size = sizeof(*in) - 4; if (buf_len < size) return -EINVAL; memcpy(thresh->data, in, size); in->status = 0; smart_notify(bus_dev, dimm_dev, smart, thresh); return 0; } static int nfit_test_cmd_smart_inject( struct nd_intel_smart_inject *inj, unsigned int buf_len, struct nd_intel_smart_threshold *thresh, struct nd_intel_smart *smart, struct device *bus_dev, struct device *dimm_dev) { if (buf_len != sizeof(*inj)) return -EINVAL; if (inj->flags & ND_INTEL_SMART_INJECT_MTEMP) { if (inj->mtemp_enable) smart->media_temperature = inj->media_temperature; else smart->media_temperature = smart_def.media_temperature; } if (inj->flags & ND_INTEL_SMART_INJECT_SPARE) { if (inj->spare_enable) smart->spares = inj->spares; else smart->spares = smart_def.spares; } if (inj->flags & ND_INTEL_SMART_INJECT_FATAL) { if (inj->fatal_enable) smart->health = ND_INTEL_SMART_FATAL_HEALTH; else smart->health = ND_INTEL_SMART_NON_CRITICAL_HEALTH; } if (inj->flags & ND_INTEL_SMART_INJECT_SHUTDOWN) { if (inj->unsafe_shutdown_enable) { smart->shutdown_state = 1; smart->shutdown_count++; } else smart->shutdown_state = 0; } inj->status = 0; smart_notify(bus_dev, dimm_dev, smart, thresh); return 0; } static void uc_error_notify(struct work_struct *work) { struct nfit_test *t = container_of(work, typeof(*t), work); __acpi_nfit_notify(&t->pdev.dev, t, NFIT_NOTIFY_UC_MEMORY_ERROR); } static int nfit_test_cmd_ars_error_inject(struct nfit_test *t, struct nd_cmd_ars_err_inj *err_inj, unsigned int buf_len) { int rc; if (buf_len != sizeof(*err_inj)) { rc = -EINVAL; goto err; } if (err_inj->err_inj_spa_range_length <= 0) { rc = -EINVAL; goto err; } rc = badrange_add(&t->badrange, err_inj->err_inj_spa_range_base, err_inj->err_inj_spa_range_length); if (rc < 0) goto err; if (err_inj->err_inj_options & (1 << ND_ARS_ERR_INJ_OPT_NOTIFY)) queue_work(nfit_wq, &t->work); err_inj->status = 0; return 0; err: err_inj->status = NFIT_ARS_INJECT_INVALID; return rc; } static int nfit_test_cmd_ars_inject_clear(struct nfit_test *t, struct nd_cmd_ars_err_inj_clr *err_clr, unsigned int buf_len) { int rc; if (buf_len != sizeof(*err_clr)) { rc = -EINVAL; goto err; } if (err_clr->err_inj_clr_spa_range_length <= 0) { rc = -EINVAL; goto err; } badrange_forget(&t->badrange, err_clr->err_inj_clr_spa_range_base, err_clr->err_inj_clr_spa_range_length); err_clr->status = 0; return 0; err: err_clr->status = NFIT_ARS_INJECT_INVALID; return rc; } static int nfit_test_cmd_ars_inject_status(struct nfit_test *t, struct nd_cmd_ars_err_inj_stat *err_stat, unsigned int buf_len) { struct badrange_entry *be; int max = SZ_4K / sizeof(struct nd_error_stat_query_record); int i = 0; err_stat->status = 0; spin_lock(&t->badrange.lock); list_for_each_entry(be, &t->badrange.list, list) { err_stat->record[i].err_inj_stat_spa_range_base = be->start; err_stat->record[i].err_inj_stat_spa_range_length = be->length; i++; if (i > max) break; } spin_unlock(&t->badrange.lock); err_stat->inj_err_rec_count = i; return 0; } static int nd_intel_test_cmd_set_lss_status(struct nfit_test *t, struct nd_intel_lss *nd_cmd, unsigned int buf_len) { struct device *dev = &t->pdev.dev; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; switch (nd_cmd->enable) { case 0: nd_cmd->status = 0; dev_dbg(dev, "%s: Latch System Shutdown Status disabled\n", __func__); break; case 1: nd_cmd->status = 0; dev_dbg(dev, "%s: Latch System Shutdown Status enabled\n", __func__); break; default: dev_warn(dev, "Unknown enable value: %#x\n", nd_cmd->enable); nd_cmd->status = 0x3; break; } return 0; } static int override_return_code(int dimm, unsigned int func, int rc) { if ((1 << func) & dimm_fail_cmd_flags[dimm]) { if (dimm_fail_cmd_code[dimm]) return dimm_fail_cmd_code[dimm]; return -EIO; } return rc; } static int nd_intel_test_cmd_security_status(struct nfit_test *t, struct nd_intel_get_security_state *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; nd_cmd->status = 0; nd_cmd->state = sec->state; nd_cmd->extended_state = sec->ext_state; dev_dbg(dev, "security state (%#x) returned\n", nd_cmd->state); return 0; } static int nd_intel_test_cmd_unlock_unit(struct nfit_test *t, struct nd_intel_unlock_unit *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->state & ND_INTEL_SEC_STATE_LOCKED) || (sec->state & ND_INTEL_SEC_STATE_FROZEN)) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "unlock unit: invalid state: %#x\n", sec->state); } else if (memcmp(nd_cmd->passphrase, sec->passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "unlock unit: invalid passphrase\n"); } else { nd_cmd->status = 0; sec->state = ND_INTEL_SEC_STATE_ENABLED; dev_dbg(dev, "Unit unlocked\n"); } dev_dbg(dev, "unlocking status returned: %#x\n", nd_cmd->status); return 0; } static int nd_intel_test_cmd_set_pass(struct nfit_test *t, struct nd_intel_set_passphrase *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (sec->state & ND_INTEL_SEC_STATE_FROZEN) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "set passphrase: wrong security state\n"); } else if (memcmp(nd_cmd->old_pass, sec->passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "set passphrase: wrong passphrase\n"); } else { memcpy(sec->passphrase, nd_cmd->new_pass, ND_INTEL_PASSPHRASE_SIZE); sec->state |= ND_INTEL_SEC_STATE_ENABLED; nd_cmd->status = 0; dev_dbg(dev, "passphrase updated\n"); } return 0; } static int nd_intel_test_cmd_freeze_lock(struct nfit_test *t, struct nd_intel_freeze_lock *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED)) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "freeze lock: wrong security state\n"); } else { sec->state |= ND_INTEL_SEC_STATE_FROZEN; nd_cmd->status = 0; dev_dbg(dev, "security frozen\n"); } return 0; } static int nd_intel_test_cmd_disable_pass(struct nfit_test *t, struct nd_intel_disable_passphrase *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED) || (sec->state & ND_INTEL_SEC_STATE_FROZEN)) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "disable passphrase: wrong security state\n"); } else if (memcmp(nd_cmd->passphrase, sec->passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "disable passphrase: wrong passphrase\n"); } else { memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE); sec->state = 0; dev_dbg(dev, "disable passphrase: done\n"); } return 0; } static int nd_intel_test_cmd_secure_erase(struct nfit_test *t, struct nd_intel_secure_erase *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED) || (sec->state & ND_INTEL_SEC_STATE_FROZEN)) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "secure erase: wrong security state\n"); } else if (memcmp(nd_cmd->passphrase, sec->passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "secure erase: wrong passphrase\n"); } else { memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE); memset(sec->master_passphrase, 0, ND_INTEL_PASSPHRASE_SIZE); sec->state = 0; sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED; dev_dbg(dev, "secure erase: done\n"); } return 0; } static int nd_intel_test_cmd_overwrite(struct nfit_test *t, struct nd_intel_overwrite *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if ((sec->state & ND_INTEL_SEC_STATE_ENABLED) && memcmp(nd_cmd->passphrase, sec->passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "overwrite: wrong passphrase\n"); return 0; } memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE); sec->state = ND_INTEL_SEC_STATE_OVERWRITE; dev_dbg(dev, "overwrite progressing.