Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ionela Voinescu | 581 | 49.49% | 5 | 25.00% |
Viresh Kumar | 257 | 21.89% | 4 | 20.00% |
Jeremy Linton | 211 | 17.97% | 4 | 20.00% |
Zi Shen Lim | 76 | 6.47% | 1 | 5.00% |
Atish Patra | 20 | 1.70% | 1 | 5.00% |
Mark Brown | 19 | 1.62% | 2 | 10.00% |
Valentin Schneider | 7 | 0.60% | 2 | 10.00% |
Juri Lelli | 3 | 0.26% | 1 | 5.00% |
Total | 1174 | 20 |
/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/acpi.h> #include <linux/arch_topology.h> #include <linux/cacheinfo.h> #include <linux/cpufreq.h> #include <linux/init.h> #include <linux/percpu.h> #include <asm/cpu.h> #include <asm/cputype.h> #include <asm/topology.h> void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; u64 mpidr; if (cpuid_topo->package_id != -1) goto topology_populated; mpidr = read_cpuid_mpidr(); /* Uniprocessor systems can rely on default topology values */ if (mpidr & MPIDR_UP_BITMASK) return; /* * This would be the place to create cpu topology based on MPIDR. * * However, it cannot be trusted to depict the actual topology; some * pieces of the architecture enforce an artificial cap on Aff0 values * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up * having absolutely no relationship to the actual underlying system * topology, and cannot be reasonably used as core / package ID. * * If the MT bit is set, Aff0 *could* be used to define a thread ID, but * we still wouldn't be able to obtain a sane core ID. This means we * need to entirely ignore MPIDR for any topology deduction. */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = cpuid; cpuid_topo->package_id = cpu_to_node(cpuid); pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", cpuid, cpuid_topo->package_id, cpuid_topo->core_id, cpuid_topo->thread_id, mpidr); topology_populated: update_siblings_masks(cpuid); } #ifdef CONFIG_ACPI static bool __init acpi_cpu_is_threaded(int cpu) { int is_threaded = acpi_pptt_cpu_is_thread(cpu); /* * if the PPTT doesn't have thread information, assume a homogeneous * machine and return the current CPU's thread state. */ if (is_threaded < 0) is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK; return !!is_threaded; } /* * Propagate the topology information of the processor_topology_node tree to the * cpu_topology array. */ int __init parse_acpi_topology(void) { int cpu, topology_id; if (acpi_disabled) return 0; for_each_possible_cpu(cpu) { int i, cache_id; topology_id = find_acpi_cpu_topology(cpu, 0); if (topology_id < 0) return topology_id; if (acpi_cpu_is_threaded(cpu)) { cpu_topology[cpu].thread_id = topology_id; topology_id = find_acpi_cpu_topology(cpu, 1); cpu_topology[cpu].core_id = topology_id; } else { cpu_topology[cpu].thread_id = -1; cpu_topology[cpu].core_id = topology_id; } topology_id = find_acpi_cpu_topology_package(cpu); cpu_topology[cpu].package_id = topology_id; i = acpi_find_last_cache_level(cpu); if (i > 0) { /* * this is the only part of cpu_topology that has * a direct relationship with the cache topology */ cache_id = find_acpi_cpu_cache_topology(cpu, i); if (cache_id > 0) cpu_topology[cpu].llc_id = cache_id; } } return 0; } #endif #ifdef CONFIG_ARM64_AMU_EXTN #define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0) #define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0) #else #define read_corecnt() (0UL) #define read_constcnt() (0UL) #endif #undef pr_fmt #define pr_fmt(fmt) "AMU: " fmt static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale); static DEFINE_PER_CPU(u64, arch_const_cycles_prev); static DEFINE_PER_CPU(u64, arch_core_cycles_prev); static cpumask_var_t amu_fie_cpus; void update_freq_counters_refs(void) { this_cpu_write(arch_core_cycles_prev, read_corecnt()); this_cpu_write(arch_const_cycles_prev, read_constcnt()); } static inline bool freq_counters_valid(int cpu) { if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask)) return false; if (!cpu_has_amu_feat(cpu)) { pr_debug("CPU%d: counters are not supported.\n", cpu); return false; } if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) || !per_cpu(arch_core_cycles_prev, cpu))) { pr_debug("CPU%d: cycle counters are not enabled.\n", cpu); return false; } return true; } static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate) { u64 ratio; if (unlikely(!max_rate || !ref_rate)) { pr_debug("CPU%d: invalid maximum or reference frequency.