Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefano Stabellini | 986 | 57.83% | 22 | 37.29% |
Shannon Zhao | 392 | 22.99% | 4 | 6.78% |
Julien Grall | 99 | 5.81% | 8 | 13.56% |
Ian Campbell | 54 | 3.17% | 3 | 5.08% |
Richard Cochran | 34 | 1.99% | 1 | 1.69% |
Vitaly Kuznetsov | 33 | 1.94% | 4 | 6.78% |
Konrad Rzeszutek Wilk | 31 | 1.82% | 2 | 3.39% |
Ard Biesheuvel | 21 | 1.23% | 1 | 1.69% |
Rob Herring | 11 | 0.65% | 1 | 1.69% |
Roger Pau Monné | 9 | 0.53% | 1 | 1.69% |
Juergen Gross | 8 | 0.47% | 3 | 5.08% |
Boris Ostrovsky | 6 | 0.35% | 1 | 1.69% |
Paul Durrant | 5 | 0.29% | 1 | 1.69% |
Himangi Saraogi | 5 | 0.29% | 1 | 1.69% |
David Vrabel | 5 | 0.29% | 1 | 1.69% |
Thomas Gleixner | 2 | 0.12% | 2 | 3.39% |
Chuck Tuffli | 2 | 0.12% | 1 | 1.69% |
Masami Hiramatsu | 1 | 0.06% | 1 | 1.69% |
Jason Yan | 1 | 0.06% | 1 | 1.69% |
Total | 1705 | 59 |
// SPDX-License-Identifier: GPL-2.0-only #include <xen/xen.h> #include <xen/events.h> #include <xen/grant_table.h> #include <xen/hvm.h> #include <xen/interface/vcpu.h> #include <xen/interface/xen.h> #include <xen/interface/memory.h> #include <xen/interface/hvm/params.h> #include <xen/features.h> #include <xen/platform_pci.h> #include <xen/xenbus.h> #include <xen/page.h> #include <xen/interface/sched.h> #include <xen/xen-ops.h> #include <asm/xen/hypervisor.h> #include <asm/xen/hypercall.h> #include <asm/system_misc.h> #include <asm/efi.h> #include <linux/interrupt.h> #include <linux/irqreturn.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/cpuidle.h> #include <linux/cpufreq.h> #include <linux/cpu.h> #include <linux/console.h> #include <linux/pvclock_gtod.h> #include <linux/time64.h> #include <linux/timekeeping.h> #include <linux/timekeeper_internal.h> #include <linux/acpi.h> #include <linux/mm.h> static struct start_info _xen_start_info; struct start_info *xen_start_info = &_xen_start_info; EXPORT_SYMBOL(xen_start_info); enum xen_domain_type xen_domain_type = XEN_NATIVE; EXPORT_SYMBOL(xen_domain_type); struct shared_info xen_dummy_shared_info; struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); static struct vcpu_info __percpu *xen_vcpu_info; /* Linux <-> Xen vCPU id mapping */ DEFINE_PER_CPU(uint32_t, xen_vcpu_id); EXPORT_PER_CPU_SYMBOL(xen_vcpu_id); /* These are unused until we support booting "pre-ballooned" */ unsigned long xen_released_pages; struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; static __read_mostly unsigned int xen_events_irq; uint32_t xen_start_flags; EXPORT_SYMBOL(xen_start_flags); int xen_unmap_domain_gfn_range(struct vm_area_struct *vma, int nr, struct page **pages) { return xen_xlate_unmap_gfn_range(vma, nr, pages); } EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range); static void xen_read_wallclock(struct timespec64 *ts) { u32 version; struct timespec64 now, ts_monotonic; struct shared_info *s = HYPERVISOR_shared_info; struct pvclock_wall_clock *wall_clock = &(s->wc); /* get wallclock at system boot */ do { version = wall_clock->version; rmb(); /* fetch version before time */ now.tv_sec = ((uint64_t)wall_clock->sec_hi << 32) | wall_clock->sec; now.tv_nsec = wall_clock->nsec; rmb(); /* fetch time before checking version */ } while ((wall_clock->version & 1) || (version != wall_clock->version)); /* time since system boot */ ktime_get_ts64(&ts_monotonic); *ts = timespec64_add(now, ts_monotonic); } static int xen_pvclock_gtod_notify(struct notifier_block *nb, unsigned long was_set, void *priv) { /* Protected by the calling core code serialization */ static struct timespec64 next_sync; struct xen_platform_op op; struct timespec64 now, system_time; struct timekeeper *tk = priv; now.tv_sec = tk->xtime_sec; now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); system_time = timespec64_add(now, tk->wall_to_monotonic); /* * We only take the expensive HV call when the clock was set * or when the 11 minutes RTC synchronization time elapsed. */ if (!was_set && timespec64_compare(&now, &next_sync) < 