\n"); sec->overwrite_end_time = get_jiffies_64() + 5 * HZ; return 0; } static int nd_intel_test_cmd_query_overwrite(struct nfit_test *t, struct nd_intel_query_overwrite *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->state & ND_INTEL_SEC_STATE_OVERWRITE)) { nd_cmd->status = ND_INTEL_STATUS_OQUERY_SEQUENCE_ERR; return 0; } if (time_is_before_jiffies64(sec->overwrite_end_time)) { sec->overwrite_end_time = 0; sec->state = 0; sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED; dev_dbg(dev, "overwrite is complete\n"); } else nd_cmd->status = ND_INTEL_STATUS_OQUERY_INPROGRESS; return 0; } static int nd_intel_test_cmd_master_set_pass(struct nfit_test *t, struct nd_intel_set_master_passphrase *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->ext_state & ND_INTEL_SEC_ESTATE_ENABLED)) { nd_cmd->status = ND_INTEL_STATUS_NOT_SUPPORTED; dev_dbg(dev, "master set passphrase: in wrong state\n"); } else if (sec->ext_state & ND_INTEL_SEC_ESTATE_PLIMIT) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "master set passphrase: in wrong security state\n"); } else if (memcmp(nd_cmd->old_pass, sec->master_passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "master set passphrase: wrong passphrase\n"); } else { memcpy(sec->master_passphrase, nd_cmd->new_pass, ND_INTEL_PASSPHRASE_SIZE); sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED; dev_dbg(dev, "master passphrase: updated\n"); } return 0; } static int nd_intel_test_cmd_master_secure_erase(struct nfit_test *t, struct nd_intel_master_secure_erase *nd_cmd, unsigned int buf_len, int dimm) { struct device *dev = &t->pdev.dev; struct nfit_test_sec *sec = &dimm_sec_info[dimm]; if (!(sec->ext_state & ND_INTEL_SEC_ESTATE_ENABLED)) { nd_cmd->status = ND_INTEL_STATUS_NOT_SUPPORTED; dev_dbg(dev, "master secure erase: in wrong state\n"); } else if (sec->ext_state & ND_INTEL_SEC_ESTATE_PLIMIT) { nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE; dev_dbg(dev, "master secure erase: in wrong security state\n"); } else if (memcmp(nd_cmd->passphrase, sec->master_passphrase, ND_INTEL_PASSPHRASE_SIZE) != 0) { nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS; dev_dbg(dev, "master secure erase: wrong passphrase\n"); } else { /* we do not erase master state passphrase ever */ sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED; memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE); sec->state = 0; dev_dbg(dev, "master secure erase: done\n"); } return 0; } static int get_dimm(struct nfit_mem *nfit_mem, unsigned int func) { int i; /* lookup per-dimm data */ for (i = 0; i < ARRAY_SIZE(handle); i++) if (__to_nfit_memdev(nfit_mem)->device_handle == handle[i]) break; if (i >= ARRAY_SIZE(handle)) return -ENXIO; return i; } static int nfit_test_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct nfit_test *t = container_of(acpi_desc, typeof(*t), acpi_desc); unsigned int func = cmd; int i, rc = 0, __cmd_rc; if (!cmd_rc) cmd_rc = &__cmd_rc; *cmd_rc = 0; if (nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); unsigned long cmd_mask = nvdimm_cmd_mask(nvdimm); if (!nfit_mem) return -ENOTTY; if (cmd == ND_CMD_CALL) { struct nd_cmd_pkg *call_pkg = buf; buf_len = call_pkg->nd_size_in + call_pkg->nd_size_out; buf = (void *) call_pkg->nd_payload; func = call_pkg->nd_command; if (call_pkg->nd_family != nfit_mem->family) return -ENOTTY; i = get_dimm(nfit_mem, func); if (i < 0) return i; switch (func) { case NVDIMM_INTEL_GET_SECURITY_STATE: rc = nd_intel_test_cmd_security_status(t, buf, buf_len, i); break; case NVDIMM_INTEL_UNLOCK_UNIT: rc = nd_intel_test_cmd_unlock_unit(t, buf, buf_len, i); break; case NVDIMM_INTEL_SET_PASSPHRASE: rc = nd_intel_test_cmd_set_pass(t, buf, buf_len, i); break; case NVDIMM_INTEL_DISABLE_PASSPHRASE: rc = nd_intel_test_cmd_disable_pass(t, buf, buf_len, i); break; case NVDIMM_INTEL_FREEZE_LOCK: rc = nd_intel_test_cmd_freeze_lock(t, buf, buf_len, i); break; case NVDIMM_INTEL_SECURE_ERASE: rc = nd_intel_test_cmd_secure_erase(t, buf, buf_len, i); break; case NVDIMM_INTEL_OVERWRITE: rc = nd_intel_test_cmd_overwrite(t, buf, buf_len, i - t->dcr_idx); break; case NVDIMM_INTEL_QUERY_OVERWRITE: rc = nd_intel_test_cmd_query_overwrite(t, buf, buf_len, i - t->dcr_idx); break; case NVDIMM_INTEL_SET_MASTER_PASSPHRASE: rc = nd_intel_test_cmd_master_set_pass(t, buf, buf_len, i); break; case NVDIMM_INTEL_MASTER_SECURE_ERASE: rc = nd_intel_test_cmd_master_secure_erase(t, buf, buf_len, i); break; case ND_INTEL_ENABLE_LSS_STATUS: rc = nd_intel_test_cmd_set_lss_status(t, buf, buf_len); break; case ND_INTEL_FW_GET_INFO: rc = nd_intel_test_get_fw_info(t, buf, buf_len, i - t->dcr_idx); break; case ND_INTEL_FW_START_UPDATE: rc = nd_intel_test_start_update(t, buf, buf_len, i - t->dcr_idx); break; case ND_INTEL_FW_SEND_DATA: rc = nd_intel_test_send_data(t, buf, buf_len, i - t->dcr_idx); break; case ND_INTEL_FW_FINISH_UPDATE: rc = nd_intel_test_finish_fw(t, buf, buf_len, i - t->dcr_idx); break; case ND_INTEL_FW_FINISH_QUERY: rc = nd_intel_test_finish_query(t, buf, buf_len, i - t->dcr_idx); break; case ND_INTEL_SMART: rc = nfit_test_cmd_smart(buf, buf_len, &t->smart[i - t->dcr_idx]); break; case ND_INTEL_SMART_THRESHOLD: rc = nfit_test_cmd_smart_threshold(buf, buf_len, &t->smart_threshold[i - t->dcr_idx]); break; case ND_INTEL_SMART_SET_THRESHOLD: rc = nfit_test_cmd_smart_set_threshold(buf, buf_len, &t->smart_threshold[i - t->dcr_idx], &t->smart[i - t->dcr_idx], &t->pdev.dev, t->dimm_dev[i]); break; case ND_INTEL_SMART_INJECT: rc = nfit_test_cmd_smart_inject(buf, buf_len, &t->smart_threshold[i - t->dcr_idx], &t->smart[i - t->dcr_idx], &t->pdev.dev, t->dimm_dev[i]); break; default: return -ENOTTY; } return override_return_code(i, func, rc); } if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &nfit_mem->dsm_mask)) return -ENOTTY; i = get_dimm(nfit_mem, func); if (i < 0) return i; switch (func) { case ND_CMD_GET_CONFIG_SIZE: rc = nfit_test_cmd_get_config_size(buf, buf_len); break; case ND_CMD_GET_CONFIG_DATA: rc = nfit_test_cmd_get_config_data(buf, buf_len, t->label[i - t->dcr_idx]); break; case ND_CMD_SET_CONFIG_DATA: rc = nfit_test_cmd_set_config_data(buf, buf_len, t->label[i - t->dcr_idx]); break; default: return -ENOTTY; } return override_return_code(i, func, rc); } else { struct ars_state *ars_state = &t->ars_state; struct nd_cmd_pkg *call_pkg = buf; if (!nd_desc) return -ENOTTY; if (cmd == ND_CMD_CALL) { func = call_pkg->nd_command; buf_len = call_pkg->nd_size_in + call_pkg->nd_size_out; buf = (void *) call_pkg->nd_payload; switch (func) { case NFIT_CMD_TRANSLATE_SPA: rc = nfit_test_cmd_translate_spa( acpi_desc->nvdimm_bus, buf, buf_len); return rc; case NFIT_CMD_ARS_INJECT_SET: rc = nfit_test_cmd_ars_error_inject(t, buf, buf_len); return rc; case NFIT_CMD_ARS_INJECT_CLEAR: rc = nfit_test_cmd_ars_inject_clear(t, buf, buf_len); return rc; case NFIT_CMD_ARS_INJECT_GET: rc = nfit_test_cmd_ars_inject_status(t, buf, buf_len); return rc; default: return -ENOTTY; } } if (!nd_desc || !test_bit(cmd, &nd_desc->cmd_mask)) return -ENOTTY; switch (func) { case ND_CMD_ARS_CAP: rc = nfit_test_cmd_ars_cap(buf, buf_len); break; case ND_CMD_ARS_START: rc = nfit_test_cmd_ars_start(t, ars_state, buf, buf_len, cmd_rc); break; case ND_CMD_ARS_STATUS: rc = nfit_test_cmd_ars_status(ars_state, buf, buf_len, cmd_rc); break; case ND_CMD_CLEAR_ERROR: rc = nfit_test_cmd_clear_error(t, buf, buf_len, cmd_rc); break; default: return -ENOTTY; } } return rc; } static DEFINE_SPINLOCK(nfit_test_lock); static struct nfit_test *instances[NUM_NFITS]; static void release_nfit_res(void *data) { struct nfit_test_resource *nfit_res = data; spin_lock(&nfit_test_lock); list_del(&nfit_res->list); spin_unlock(&nfit_test_lock); if (resource_size(&nfit_res->res) >= DIMM_SIZE) gen_pool_free(nfit_pool, nfit_res->res.start, resource_size(&nfit_res->res)); vfree(nfit_res->buf); kfree(nfit_res); } static void *__test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma, void *buf) { struct device *dev = &t->pdev.dev; struct nfit_test_resource *nfit_res = kzalloc(sizeof(*nfit_res), GFP_KERNEL); int rc; if (!buf || !nfit_res || !*dma) goto err; rc = devm_add_action(dev, release_nfit_res, nfit_res); if (rc) goto err; INIT_LIST_HEAD(&nfit_res->list); memset(buf, 0, size); nfit_res->dev = dev; nfit_res->buf = buf; nfit_res->res.start = *dma; nfit_res->res.end = *dma + size - 1; nfit_res->res.name = "NFIT"; spin_lock_init(&nfit_res->lock); INIT_LIST_HEAD(&nfit_res->requests); spin_lock(&nfit_test_lock); list_add(&nfit_res->list, &t->resources); spin_unlock(&nfit_test_lock); return nfit_res->buf; err: if (*dma && size >= DIMM_SIZE) gen_pool_free(nfit_pool, *dma, size); if (buf) vfree(buf); kfree(nfit_res); return NULL; } static void *test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma) { struct genpool_data_align data = { .align = SZ_128M, }; void *buf = vmalloc(size); if (size >= DIMM_SIZE) *dma = gen_pool_alloc_algo(nfit_pool, size, gen_pool_first_fit_align, &data); else *dma = (unsigned long) buf; return __test_alloc(t, size, dma, buf); } static struct nfit_test_resource *nfit_test_lookup(resource_size_t addr) { int i; for (i = 0; i < ARRAY_SIZE(instances); i++) { struct nfit_test_resource *n, *nfit_res = NULL; struct nfit_test *t = instances[i]; if (!t) continue; spin_lock(&nfit_test_lock); list_for_each_entry(n, &t->resources, list) { if (addr >= n->res.start && (addr < n->res.start + resource_size(&n->res))) { nfit_res = n; break; } else if (addr >= (unsigned long) n->buf && (addr < (unsigned long) n->buf + resource_size(&n->res))) { nfit_res = n; break; } } spin_unlock(&nfit_test_lock); if (nfit_res) return nfit_res; } return NULL; } static int ars_state_init(struct device *dev, struct ars_state *ars_state) { /* for testing, only store up to n records that fit within 4k */ ars_state->ars_status = devm_kzalloc(dev, sizeof(struct nd_cmd_ars_status) + SZ_4K, GFP_KERNEL); if (!ars_state->ars_status) return -ENOMEM; spin_lock_init(&ars_state->lock); return 0; } static void put_dimms(void *data) { struct nfit_test *t = data; int i; for (i = 0; i < t->num_dcr; i++) if (t->dimm_dev[i]) device_unregister(t->dimm_dev[i]); } static struct class *nfit_test_dimm; static int dimm_name_to_id(struct device *dev) { int dimm; if (sscanf(dev_name(dev), "test_dimm%d", &dimm) != 1) return -ENXIO; return dimm; } static ssize_t handle_show(struct device *dev, struct device_attribute *attr, char *buf) { int dimm = dimm_name_to_id(dev); if (dimm < 0) return dimm; return sprintf(buf, "%#x\n", handle[dimm]); } DEVICE_ATTR_RO(handle); static ssize_t fail_cmd_show(struct device *dev, struct device_attribute *attr, char *buf) { int dimm = dimm_name_to_id(dev); if (dimm < 0) return dimm; return sprintf(buf, "%#lx\n", dimm_fail_cmd_flags[dimm]); } static ssize_t fail_cmd_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int dimm = dimm_name_to_id(dev); unsigned long val; ssize_t rc; if (dimm < 0) return dimm; rc = kstrtol(buf, 0, &val); if (rc) return rc; dimm_fail_cmd_flags[dimm] = val; return size; } static DEVICE_ATTR_RW(fail_cmd); static ssize_t fail_cmd_code_show(struct device *dev, struct device_attribute *attr, char *buf) { int dimm = dimm_name_to_id(dev); if (dimm < 0) return dimm; return sprintf(buf, "%d\n", dimm_fail_cmd_code[dimm]); } static ssize_t fail_cmd_code_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int dimm = dimm_name_to_id(dev); unsigned long val; ssize_t rc; if (dimm < 0) return dimm; rc = kstrtol(buf, 0, &val); if (rc) return rc; dimm_fail_cmd_code[dimm] = val; return size; } static DEVICE_ATTR_RW(fail_cmd_code); static ssize_t lock_dimm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int dimm = dimm_name_to_id(dev); struct nfit_test_sec *sec = &dimm_sec_info[dimm]; sec->state = ND_INTEL_SEC_STATE_ENABLED | ND_INTEL_SEC_STATE_LOCKED; return size; } static DEVICE_ATTR_WO(lock_dimm); static struct attribute *nfit_test_dimm_attributes[] = { &dev_attr_fail_cmd.attr, &dev_attr_fail_cmd_code.attr, &dev_attr_handle.attr, &dev_attr_lock_dimm.attr, NULL, }; static struct attribute_group nfit_test_dimm_attribute_group = { .attrs = nfit_test_dimm_attributes, }; static const struct attribute_group *nfit_test_dimm_attribute_groups[] = { &nfit_test_dimm_attribute_group, NULL, }; static int nfit_test_dimm_init(struct nfit_test *t) { int i; if (devm_add_action_or_reset(&t->pdev.dev, put_dimms, t)) return -ENOMEM; for (i = 0; i < t->num_dcr; i++) { t->dimm_dev[i] = device_create_with_groups(nfit_test_dimm, &t->pdev.dev, 0, NULL, nfit_test_dimm_attribute_groups, "test_dimm%d", i + t->dcr_idx); if (!t->dimm_dev[i]) return -ENOMEM; } return 0; } static void security_init(struct nfit_test *t) { int i; for (i = 0; i < t->num_dcr; i++) { struct nfit_test_sec *sec = &dimm_sec_info[i]; sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED; } } static void smart_init(struct nfit_test *t) { int i; const struct nd_intel_smart_threshold smart_t_data = { .alarm_control = ND_INTEL_SMART_SPARE_TRIP | ND_INTEL_SMART_TEMP_TRIP, .media_temperature = 40 * 16, .ctrl_temperature = 30 * 16, .spares = 5, }; for (i = 0; i < t->num_dcr; i++) { memcpy(&t->smart[i], &smart_def, sizeof(smart_def)); memcpy(&t->smart_threshold[i], &smart_t_data, sizeof(smart_t_data)); } } static int nfit_test0_alloc(struct nfit_test *t) { size_t nfit_size = sizeof(struct acpi_nfit_system_address) * NUM_SPA + sizeof(struct acpi_nfit_memory_map) * NUM_MEM + sizeof(struct acpi_nfit_control_region) * NUM_DCR + offsetof(struct acpi_nfit_control_region, window_size) * NUM_DCR + sizeof(struct acpi_nfit_data_region) * NUM_BDW + (sizeof(struct acpi_nfit_flush_address) + sizeof(u64) * NUM_HINTS) * NUM_DCR + sizeof(struct acpi_nfit_capabilities); int i; t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma); if (!t->nfit_buf) return -ENOMEM; t->nfit_size = nfit_size; t->spa_set[0] = test_alloc(t, SPA0_SIZE, &t->spa_set_dma[0]); if (!t->spa_set[0]) return -ENOMEM; t->spa_set[1] = test_alloc(t, SPA1_SIZE, &t->spa_set_dma[1]); if (!t->spa_set[1]) return -ENOMEM; t->spa_set[2] = test_alloc(t, SPA0_SIZE, &t->spa_set_dma[2]); if (!t->spa_set[2]) return -ENOMEM; for (i = 0; i < t->num_dcr; i++) { t->dimm[i] = test_alloc(t, DIMM_SIZE, &t->dimm_dma[i]); if (!t->dimm[i]) return -ENOMEM; t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]); if (!t->label[i]) return -ENOMEM; sprintf(t->label[i], "label%d", i); t->flush[i] = test_alloc(t, max(PAGE_SIZE, sizeof(u64) * NUM_HINTS), &t->flush_dma[i]); if (!t->flush[i]) return -ENOMEM; } for (i = 0; i < t->num_dcr; i++) { t->dcr[i] = test_alloc(t, LABEL_SIZE, &t->dcr_dma[i]); if (!t->dcr[i]) return -ENOMEM; } t->_fit = test_alloc(t, sizeof(union acpi_object **), &t->_fit_dma); if (!t->_fit) return -ENOMEM; if (nfit_test_dimm_init(t)) return -ENOMEM; smart_init(t); security_init(t); return ars_state_init(&t->pdev.dev, &t->ars_state); } static int nfit_test1_alloc(struct nfit_test *t) { size_t nfit_size = sizeof(struct acpi_nfit_system_address) * 2 + sizeof(struct acpi_nfit_memory_map) * 2 + offsetof(struct acpi_nfit_control_region, window_size) * 2; int i; t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma); if (!t->nfit_buf) return -ENOMEM; t->nfit_size = nfit_size; t->spa_set[0] = test_alloc(t, SPA2_SIZE, &t->spa_set_dma[0]); if (!t->spa_set[0]) return -ENOMEM; for (i = 0; i < t->num_dcr; i++) { t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]); if (!t->label[i]) return -ENOMEM; sprintf(t->label[i], "label%d", i); } t->spa_set[1] = test_alloc(t, SPA_VCD_SIZE, &t->spa_set_dma[1]); if (!t->spa_set[1]) return -ENOMEM; if (nfit_test_dimm_init(t)) return -ENOMEM; smart_init(t); return ars_state_init(&t->pdev.dev, &t->ars_state); } static void dcr_common_init(struct acpi_nfit_control_region *dcr) { dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->valid_fields = 1; dcr->manufacturing_location = 0xa; dcr->manufacturing_date = cpu_to_be16(2016); } static void nfit_test0_setup(struct nfit_test *t) { const int flush_hint_size = sizeof(struct acpi_nfit_flush_address) + (sizeof(u64) * NUM_HINTS); struct acpi_nfit_desc *acpi_desc; struct acpi_nfit_memory_map *memdev; void *nfit_buf = t->nfit_buf; struct acpi_nfit_system_address *spa; struct acpi_nfit_control_region *dcr; struct acpi_nfit_data_region *bdw; struct acpi_nfit_flush_address *flush; struct acpi_nfit_capabilities *pcap; unsigned int offset = 0, i; /* * spa0 (interleave first half of dimm0 and dimm1, note storage * does not actually alias the related block-data-window * regions) */ spa = nfit_buf; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 0+1; spa->address = t->spa_set_dma[0]; spa->length = SPA0_SIZE; offset += spa->header.length; /* * spa1 (interleave last half of the 4 DIMMS, note storage * does not actually alias the related block-data-window * regions) */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 1+1; spa->address = t->spa_set_dma[1]; spa->length = SPA1_SIZE; offset += spa->header.length; /* spa2 (dcr0) dimm0 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 2+1; spa->address = t->dcr_dma[0]; spa->length = DCR_SIZE; offset += spa->header.length; /* spa3 (dcr1) dimm1 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 3+1; spa->address = t->dcr_dma[1]; spa->length = DCR_SIZE; offset += spa->header.length; /* spa4 (dcr2) dimm2 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 4+1; spa->address = t->dcr_dma[2]; spa->length = DCR_SIZE; offset += spa->header.length; /* spa5 (dcr3) dimm3 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 5+1; spa->address = t->dcr_dma[3]; spa->length = DCR_SIZE; offset += spa->header.length; /* spa6 (bdw for dcr0) dimm0 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 6+1; spa->address = t->dimm_dma[0]; spa->length = DIMM_SIZE; offset += spa->header.length; /* spa7 (bdw for dcr1) dimm1 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 7+1; spa->address = t->dimm_dma[1]; spa->length = DIMM_SIZE; offset += spa->header.length; /* spa8 (bdw for dcr2) dimm2 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 8+1; spa->address = t->dimm_dma[2]; spa->length = DIMM_SIZE; offset += spa->header.length; /* spa9 (bdw for dcr3) dimm3 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 9+1; spa->address = t->dimm_dma[3]; spa->length = DIMM_SIZE; offset += spa->header.length; /* mem-region0 (spa0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 4+1; memdev->region_size = SPA0_SIZE/2; memdev->region_offset = 1; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 2; offset += memdev->header.length; /* mem-region1 (spa0, dimm1) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 5+1; memdev->region_size = SPA0_SIZE/2; memdev->region_offset = (1 << 8); memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 2; memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED; offset += memdev->header.length; /* mem-region2 (spa1, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 1; memdev->range_index = 1+1; memdev->region_index = 4+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = (1 << 16); memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED; offset += memdev->header.length; /* mem-region3 (spa1, dimm1) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 1; memdev->range_index = 1+1; memdev->region_index = 5+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = (1 << 24); memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; offset += memdev->header.length; /* mem-region4 (spa1, dimm2) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 1+1; memdev->region_index = 6+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = (1ULL << 32); memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED; offset += memdev->header.length; /* mem-region5 (spa1, dimm3) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 1+1; memdev->region_index = 7+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = (1ULL << 40); memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; offset += memdev->header.length; /* mem-region6 (spa/dcr0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 2+1; memdev->region_index = 0+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region7 (spa/dcr1, dimm1) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 3+1; memdev->region_index = 1+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region8 (spa/dcr2, dimm2) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 4+1; memdev->region_index = 2+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region9 (spa/dcr3, dimm3) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 5+1; memdev->region_index = 3+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region10 (spa/bdw0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 6+1; memdev->region_index = 0+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region11 (spa/bdw1, dimm1) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 7+1; memdev->region_index = 1+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region12 (spa/bdw2, dimm2) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 8+1; memdev->region_index = 2+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region13 (spa/dcr3, dimm3) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 9+1; memdev->region_index = 3+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED; offset += memdev->header.length; /* dcr-descriptor0: blk */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(*dcr); dcr->region_index = 0+1; dcr_common_init(dcr); dcr->serial_number = ~handle[0]; dcr->code = NFIT_FIC_BLK; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset += dcr->header.length; /* dcr-descriptor1: blk */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(*dcr); dcr->region_index = 1+1; dcr_common_init(dcr); dcr->serial_number = ~handle[1]; dcr->code = NFIT_FIC_BLK; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset += dcr->header.length; /* dcr-descriptor2: blk */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(*dcr); dcr->region_index = 2+1; dcr_common_init(dcr); dcr->serial_number = ~handle[2]; dcr->code = NFIT_FIC_BLK; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset += dcr->header.length; /* dcr-descriptor3: blk */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(*dcr); dcr->region_index = 3+1; dcr_common_init(dcr); dcr->serial_number = ~handle[3]; dcr->code = NFIT_FIC_BLK; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset += dcr->header.length; /* dcr-descriptor0: pmem */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 4+1; dcr_common_init(dcr); dcr->serial_number = ~handle[0]; dcr->code = NFIT_FIC_BYTEN; dcr->windows = 0; offset += dcr->header.length; /* dcr-descriptor1: pmem */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 5+1; dcr_common_init(dcr); dcr->serial_number = ~handle[1]; dcr->code = NFIT_FIC_BYTEN; dcr->windows = 0; offset += dcr->header.length; /* dcr-descriptor2: pmem */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 6+1; dcr_common_init(dcr); dcr->serial_number = ~handle[2]; dcr->code = NFIT_FIC_BYTEN; dcr->windows = 0; offset += dcr->header.length; /* dcr-descriptor3: pmem */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 7+1; dcr_common_init(dcr); dcr->serial_number = ~handle[3]; dcr->code = NFIT_FIC_BYTEN; dcr->windows = 0; offset += dcr->header.length; /* bdw0 (spa/dcr0, dimm0) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(*bdw); bdw->region_index = 0+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset += bdw->header.length; /* bdw1 (spa/dcr1, dimm1) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(*bdw); bdw->region_index = 1+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset += bdw->header.length; /* bdw2 (spa/dcr2, dimm2) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(*bdw); bdw->region_index = 2+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset += bdw->header.length; /* bdw3 (spa/dcr3, dimm3) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(*bdw); bdw->region_index = 3+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset += bdw->header.length; /* flush0 (dimm0) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = flush_hint_size; flush->device_handle = handle[0]; flush->hint_count = NUM_HINTS; for (i = 0; i < NUM_HINTS; i++) flush->hint_address[i] = t->flush_dma[0] + i * sizeof(u64); offset += flush->header.length; /* flush1 (dimm1) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = flush_hint_size; flush->device_handle = handle[1]; flush->hint_count = NUM_HINTS; for (i = 0; i < NUM_HINTS; i++) flush->hint_address[i] = t->flush_dma[1] + i * sizeof(u64); offset += flush->header.length; /* flush2 (dimm2) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = flush_hint_size; flush->device_handle = handle[2]; flush->hint_count = NUM_HINTS; for (i = 0; i < NUM_HINTS; i++) flush->hint_address[i] = t->flush_dma[2] + i * sizeof(u64); offset += flush->header.length; /* flush3 (dimm3) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = flush_hint_size; flush->device_handle = handle[3]; flush->hint_count = NUM_HINTS; for (i = 0; i < NUM_HINTS; i++) flush->hint_address[i] = t->flush_dma[3] + i * sizeof(u64); offset += flush->header.length; /* platform capabilities */ pcap = nfit_buf + offset; pcap->header.type = ACPI_NFIT_TYPE_CAPABILITIES; pcap->header.length = sizeof(*pcap); pcap->highest_capability = 1; pcap->capabilities = ACPI_NFIT_CAPABILITY_MEM_FLUSH; offset += pcap->header.length; if (t->setup_hotplug) { /* dcr-descriptor4: blk */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(*dcr); dcr->region_index = 8+1; dcr_common_init(dcr); dcr->serial_number = ~handle[4]; dcr->code = NFIT_FIC_BLK; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset += dcr->header.length; /* dcr-descriptor4: pmem */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 9+1; dcr_common_init(dcr); dcr->serial_number = ~handle[4]; dcr->code = NFIT_FIC_BYTEN; dcr->windows = 0; offset += dcr->header.length; /* bdw4 (spa/dcr4, dimm4) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(*bdw); bdw->region_index = 8+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset += bdw->header.length; /* spa10 (dcr4) dimm4 