\n", cpu); return -EINVAL; } /* * Pre-compute the fixed ratio between the frequency of the constant * reference counter and the maximum frequency of the CPU. * * ref_rate * arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALE² * max_rate * * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE² * in order to ensure a good resolution for arch_max_freq_scale for * very low reference frequencies (down to the KHz range which should * be unlikely). */ ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT); ratio = div64_u64(ratio, max_rate); if (!ratio) { WARN_ONCE(1, "Reference frequency too low.\n"); return -EINVAL; } per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio; return 0; } static void amu_scale_freq_tick(void) { u64 prev_core_cnt, prev_const_cnt; u64 core_cnt, const_cnt, scale; prev_const_cnt = this_cpu_read(arch_const_cycles_prev); prev_core_cnt = this_cpu_read(arch_core_cycles_prev); update_freq_counters_refs(); const_cnt = this_cpu_read(arch_const_cycles_prev); core_cnt = this_cpu_read(arch_core_cycles_prev); if (unlikely(core_cnt <= prev_core_cnt || const_cnt <= prev_const_cnt)) return; /* * /\core arch_max_freq_scale * scale = ------- * -------------------- * /\const SCHED_CAPACITY_SCALE * * See validate_cpu_freq_invariance_counters() for details on * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT. */ scale = core_cnt - prev_core_cnt; scale *= this_cpu_read(arch_max_freq_scale); scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT, const_cnt - prev_const_cnt); scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE); this_cpu_write(arch_freq_scale, (unsigned long)scale); } static struct scale_freq_data amu_sfd = { .source = SCALE_FREQ_SOURCE_ARCH, .set_freq_scale = amu_scale_freq_tick, }; static void amu_fie_setup(const struct cpumask *cpus) { int cpu; /* We are already set since the last insmod of cpufreq driver */ if (unlikely(cpumask_subset(cpus, amu_fie_cpus))) return; for_each_cpu(cpu, cpus) { if (!freq_counters_valid(cpu) || freq_inv_set_max_ratio(cpu, cpufreq_get_hw_max_freq(cpu) * 1000, arch_timer_get_rate())) return; } cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus); topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus); pr_debug("CPUs[%*pbl]: counters will be used for FIE.", cpumask_pr_args(cpus)); } static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_policy *policy = data; if (val == CPUFREQ_CREATE_POLICY) amu_fie_setup(policy->related_cpus); /* * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU * counters don't have any dependency on cpufreq driver once we have * initialized AMU support and enabled invariance. The AMU counters will * keep on working just fine in the absence of the cpufreq driver, and * for the CPUs for which there are no counters available, the last set * value of arch_freq_scale will remain valid as that is the frequency * those CPUs are running at. */ return 0; } static struct notifier_block init_amu_fie_notifier = { .notifier_call = init_amu_fie_callback, }; static int __init init_amu_fie(void) { int ret; if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) return -ENOMEM; ret = cpufreq_register_notifier(&init_amu_fie_notifier, CPUFREQ_POLICY_NOTIFIER); if (ret) free_cpumask_var(amu_fie_cpus); return ret; } core_initcall(init_amu_fie); #ifdef CONFIG_ACPI_CPPC_LIB #include <acpi/cppc_acpi.h> static void cpu_read_corecnt(void *val) { *(u64 *)val = read_corecnt(); } static void cpu_read_constcnt(void *val) { *(u64 *)val = read_constcnt(); } static inline int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val) { /* * Abort call on counterless CPU or when interrupts are * disabled - can lead to deadlock in smp sync call. */ if (!cpu_has_amu_feat(cpu)) return -EOPNOTSUPP; if (WARN_ON_ONCE(irqs_disabled())) return -EPERM; smp_call_function_single(cpu, func, val, 1); return 0; } /* * Refer to drivers/acpi/cppc_acpi.c for the description of the functions * below. */ bool cpc_ffh_supported(void) { return freq_counters_valid(get_cpu_with_amu_feat()); } int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val) { int ret = -EOPNOTSUPP; switch ((u64)reg->address) { case 0x0: ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val); break; case 0x1: ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val); break; } if (!ret) { *val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1, reg->bit_offset); *val >>= reg->bit_offset; } return ret; } int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) { return -EOPNOTSUPP; } #endif /* CONFIG_ACPI_CPPC_LIB */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1