0) return NOTIFY_OK; op.cmd = XENPF_settime64; op.u.settime64.mbz = 0; op.u.settime64.secs = now.tv_sec; op.u.settime64.nsecs = now.tv_nsec; op.u.settime64.system_time = timespec64_to_ns(&system_time); (void)HYPERVISOR_platform_op(&op); /* * Move the next drift compensation time 11 minutes * ahead. That's emulating the sync_cmos_clock() update for * the hardware RTC. */ next_sync = now; next_sync.tv_sec += 11 * 60; return NOTIFY_OK; } static struct notifier_block xen_pvclock_gtod_notifier = { .notifier_call = xen_pvclock_gtod_notify, }; static int xen_starting_cpu(unsigned int cpu) { struct vcpu_register_vcpu_info info; struct vcpu_info *vcpup; int err; /* * VCPUOP_register_vcpu_info cannot be called twice for the same * vcpu, so if vcpu_info is already registered, just get out. This * can happen with cpu-hotplug. */ if (per_cpu(xen_vcpu, cpu) != NULL) goto after_register_vcpu_info; pr_info("Xen: initializing cpu%d\n", cpu); vcpup = per_cpu_ptr(xen_vcpu_info, cpu); info.mfn = percpu_to_gfn(vcpup); info.offset = xen_offset_in_page(vcpup); err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu), &info); BUG_ON(err); per_cpu(xen_vcpu, cpu) = vcpup; if (!xen_kernel_unmapped_at_usr()) xen_setup_runstate_info(cpu); after_register_vcpu_info: enable_percpu_irq(xen_events_irq, 0); return 0; } static int xen_dying_cpu(unsigned int cpu) { disable_percpu_irq(xen_events_irq); return 0; } void xen_reboot(int reason) { struct sched_shutdown r = { .reason = reason }; int rc; rc = HYPERVISOR_sched_op(SCHEDOP_shutdown, &r); BUG_ON(rc); } static void xen_restart(enum reboot_mode reboot_mode, const char *cmd) { xen_reboot(SHUTDOWN_reboot); } static void xen_power_off(void) { xen_reboot(SHUTDOWN_poweroff); } static irqreturn_t xen_arm_callback(int irq, void *arg) { xen_hvm_evtchn_do_upcall(); return IRQ_HANDLED; } static __initdata struct { const char *compat; const char *prefix; const char *version; bool found; } hyper_node = {"xen,xen", "xen,xen-", NULL, false}; static int __init fdt_find_hyper_node(unsigned long node, const char *uname, int depth, void *data) { const void *s = NULL; int len; if (depth != 1 || strcmp(uname, "hypervisor") != 0) return 0; if (of_flat_dt_is_compatible(node, hyper_node.compat)) hyper_node.found = true; s = of_get_flat_dt_prop(node, "compatible", &len); if (strlen(hyper_node.prefix) + 3 < len && !strncmp(hyper_node.prefix, s, strlen(hyper_node.prefix))) hyper_node.version = s + strlen(hyper_node.prefix); /* * Check if Xen supports EFI by checking whether there is the * "/hypervisor/uefi" node in DT. If so, runtime services are available * through proxy functions (e.g. in case of Xen dom0 EFI implementation * they call special hypercall which executes relevant EFI functions) * and that is why they are always enabled. */ if (IS_ENABLED(CONFIG_XEN_EFI)) { if ((of_get_flat_dt_subnode_by_name(node, "uefi") > 0) && !efi_runtime_disabled()) set_bit(EFI_RUNTIME_SERVICES, &efi.flags); } return 0; } /* * see Documentation/devicetree/bindings/arm/xen.txt for the * documentation of the Xen Device Tree format. */ void __init xen_early_init(void) { of_scan_flat_dt(fdt_find_hyper_node, NULL); if (!hyper_node.found) { pr_debug("No Xen support\n"); return; } if (hyper_node.version == NULL) { pr_debug("Xen version not found\n"); return; } pr_info("Xen %s support found\n", hyper_node.version); xen_domain_type = XEN_HVM_DOMAIN; xen_setup_features(); if (xen_feature(XENFEAT_dom0)) xen_start_flags |= SIF_INITDOMAIN|SIF_PRIVILEGED; if (!console_set_on_cmdline && !xen_initial_domain()) add_preferred_console("hvc", 0, NULL); } static void __init xen_acpi_guest_init(void) { #ifdef CONFIG_ACPI struct xen_hvm_param a; int interrupt, trigger, polarity; a.domid = DOMID_SELF; a.index = HVM_PARAM_CALLBACK_IRQ; if (HYPERVISOR_hvm_op(HVMOP_get_param, &a) || (a.value >> 56) != HVM_PARAM_CALLBACK_TYPE_PPI) { xen_events_irq = 0; return; } interrupt = a.value & 0xff; trigger = ((a.value >> 