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 10+1; spa->address = t->dcr_dma[4]; spa->length = DCR_SIZE; offset += spa->header.length; /* * spa11 (single-dimm interleave for hotplug, note storage * does not actually alias the related block-data-window * regions) */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 11+1; spa->address = t->spa_set_dma[2]; spa->length = SPA0_SIZE; offset += spa->header.length; /* spa12 (bdw for dcr4) dimm4 */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 12+1; spa->address = t->dimm_dma[4]; spa->length = DIMM_SIZE; offset += spa->header.length; /* mem-region14 (spa/dcr4, dimm4) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[4]; memdev->physical_id = 4; memdev->region_id = 0; memdev->range_index = 10+1; memdev->region_index = 8+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* mem-region15 (spa11, dimm4) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[4]; memdev->physical_id = 4; memdev->region_id = 0; memdev->range_index = 11+1; memdev->region_index = 9+1; memdev->region_size = SPA0_SIZE; memdev->region_offset = (1ULL << 48); memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED; offset += memdev->header.length; /* mem-region16 (spa/bdw4, dimm4) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[4]; memdev->physical_id = 4; memdev->region_id = 0; memdev->range_index = 12+1; memdev->region_index = 8+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset += memdev->header.length; /* flush3 (dimm4) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = flush_hint_size; flush->device_handle = handle[4]; flush->hint_count = NUM_HINTS; for (i = 0; i < NUM_HINTS; i++) flush->hint_address[i] = t->flush_dma[4] + i * sizeof(u64); offset += flush->header.length; /* sanity check to make sure we've filled the buffer */ WARN_ON(offset != t->nfit_size); } t->nfit_filled = offset; post_ars_status(&t->ars_state, &t->badrange, t->spa_set_dma[0], SPA0_SIZE); acpi_desc = &t->acpi_desc; set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_SMART, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_SMART_THRESHOLD, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_SMART_SET_THRESHOLD, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_SMART_INJECT, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_ARS_START, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_CALL, &acpi_desc->bus_cmd_force_en); set_bit(NFIT_CMD_TRANSLATE_SPA, &acpi_desc->bus_nfit_cmd_force_en); set_bit(NFIT_CMD_ARS_INJECT_SET, &acpi_desc->bus_nfit_cmd_force_en); set_bit(NFIT_CMD_ARS_INJECT_CLEAR, &acpi_desc->bus_nfit_cmd_force_en); set_bit(NFIT_CMD_ARS_INJECT_GET, &acpi_desc->bus_nfit_cmd_force_en); set_bit(ND_INTEL_FW_GET_INFO, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_FW_START_UPDATE, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_FW_SEND_DATA, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_FW_FINISH_UPDATE, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_FW_FINISH_QUERY, &acpi_desc->dimm_cmd_force_en); set_bit(ND_INTEL_ENABLE_LSS_STATUS, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_GET_SECURITY_STATE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_SET_PASSPHRASE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_DISABLE_PASSPHRASE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_UNLOCK_UNIT, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_FREEZE_LOCK, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_SECURE_ERASE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_OVERWRITE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_QUERY_OVERWRITE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_SET_MASTER_PASSPHRASE, &acpi_desc->dimm_cmd_force_en); set_bit(NVDIMM_INTEL_MASTER_SECURE_ERASE, &acpi_desc->dimm_cmd_force_en); } static void nfit_test1_setup(struct nfit_test *t) { size_t offset; void *nfit_buf = t->nfit_buf; struct acpi_nfit_memory_map *memdev; struct acpi_nfit_control_region *dcr; struct acpi_nfit_system_address *spa; struct acpi_nfit_desc *acpi_desc; offset = 0; /* spa0 (flat range with no bdw aliasing) */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 0+1; spa->address = t->spa_set_dma[0]; spa->length = SPA2_SIZE; offset += spa->header.length; /* virtual cd region */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_VCD), 16); spa->range_index = 0; spa->address = t->spa_set_dma[1]; spa->length = SPA_VCD_SIZE; offset += spa->header.length; /* mem-region0 (spa0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[5]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 0+1; memdev->region_size = SPA2_SIZE; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; memdev->flags = ACPI_NFIT_MEM_SAVE_FAILED | ACPI_NFIT_MEM_RESTORE_FAILED | ACPI_NFIT_MEM_FLUSH_FAILED | ACPI_NFIT_MEM_HEALTH_OBSERVED | ACPI_NFIT_MEM_NOT_ARMED; offset += memdev->header.length; /* dcr-descriptor0 */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 0+1; dcr_common_init(dcr); dcr->serial_number = ~handle[5]; dcr->code = NFIT_FIC_BYTE; dcr->windows = 0; offset += dcr->header.length; memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[6]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 0; memdev->region_index = 0+2; memdev->region_size = SPA2_SIZE; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; memdev->flags = ACPI_NFIT_MEM_MAP_FAILED; offset += memdev->header.length; /* dcr-descriptor1 */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = offsetof(struct acpi_nfit_control_region, window_size); dcr->region_index = 0+2; dcr_common_init(dcr); dcr->serial_number = ~handle[6]; dcr->code = NFIT_FIC_BYTE; dcr->windows = 0; offset += dcr->header.length; /* sanity check to make sure we've filled the buffer */ WARN_ON(offset != t->nfit_size); t->nfit_filled = offset; post_ars_status(&t->ars_state, &t->badrange, t->spa_set_dma[0], SPA2_SIZE); acpi_desc = &t->acpi_desc; set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_ARS_START, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_cmd_force_en); set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_cmd_force_en); set_bit(ND_INTEL_ENABLE_LSS_STATUS, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en); set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en); } static int nfit_test_blk_do_io(struct nd_blk_region *ndbr, resource_size_t dpa, void *iobuf, u64 len, int rw) { struct nfit_blk *nfit_blk = ndbr->blk_provider_data; struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; struct nd_region *nd_region = &ndbr->nd_region; unsigned int lane; lane = nd_region_acquire_lane(nd_region); if (rw) memcpy(mmio->addr.base + dpa, iobuf, len); else { memcpy(iobuf, mmio->addr.base + dpa, len); /* give us some some coverage of the