Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Cochran | 1735 | 78.54% | 2 | 16.67% |
Dong Zhu | 336 | 15.21% | 1 | 8.33% |
Manfred Rudigier | 67 | 3.03% | 1 | 8.33% |
Christian Riesch | 24 | 1.09% | 2 | 16.67% |
Stefan Sörensen | 19 | 0.86% | 1 | 8.33% |
Nick Desaulniers | 13 | 0.59% | 1 | 8.33% |
Christopher S. Hall | 5 | 0.23% | 1 | 8.33% |
Thomas Huth | 4 | 0.18% | 1 | 8.33% |
Mahesh Khanwalkar | 3 | 0.14% | 1 | 8.33% |
Peter Foley | 3 | 0.14% | 1 | 8.33% |
Total | 2209 | 12 |
/* * PTP 1588 clock support - User space test program * * Copyright (C) 2010 OMICRON electronics GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define _GNU_SOURCE #define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */ #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <math.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/timex.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #include <linux/ptp_clock.h> #define DEVICE "/dev/ptp0" #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 #endif #ifndef CLOCK_INVALID #define CLOCK_INVALID -1 #endif /* clock_adjtime is not available in GLIBC < 2.14 */ #if !__GLIBC_PREREQ(2, 14) #include <sys/syscall.h> static int clock_adjtime(clockid_t id, struct timex *tx) { return syscall(__NR_clock_adjtime, id, tx); } #endif static clockid_t get_clockid(int fd) { #define CLOCKFD 3 return (((unsigned int) ~fd) << 3) | CLOCKFD; } static void handle_alarm(int s) { printf("received signal %d\n", s); } static int install_handler(int signum, void (*handler)(int)) { struct sigaction action; sigset_t mask; /* Unblock the signal. */ sigemptyset(&mask); sigaddset(&mask, signum); sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Install the signal handler. */ action.sa_handler = handler; action.sa_flags = 0; sigemptyset(&action.sa_mask); sigaction(signum, &action, NULL); return 0; } static long ppb_to_scaled_ppm(int ppb) { /* * The 'freq' field in the 'struct timex' is in parts per * million, but with a 16 bit binary fractional field. * Instead of calculating either one of * * scaled_ppm = (ppb / 1000) << 16 [1] * scaled_ppm = (ppb << 16) / 1000 [2] * * we simply use double precision math, in order to avoid the * truncation in [1] and the possible overflow in [2]. */ return (long) (ppb * 65.536); } static int64_t pctns(struct ptp_clock_time *t) { return t->sec * 1000000000LL + t->nsec; } static void usage(char *progname) { fprintf(stderr, "usage: %s [options]\n" " -a val request a one-shot alarm after 'val' seconds\n" " -A val request a periodic alarm every 'val' seconds\n" " -c query the ptp clock's capabilities\n" " -d name device to open\n" " -e val read 'val' external time stamp events\n" " -f val adjust the ptp clock frequency by 'val' ppb\n" " -g get the ptp clock time\n" " -h prints this message\n" " -i val index for event/trigger\n" " -k val measure the time offset between system and phc clock\n" " for 'val' times (Maximum 25)\n" " -l list the current pin configuration\n" " -L pin,val configure pin index 'pin' with function 'val'\n" " the channel index is taken from the '-i' option\n" " 'val' specifies the auxiliary function:\n" " 0 - none\n" " 1 - external time stamp\n" " 2 - periodic output\n" " -p val enable output with a period of 'val' nanoseconds\n" " -P val enable or disable (val=1|0) the system clock PPS\n" " -s set the ptp clock time from the system time\n" " -S set the system time from the ptp clock time\n" " -t val shift the ptp clock time by 'val' seconds\n" " -T val set the ptp clock time to 'val' seconds\n", progname); } int main(int argc, char *argv[]) { struct ptp_clock_caps caps; struct