8) & 0x1) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; polarity = ((a.value >> 8) & 0x2) ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; xen_events_irq = acpi_register_gsi(NULL, interrupt, trigger, polarity); #endif } static void __init xen_dt_guest_init(void) { struct device_node *xen_node; xen_node = of_find_compatible_node(NULL, NULL, "xen,xen"); if (!xen_node) { pr_err("Xen support was detected before, but it has disappeared\n"); return; } xen_events_irq = irq_of_parse_and_map(xen_node, 0); } static int __init xen_guest_init(void) { struct xen_add_to_physmap xatp; struct shared_info *shared_info_page = NULL; int cpu; if (!xen_domain()) return 0; if (!acpi_disabled) xen_acpi_guest_init(); else xen_dt_guest_init(); if (!xen_events_irq) { pr_err("Xen event channel interrupt not found\n"); return -ENODEV; } /* * The fdt parsing codes have set EFI_RUNTIME_SERVICES if Xen EFI * parameters are found. Force enable runtime services. */ if (efi_enabled(EFI_RUNTIME_SERVICES)) xen_efi_runtime_setup(); shared_info_page = (struct shared_info *)get_zeroed_page(GFP_KERNEL); if (!shared_info_page) { pr_err("not enough memory\n"); return -ENOMEM; } xatp.domid = DOMID_SELF; xatp.idx = 0; xatp.space = XENMAPSPACE_shared_info; xatp.gpfn = virt_to_gfn(shared_info_page); if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) BUG(); HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info * page, we use it in the event channel upcall and in some pvclock * related functions. * The shared info contains exactly 1 CPU (the boot CPU). The guest * is required to use VCPUOP_register_vcpu_info to place vcpu info * for secondary CPUs as they are brought up. * For uniformity we use VCPUOP_register_vcpu_info even on cpu0. */ xen_vcpu_info = alloc_percpu(struct vcpu_info); if (xen_vcpu_info == NULL) return -ENOMEM; /* Direct vCPU id mapping for ARM guests. */ for_each_possible_cpu(cpu) per_cpu(xen_vcpu_id, cpu) = cpu; xen_auto_xlat_grant_frames.count = gnttab_max_grant_frames(); if (xen_xlate_map_ballooned_pages(&xen_auto_xlat_grant_frames.pfn, &xen_auto_xlat_grant_frames.vaddr, xen_auto_xlat_grant_frames.count)) { free_percpu(xen_vcpu_info); return -ENOMEM; } gnttab_init(); /* * Making sure board specific code will not set up ops for * cpu idle and cpu freq. */ disable_cpuidle(); disable_cpufreq(); xen_init_IRQ(); if (request_percpu_irq(xen_events_irq, xen_arm_callback, "events", &xen_vcpu)) { pr_err("Error request IRQ %d\n", xen_events_irq); return -EINVAL; } if (!xen_kernel_unmapped_at_usr()) xen_time_setup_guest(); if (xen_initial_domain()) pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); return cpuhp_setup_state(CPUHP_AP_ARM_XEN_STARTING, "arm/xen:starting", xen_starting_cpu, xen_dying_cpu); } early_initcall(xen_guest_init); static int __init xen_pm_init(void) { if (!xen_domain()) return -ENODEV; pm_power_off = xen_power_off; arm_pm_restart = xen_restart; if (!xen_initial_domain()) { struct timespec64 ts; xen_read_wallclock(&ts); do_settimeofday64(&ts); } return 0; } late_initcall(xen_pm_init); /* empty stubs */ void xen_arch_pre_suspend(void) { } void xen_arch_post_suspend(int suspend_cancelled) { } void xen_timer_resume(void) { } void xen_arch_resume(void) { } void xen_arch_suspend(void) { } /* In the hypercall.S file. */ EXPORT_SYMBOL_GPL(HYPERVISOR_event_channel_op); EXPORT_SYMBOL_GPL(HYPERVISOR_grant_table_op); EXPORT_SYMBOL_GPL(HYPERVISOR_xen_version); EXPORT_SYMBOL_GPL(HYPERVISOR_console_io); EXPORT_SYMBOL_GPL(HYPERVISOR_sched_op); EXPORT_SYMBOL_GPL(HYPERVISOR_hvm_op); EXPORT_SYMBOL_GPL(HYPERVISOR_memory_op); EXPORT_SYMBOL_GPL(HYPERVISOR_physdev_op); EXPORT_SYMBOL_GPL(HYPERVISOR_vcpu_op); EXPORT_SYMBOL_GPL(HYPERVISOR_tmem_op); EXPORT_SYMBOL_GPL(HYPERVISOR_platform_op_raw); EXPORT_SYMBOL_GPL(HYPERVISOR_multicall); EXPORT_SYMBOL_GPL(HYPERVISOR_vm_assist); EXPORT_SYMBOL_GPL(HYPERVISOR_dm_op); EXPORT_SYMBOL_GPL(privcmd_call);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1