arch_invalidate_pmem() API */ arch_invalidate_pmem(mmio->addr.base + dpa, len); } nd_region_release_lane(nd_region, lane); return 0; } static unsigned long nfit_ctl_handle; union acpi_object *result; static union acpi_object *nfit_test_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4) { if (handle != &nfit_ctl_handle) return ERR_PTR(-ENXIO); return result; } static int setup_result(void *buf, size_t size) { result = kmalloc(sizeof(union acpi_object) + size, GFP_KERNEL); if (!result) return -ENOMEM; result->package.type = ACPI_TYPE_BUFFER, result->buffer.pointer = (void *) (result + 1); result->buffer.length = size; memcpy(result->buffer.pointer, buf, size); memset(buf, 0, size); return 0; } static int nfit_ctl_test(struct device *dev) { int rc, cmd_rc; struct nvdimm *nvdimm; struct acpi_device *adev; struct nfit_mem *nfit_mem; struct nd_ars_record *record; struct acpi_nfit_desc *acpi_desc; const u64 test_val = 0x0123456789abcdefULL; unsigned long mask, cmd_size, offset; union { struct nd_cmd_get_config_size cfg_size; struct nd_cmd_clear_error clear_err; struct nd_cmd_ars_status ars_stat; struct nd_cmd_ars_cap ars_cap; char buf[sizeof(struct nd_cmd_ars_status) + sizeof(struct nd_ars_record)]; } cmds; adev = devm_kzalloc(dev, sizeof(*adev), GFP_KERNEL); if (!adev) return -ENOMEM; *adev = (struct acpi_device) { .handle = &nfit_ctl_handle, .dev = { .init_name = "test-adev", }, }; acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return -ENOMEM; *acpi_desc = (struct acpi_nfit_desc) { .nd_desc = { .cmd_mask = 1UL << ND_CMD_ARS_CAP | 1UL << ND_CMD_ARS_START | 1UL << ND_CMD_ARS_STATUS | 1UL << ND_CMD_CLEAR_ERROR | 1UL << ND_CMD_CALL, .module = THIS_MODULE, .provider_name = "ACPI.NFIT", .ndctl = acpi_nfit_ctl, .bus_dsm_mask = 1UL << NFIT_CMD_TRANSLATE_SPA | 1UL << NFIT_CMD_ARS_INJECT_SET | 1UL << NFIT_CMD_ARS_INJECT_CLEAR | 1UL << NFIT_CMD_ARS_INJECT_GET, }, .dev = &adev->dev, }; nfit_mem = devm_kzalloc(dev, sizeof(*nfit_mem), GFP_KERNEL); if (!nfit_mem) return -ENOMEM; mask = 1UL << ND_CMD_SMART | 1UL << ND_CMD_SMART_THRESHOLD | 1UL << ND_CMD_DIMM_FLAGS | 1UL << ND_CMD_GET_CONFIG_SIZE | 1UL << ND_CMD_GET_CONFIG_DATA | 1UL << ND_CMD_SET_CONFIG_DATA | 1UL << ND_CMD_VENDOR; *nfit_mem = (struct nfit_mem) { .adev = adev, .family = NVDIMM_FAMILY_INTEL, .dsm_mask = mask, }; nvdimm = devm_kzalloc(dev, sizeof(*nvdimm), GFP_KERNEL); if (!nvdimm) return -ENOMEM; *nvdimm = (struct nvdimm) { .provider_data = nfit_mem, .cmd_mask = mask, .dev = { .init_name = "test-dimm", }, }; /* basic checkout of a typical 'get config size' command */ cmd_size = sizeof(cmds.cfg_size); cmds.cfg_size = (struct nd_cmd_get_config_size) { .status = 0, .config_size = SZ_128K, .max_xfer = SZ_4K, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, nvdimm, ND_CMD_GET_CONFIG_SIZE, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc || cmds.cfg_size.status != 0 || cmds.cfg_size.config_size != SZ_128K || cmds.cfg_size.max_xfer != SZ_4K) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test ars_status with zero output */ cmd_size = offsetof(struct nd_cmd_ars_status, address); cmds.ars_stat = (struct nd_cmd_ars_status) { .out_length = 0, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test ars_cap with benign extended status */ cmd_size = sizeof(cmds.ars_cap); cmds.ars_cap = (struct nd_cmd_ars_cap) { .status = ND_ARS_PERSISTENT << 16, }; offset = offsetof(struct nd_cmd_ars_cap, status); rc = setup_result(cmds.buf + offset, cmd_size - offset); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_CAP, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test ars_status with 'status' trimmed from 'out_length' */ cmd_size = sizeof(cmds.ars_stat) + sizeof(struct nd_ars_record); cmds.ars_stat = (struct nd_cmd_ars_status) { .out_length = cmd_size - 4, }; record = &cmds.ars_stat.records[0]; *record = (struct nd_ars_record) { .length = test_val, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc || record->length != test_val) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test ars_status with 'Output (Size)' including 'status' */ cmd_size = sizeof(cmds.ars_stat) + sizeof(struct nd_ars_record); cmds.ars_stat = (struct nd_cmd_ars_status) { .out_length = cmd_size, }; record = &cmds.ars_stat.records[0]; *record = (struct nd_ars_record) { .length = test_val, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc || record->length != test_val) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test extended status for get_config_size results in failure */ cmd_size = sizeof(cmds.cfg_size); cmds.cfg_size = (struct nd_cmd_get_config_size) { .status = 1 << 16, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, nvdimm, ND_CMD_GET_CONFIG_SIZE, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc >= 0) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } /* test clear error */ cmd_size = sizeof(cmds.clear_err); cmds.clear_err = (struct nd_cmd_clear_error) { .length = 512, .cleared = 512, }; rc = setup_result(cmds.buf, cmd_size); if (rc) return rc; rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_CLEAR_ERROR, cmds.buf, cmd_size, &cmd_rc); if (rc < 0 || cmd_rc) { dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n", __func__, __LINE__, rc, cmd_rc); return -EIO; } return 0; } static int nfit_test_probe(struct platform_device *pdev) { struct nvdimm_bus_descriptor *nd_desc; struct acpi_nfit_desc *acpi_desc; struct device *dev = &pdev->dev; struct nfit_test *nfit_test; struct nfit_mem *nfit_mem; union acpi_object *obj; int rc; if (strcmp(dev_name(&pdev->dev), "nfit_test.0") == 0) { rc = nfit_ctl_test(&pdev->dev); if (rc) return rc; } nfit_test = to_nfit_test(&pdev->dev); /* common alloc */ if (nfit_test->num_dcr) { int num = nfit_test->num_dcr; nfit_test->dimm = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->dimm_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->flush = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->flush_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->label = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->label_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->dcr = devm_kcalloc(dev, num, sizeof(struct nfit_test_dcr *), GFP_KERNEL); nfit_test->dcr_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->smart = devm_kcalloc(dev, num, sizeof(struct nd_intel_smart), GFP_KERNEL); nfit_test->smart_threshold = devm_kcalloc(dev, num, sizeof(struct nd_intel_smart_threshold), GFP_KERNEL); nfit_test->fw = devm_kcalloc(dev, num, sizeof(struct nfit_test_fw), GFP_KERNEL); if (nfit_test->dimm && nfit_test->dimm_dma && nfit_test->label && nfit_test->label_dma && nfit_test->dcr && nfit_test->dcr_dma && nfit_test->flush && nfit_test->flush_dma && nfit_test->fw) /* pass */; else