Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Brazdil | 821 | 83.95% | 6 | 25.00% |
Marc Zyngier | 58 | 5.93% | 6 | 25.00% |
Andrew Scull | 55 | 5.62% | 5 | 20.83% |
Suzuki K. Poulose | 18 | 1.84% | 2 | 8.33% |
James Morse | 12 | 1.23% | 1 | 4.17% |
Quentin Perret | 9 | 0.92% | 2 | 8.33% |
Christoffer Dall | 3 | 0.31% | 1 | 4.17% |
Rob Herring | 2 | 0.20% | 1 | 4.17% |
Total | 978 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <hyp/switch.h> #include <hyp/sysreg-sr.h> #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <linux/types.h> #include <linux/jump_label.h> #include <uapi/linux/psci.h> #include <kvm/arm_psci.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/fpsimd.h> #include <asm/debug-monitors.h> #include <asm/processor.h> #include <asm/thread_info.h> #include <nvhe/mem_protect.h> /* Non-VHE specific context */ DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); static void __activate_traps(struct kvm_vcpu *vcpu) { u64 val; ___activate_traps(vcpu); __activate_traps_common(vcpu); val = CPTR_EL2_DEFAULT; val |= CPTR_EL2_TTA | CPTR_EL2_TAM; if (!update_fp_enabled(vcpu)) { val |= CPTR_EL2_TFP | CPTR_EL2_TZ; __activate_traps_fpsimd32(vcpu); } write_sysreg(val, cptr_el2); write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; isb(); /* * At this stage, and thanks to the above isb(), S2 is * configured and enabled. We can now restore the guest's S1 * configuration: SCTLR, and only then TCR. */ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); isb(); write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); } } static void __deactivate_traps(struct kvm_vcpu *vcpu) { extern char __kvm_hyp_host_vector[]; u64 mdcr_el2, cptr; ___deactivate_traps(vcpu); mdcr_el2 = read_sysreg(mdcr_el2); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { u64 val; /* * Set the TCR and SCTLR registers in the exact opposite * sequence as __activate_traps (first prevent walks, * then force the MMU on). A generous sprinkling of isb() * ensure that things happen in this exact order. */ val = read_sysreg_el1(SYS_TCR); write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); isb(); val = read_sysreg_el1(SYS_SCTLR); write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); isb(); } __deactivate_traps_common(); mdcr_el2 &= MDCR_EL2_HPMN_MASK; mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; mdcr_el2 |= MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT; write_sysreg(mdcr_el2, mdcr_el2); write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); cptr = CPTR_EL2_DEFAULT; if (vcpu_has_sve(vcpu) && (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)) cptr |= CPTR_EL2_TZ; write_sysreg(cptr, cptr_el2); write_sysreg(__kvm_hyp_host_vector, vbar_el2); } /* Save VGICv3 state on non-VHE systems */ static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); } } /* Restore VGICv3 state on non_VEH systems */ static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); } } /** * Disable host events, enable guest events */ static bool __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt) { struct kvm_host_data *host; struct kvm_pmu_events *pmu; host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); pmu = &host->pmu_events; if (pmu->events_host) write_sysreg(pmu->events_host, pmcntenclr_el0); if (pmu->events_guest) write_sysreg(pmu->events_guest, pmcntenset_el0); return (pmu->events_host || pmu->events_guest); } /** * Disable guest events, enable host events */ static void __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt) { struct kvm_host_data *host; struct kvm_pmu_events *pmu; host = container_of(host_ctxt, struct kvm_host_data, host_ctxt); pmu = &host->pmu_events; if (pmu->events_guest) write_sysreg(pmu->events_guest, pmcntenclr_el0); if (pmu->events_host) write_sysreg(pmu->events_host, pmcntenset_el0); } /* Switch to the guest for legacy non-VHE systems */ int __kvm_vcpu_run(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; bool pmu_switch_needed; u64 exit_code; /* * Having IRQs masked via PMR when entering the guest means the GIC * will not signal the CPU of interrupts of lower priority, and the * only way to get out will be via guest exceptions. * Naturally, we want to avoid this. */ if (system_uses_irq_prio_masking()) { gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); pmr_sync(); } host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; host_ctxt->__hyp_running_vcpu = vcpu; guest_ctxt = &vcpu->arch.ctxt; pmu_switch_needed = __pmu_switch_to_guest(host_ctxt); __sysreg_save_state_nvhe(host_ctxt); /* * We must flush and disable the SPE buffer for nVHE, as * the translation regime(EL1&0) is going to be loaded with * that of the guest. And we must do this before we change the * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and * before we load guest Stage1. */ __debug_save_host_buffers_nvhe(vcpu); __kvm_adjust_pc(vcpu); /* * We must restore the 32-bit state before the sysregs, thanks * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). * * Also, and in order to be able to deal with erratum #1319537 (A57) * and #1319367 (A72), we must ensure that all VM-related sysreg are * restored before we enable S2 translation. */ __sysreg32_restore_state(vcpu); __sysreg_restore_state_nvhe(guest_ctxt); __load_guest_stage2(kern_hyp_va(vcpu->arch.hw_mmu)); __activate_traps(vcpu); __hyp_vgic_restore_state(vcpu); __timer_enable_traps(vcpu); __debug_switch_to_guest(vcpu); do { /* Jump in the fire! */ exit_code = __guest_enter(vcpu); /* And we're baaack! */ } while (fixup_guest_exit(vcpu, &exit_code)); __sysreg_save_state_nvhe(guest_ctxt); __sysreg32_save_state(vcpu); __timer_disable_traps(vcpu); __hyp_vgic_save_state(vcpu); __deactivate_traps(vcpu); __load_host_stage2(); __sysreg_restore_state_nvhe(host_ctxt); if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) __fpsimd_save_fpexc32(vcpu); __debug_switch_to_host(vcpu); /* * This must come after restoring the host sysregs, since a non-VHE * system may enable SPE here and make use of the TTBRs. */ __debug_restore_host_buffers_nvhe(vcpu); if (pmu_switch_needed) __pmu_switch_to_host(host_ctxt); /* Returning to host will clear PSR.I, remask PMR if needed */ if (system_uses_irq_prio_masking()) gic_write_pmr(GIC_PRIO_IRQOFF); host_ctxt->__hyp_running_vcpu = NULL; return exit_code; } void __noreturn hyp_panic(void) { u64 spsr = read_sysreg_el2(SYS_SPSR); u64 elr = read_sysreg_el2(SYS_ELR); u64 par = read_sysreg_par(); struct kvm_cpu_context *host_ctxt; struct kvm_vcpu *vcpu; host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; vcpu = host_ctxt->__hyp_running_vcpu; if (vcpu) { __timer_disable_traps(vcpu); __deactivate_traps(vcpu); __load_host_stage2(); __sysreg_restore_state_nvhe(host_ctxt); } __hyp_do_panic(host_ctxt, spsr, elr, par); unreachable(); } asmlinkage void kvm_unexpected_el2_exception(void) { return __kvm_unexpected_el2_exception(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1