ptp_extts_event event; struct ptp_extts_request extts_request; struct ptp_perout_request perout_request; struct ptp_pin_desc desc; struct timespec ts; struct timex tx; static timer_t timerid; struct itimerspec timeout; struct sigevent sigevent; struct ptp_clock_time *pct; struct ptp_sys_offset *sysoff; char *progname; unsigned int i; int c, cnt, fd; char *device = DEVICE; clockid_t clkid; int adjfreq = 0x7fffffff; int adjtime = 0; int capabilities = 0; int extts = 0; int gettime = 0; int index = 0; int list_pins = 0; int oneshot = 0; int pct_offset = 0; int n_samples = 0; int periodic = 0; int perout = -1; int pin_index = -1, pin_func; int pps = -1; int seconds = 0; int settime = 0; int64_t t1, t2, tp; int64_t interval, offset; progname = strrchr(argv[0], '/'); progname = progname ? 1+progname : argv[0]; while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) { switch (c) { case 'a': oneshot = atoi(optarg); break; case 'A': periodic = atoi(optarg); break; case 'c': capabilities = 1; break; case 'd': device = optarg; break; case 'e': extts = atoi(optarg); break; case 'f': adjfreq = atoi(optarg); break; case 'g': gettime = 1; break; case 'i': index = atoi(optarg); break; case 'k': pct_offset = 1; n_samples = atoi(optarg); break; case 'l': list_pins = 1; break; case 'L': cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func); if (cnt != 2) { usage(progname); return -1; } break; case 'p': perout = atoi(optarg); break; case 'P': pps = atoi(optarg); break; case 's': settime = 1; break; case 'S': settime = 2; break; case 't': adjtime = atoi(optarg); break; case 'T': settime = 3; seconds = atoi(optarg); break; case 'h': usage(progname); return 0; case '?': default: usage(progname); return -1; } } fd = open(device, O_RDWR); if (fd < 0) { fprintf(stderr, "opening %s: %s\n", device, strerror(errno)); return -1; } clkid = get_clockid(fd); if (CLOCK_INVALID == clkid) { fprintf(stderr, "failed to read clock id\n"); return -1; } if (capabilities) { if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) { perror("PTP_CLOCK_GETCAPS"); } else { printf("capabilities:\n" " %d maximum frequency adjustment (ppb)\n" " %d programmable alarms\n" " %d external time stamp channels\n" " %d programmable periodic signals\n" " %d pulse per second\n" " %d programmable pins\n" " %d cross timestamping\n", caps.max_adj, caps.n_alarm, caps.n_ext_ts, caps.n_per_out, caps.pps, caps.n_pins, caps.cross_timestamping); } } if (0x7fffffff != adjfreq) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_FREQUENCY; tx.freq = ppb_to_scaled_ppm(adjfreq); if (clock_adjtime(clkid, &tx)) { perror("clock_adjtime"); } else { puts("frequency adjustment okay"); } } if (adjtime) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_SETOFFSET; tx.time.tv_sec = adjtime; tx.time.tv_usec = 0; if (clock_adjtime(clkid, &tx) < 0) { perror("clock_adjtime"); } else { puts("time shift okay"); } } if (gettime) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); } else { printf("clock time: %ld.%09ld or %s", ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec)); } } if (settime == 1) { clock_gettime(CLOCK_REALTIME, &ts); if (clock_settime(clkid, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (settime == 2) { clock_gettime(clkid, &ts); if (clock_settime(CLOCK_REALTIME, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (settime == 3) { ts.tv_sec = seconds; ts.tv_nsec = 0; if (clock_settime(clkid, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (extts) { memset(&extts_request, 0, sizeof(extts_request)); extts_request.index = index; extts_request.flags = PTP_ENABLE_FEATURE; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); extts = 0; } else { puts("external time stamp request okay"); } for (; extts; extts--) { cnt = read(fd, &event, sizeof(event)); if (cnt != sizeof(event)) { perror("read"); break; } printf("event index %u at %lld.