return -ENOMEM; } if (nfit_test->num_pm) { int num = nfit_test->num_pm; nfit_test->spa_set = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->spa_set_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); if (nfit_test->spa_set && nfit_test->spa_set_dma) /* pass */; else return -ENOMEM; } /* per-nfit specific alloc */ if (nfit_test->alloc(nfit_test)) return -ENOMEM; nfit_test->setup(nfit_test); acpi_desc = &nfit_test->acpi_desc; acpi_nfit_desc_init(acpi_desc, &pdev->dev); acpi_desc->blk_do_io = nfit_test_blk_do_io; nd_desc = &acpi_desc->nd_desc; nd_desc->provider_name = NULL; nd_desc->module = THIS_MODULE; nd_desc->ndctl = nfit_test_ctl; rc = acpi_nfit_init(acpi_desc, nfit_test->nfit_buf, nfit_test->nfit_filled); if (rc) return rc; rc = devm_add_action_or_reset(&pdev->dev, acpi_nfit_shutdown, acpi_desc); if (rc) return rc; if (nfit_test->setup != nfit_test0_setup) return 0; nfit_test->setup_hotplug = 1; nfit_test->setup(nfit_test); obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (!obj) return -ENOMEM; obj->type = ACPI_TYPE_BUFFER; obj->buffer.length = nfit_test->nfit_size; obj->buffer.pointer = nfit_test->nfit_buf; *(nfit_test->_fit) = obj; __acpi_nfit_notify(&pdev->dev, nfit_test, 0x80); /* associate dimm devices with nfit_mem data for notification testing */ mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { u32 nfit_handle = __to_nfit_memdev(nfit_mem)->device_handle; int i; for (i = 0; i < ARRAY_SIZE(handle); i++) if (nfit_handle == handle[i]) dev_set_drvdata(nfit_test->dimm_dev[i], nfit_mem); } mutex_unlock(&acpi_desc->init_mutex); return 0; } static int nfit_test_remove(struct platform_device *pdev) { return 0; } static void nfit_test_release(struct device *dev) { struct nfit_test *nfit_test = to_nfit_test(dev); kfree(nfit_test); } static const struct platform_device_id nfit_test_id[] = { { KBUILD_MODNAME }, { }, }; static struct platform_driver nfit_test_driver = { .probe = nfit_test_probe, .remove = nfit_test_remove, .driver = { .name = KBUILD_MODNAME, }, .id_table = nfit_test_id, }; static char mcsafe_buf[PAGE_SIZE] __attribute__((__aligned__(PAGE_SIZE))); enum INJECT { INJECT_NONE, INJECT_SRC, INJECT_DST, }; static void mcsafe_test_init(char *dst, char *src, size_t size) { size_t i; memset(dst, 0xff, size); for (i = 0; i < size; i++) src[i] = (char) i; } static bool mcsafe_test_validate(unsigned char *dst, unsigned char *src, size_t size, unsigned long rem) { size_t i; for (i = 0; i < size - rem; i++) if (dst[i] != (unsigned char) i) { pr_info_once("%s:%d: offset: %zd got: %#x expect: %#x\n", __func__, __LINE__, i, dst[i], (unsigned char) i); return false; } for (i = size - rem; i < size; i++) if (dst[i] != 0xffU) { pr_info_once("%s:%d: offset: %zd got: %#x expect: 0xff\n", __func__, __LINE__, i, dst[i]); return false; } return true; } void mcsafe_test(void) { char *inject_desc[] = { "none", "source", "destination" }; enum INJECT inj; if (IS_ENABLED(CONFIG_MCSAFE_TEST)) { pr_info("%s: run...\n", __func__); } else { pr_info("%s: disabled, skip.\n", __func__); return; } for (inj = INJECT_NONE; inj <= INJECT_DST; inj++) { int i; pr_info("%s: inject: %s\n", __func__, inject_desc[inj]); for (i = 0; i < 512; i++) { unsigned long expect, rem; void *src, *dst; bool valid; switch (inj) { case INJECT_NONE: mcsafe_inject_src(NULL); mcsafe_inject_dst(NULL); dst = &mcsafe_buf[2048]; src = &mcsafe_buf[1024 - i]; expect = 0; break; case INJECT_SRC: mcsafe_inject_src(&mcsafe_buf[1024]); mcsafe_inject_dst(NULL); dst = &mcsafe_buf[2048]; src = &mcsafe_buf[1024 - i]; expect = 512 - i; break; case INJECT_DST: mcsafe_inject_src(NULL); mcsafe_inject_dst(&mcsafe_buf[2048]); dst = &mcsafe_buf[2048 - i]; src = &mcsafe_buf[1024]; expect = 512 - i; break; } mcsafe_test_init(dst, src, 512); rem = __memcpy_mcsafe(dst, src, 512); valid = mcsafe_test_validate(dst, src, 512, expect); if (rem == expect && valid) continue; pr_info("%s: copy(%#lx, %#lx, %d) off: %d rem: %ld %s expect: %ld\n", __func__, ((unsigned long) dst) & ~PAGE_MASK, ((unsigned long ) src) & ~PAGE_MASK, 512, i, rem, valid ? "valid" : "bad", expect); } } mcsafe_inject_src(NULL); mcsafe_inject_dst(NULL); } static __init int nfit_test_init(void) { int rc, i; pmem_test(); libnvdimm_test(); acpi_nfit_test(); device_dax_test(); mcsafe_test(); nfit_test_setup(nfit_test_lookup, nfit_test_evaluate_dsm); nfit_wq = create_singlethread_workqueue("nfit"); if (!nfit_wq) return -ENOMEM; nfit_test_dimm = class_create(THIS_MODULE, "nfit_test_dimm"); if (IS_ERR(nfit_test_dimm)) { rc = PTR_ERR(nfit_test_dimm); goto err_register; } nfit_pool = gen_pool_create(ilog2(SZ_4M), NUMA_NO_NODE); if (!nfit_pool) { rc = -ENOMEM; goto err_register; } if (gen_pool_add(nfit_pool, SZ_4G, SZ_4G, NUMA_NO_NODE)) { rc = -ENOMEM; goto err_register; } for (i = 0; i < NUM_NFITS; i++) { struct nfit_test *nfit_test; struct platform_device *pdev; nfit_test = kzalloc(sizeof(*nfit_test), GFP_KERNEL); if (!nfit_test) { rc = -ENOMEM; goto err_register; } INIT_LIST_HEAD(&nfit_test->resources); badrange_init(&nfit_test->badrange); switch (i) { case 0: nfit_test->num_pm = NUM_PM; nfit_test->dcr_idx = 0; nfit_test->num_dcr = NUM_DCR; nfit_test->alloc = nfit_test0_alloc; nfit_test->setup = nfit_test0_setup; break; case 1: nfit_test->num_pm = 2; nfit_test->dcr_idx = NUM_DCR; nfit_test->num_dcr = 2; nfit_test->alloc = nfit_test1_alloc; nfit_test->setup = nfit_test1_setup; break; default: rc = -EINVAL; goto err_register; } pdev = &nfit_test->pdev; pdev->name = KBUILD_MODNAME; pdev->id = i; pdev->dev.release = nfit_test_release; rc = platform_device_register(pdev); if (rc) { put_device(&pdev->dev); goto err_register; } get_device(&pdev->dev); rc = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rc) goto err_register; instances[i] = nfit_test; INIT_WORK(&nfit_test->work, uc_error_notify); } rc = platform_driver_register(&nfit_test_driver); if (rc) goto err_register; return 0; err_register: if (nfit_pool) gen_pool_destroy(nfit_pool); destroy_workqueue(nfit_wq); for (i = 0; i < NUM_NFITS; i++) if (instances[i]) platform_device_unregister(&instances[i]->pdev); nfit_test_teardown(); for (i = 0; i < NUM_NFITS; i++) if (instances[i]) put_device(&instances[i]->pdev.dev); return rc; } static __exit void nfit_test_exit(void) { int i; flush_workqueue(nfit_wq); destroy_workqueue(nfit_wq); for (i = 0; i < NUM_NFITS; i++) platform_device_unregister(&instances[i]->pdev); platform_driver_unregister(&nfit_test_driver); nfit_test_teardown(); gen_pool_destroy(nfit_pool); for (i = 0; i < NUM_NFITS; i++) put_device(&instances[i]->pdev.dev); class_destroy(nfit_test_dimm); } module_init(nfit_test_init); module_exit(nfit_test_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1