%09u\n", event.index, event.t.sec, event.t.nsec); fflush(stdout); } /* Disable the feature again. */ extts_request.flags = 0; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); } } if (list_pins) { int n_pins = 0; if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) { perror("PTP_CLOCK_GETCAPS"); } else { n_pins = caps.n_pins; } for (i = 0; i < n_pins; i++) { desc.index = i; if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) { perror("PTP_PIN_GETFUNC"); break; } printf("name %s index %u func %u chan %u\n", desc.name, desc.index, desc.func, desc.chan); } } if (oneshot) { install_handler(SIGALRM, handle_alarm); /* Create a timer. */ sigevent.sigev_notify = SIGEV_SIGNAL; sigevent.sigev_signo = SIGALRM; if (timer_create(clkid, &sigevent, &timerid)) { perror("timer_create"); return -1; } /* Start the timer. */ memset(&timeout, 0, sizeof(timeout)); timeout.it_value.tv_sec = oneshot; if (timer_settime(timerid, 0, &timeout, NULL)) { perror("timer_settime"); return -1; } pause(); timer_delete(timerid); } if (periodic) { install_handler(SIGALRM, handle_alarm); /* Create a timer. */ sigevent.sigev_notify = SIGEV_SIGNAL; sigevent.sigev_signo = SIGALRM; if (timer_create(clkid, &sigevent, &timerid)) { perror("timer_create"); return -1; } /* Start the timer. */ memset(&timeout, 0, sizeof(timeout)); timeout.it_interval.tv_sec = periodic; timeout.it_value.tv_sec = periodic; if (timer_settime(timerid, 0, &timeout, NULL)) { perror("timer_settime"); return -1; } while (1) { pause(); } timer_delete(timerid); } if (perout >= 0) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); return -1; } memset(&perout_request, 0, sizeof(perout_request)); perout_request.index = index; perout_request.start.sec = ts.tv_sec + 2; perout_request.start.nsec = 0; perout_request.period.sec = 0; perout_request.period.nsec = perout; if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) { perror("PTP_PEROUT_REQUEST"); } else { puts("periodic output request okay"); } } if (pin_index >= 0) { memset(&desc, 0, sizeof(desc)); desc.index = pin_index; desc.func = pin_func; desc.chan = index; if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) { perror("PTP_PIN_SETFUNC"); } else { puts("set pin function okay"); } } if (pps != -1) { int enable = pps ? 1 : 0; if (ioctl(fd, PTP_ENABLE_PPS, enable)) { perror("PTP_ENABLE_PPS"); } else { puts("pps for system time request okay"); } } if (pct_offset) { if (n_samples <= 0 || n_samples > 25) { puts("n_samples should be between 1 and 25"); usage(progname); return -1; } sysoff = calloc(1, sizeof(*sysoff)); if (!sysoff) { perror("calloc"); return -1; } sysoff->n_samples = n_samples; if (ioctl(fd, PTP_SYS_OFFSET, sysoff)) perror("PTP_SYS_OFFSET"); else puts("system and phc clock time offset request okay"); pct = &sysoff->ts[0]; for (i = 0; i < sysoff->n_samples; i++) { t1 = pctns(pct+2*i); tp = pctns(pct+2*i+1); t2 = pctns(pct+2*i+2); interval = t2 - t1; offset = (t2 + t1) / 2 - tp; printf("system time: %lld.%u\n", (pct+2*i)->sec, (pct+2*i)->nsec); printf("phc time: %lld.%u\n", (pct+2*i+1)->sec, (pct+2*i+1)->nsec); printf("system time: %lld.%u\n", (pct+2*i+2)->sec, (pct+2*i+2)->nsec); printf("system/phc clock time offset is %" PRId64 " ns\n" "system clock time delay is %" PRId64 " ns\n", offset, interval); } free(sysoff); } close(fd); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1