Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shaohua Li | 4803 | 47.35% | 5 | 7.58% |
Linus Torvalds (pre-git) | 1614 | 15.91% | 5 | 7.58% |
David Mosberger-Tang | 1559 | 15.37% | 15 | 22.73% |
Al Viro | 946 | 9.33% | 9 | 13.64% |
Petr Tesarik | 439 | 4.33% | 2 | 3.03% |
Tony Luck | 315 | 3.11% | 1 | 1.52% |
Linus Torvalds | 234 | 2.31% | 5 | 7.58% |
John S. Marvin | 82 | 0.81% | 1 | 1.52% |
Sergei Trofimovich | 44 | 0.43% | 1 | 1.52% |
Peter Martuccelli | 32 | 0.32% | 1 | 1.52% |
David Woodhouse | 13 | 0.13% | 2 | 3.03% |
Jesper Juhl | 9 | 0.09% | 2 | 3.03% |
Lorenzo Stoakes | 9 | 0.09% | 1 | 1.52% |
Peter Chubb | 7 | 0.07% | 1 | 1.52% |
Ingo Molnar | 6 | 0.06% | 2 | 3.03% |
Asit K. Mallick | 5 | 0.05% | 1 | 1.52% |
Greg Kroah-Hartman | 4 | 0.04% | 2 | 3.03% |
Matthew Chapman | 4 | 0.04% | 1 | 1.52% |
Bibo Mao | 3 | 0.03% | 1 | 1.52% |
Andrew Morton | 3 | 0.03% | 1 | 1.52% |
Eric Paris | 3 | 0.03% | 2 | 3.03% |
Namhyung Kim | 2 | 0.02% | 1 | 1.52% |
Oleg Nesterov | 2 | 0.02% | 1 | 1.52% |
Steven Rostedt | 2 | 0.02% | 1 | 1.52% |
Harvey Harrison | 2 | 0.02% | 1 | 1.52% |
Eric W. Biedermann | 1 | 0.01% | 1 | 1.52% |
Total | 10143 | 66 |
// SPDX-License-Identifier: GPL-2.0 /* * Kernel support for the ptrace() and syscall tracing interfaces. * * Copyright (C) 1999-2005 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 2006 Intel Co * 2006-08-12 - IA64 Native Utrace implementation support added by * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> * * Derived from the x86 and Alpha versions. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/security.h> #include <linux/audit.h> #include <linux/signal.h> #include <linux/regset.h> #include <linux/elf.h> #include <linux/tracehook.h> #include <asm/processor.h> #include <asm/ptrace_offsets.h> #include <asm/rse.h> #include <linux/uaccess.h> #include <asm/unwind.h> #include "entry.h" /* * Bits in the PSR that we allow ptrace() to change: * be, up, ac, mfl, mfh (the user mask; five bits total) * db (debug breakpoint fault; one bit) * id (instruction debug fault disable; one bit) * dd (data debug fault disable; one bit) * ri (restart instruction; two bits) * is (instruction set; one bit) */ #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ #define PFM_MASK MASK(38) #define PTRACE_DEBUG 0 #if PTRACE_DEBUG # define dprintk(format...) printk(format) # define inline #else # define dprintk(format...) #endif /* Return TRUE if PT was created due to kernel-entry via a system-call. */ static inline int in_syscall (struct pt_regs *pt) { return (long) pt->cr_ifs >= 0; } /* * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT * bitset where bit i is set iff the NaT bit of register i is set. */ unsigned long ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) { # define GET_BITS(first, last, unat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long nbits = (last - first + 1); \ unsigned long mask = MASK(nbits) << first; \ unsigned long dist; \ if (bit < first) \ dist = 64 + bit - first; \ else \ dist = bit - first; \ ia64_rotr(unat, dist) & mask; \ }) unsigned long val; /* * Registers that are stored consecutively in struct pt_regs * can be handled in parallel. If the register order in * struct_pt_regs changes, this code MUST be updated. */ val = GET_BITS( 1, 1, scratch_unat); val |= GET_BITS( 2, 3, scratch_unat); val |= GET_BITS(12, 13, scratch_unat); val |= GET_BITS(14, 14, scratch_unat); val |= GET_BITS(15, 15, scratch_unat); val |= GET_BITS( 8, 11, scratch_unat); val |= GET_BITS(16, 31, scratch_unat); return val; # undef GET_BITS } /* * Set the NaT bits for the scratch registers according to NAT and * return the resulting unat (assuming the scratch registers are * stored in PT). */ unsigned long ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) { # define PUT_BITS(first, last, nat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long nbits = (last - first + 1); \ unsigned long mask = MASK(nbits) << first; \ long dist; \ if (bit < first) \ dist = 64 + bit - first; \ else \ dist = bit - first; \ ia64_rotl(nat & mask, dist); \ }) unsigned long scratch_unat; /* * Registers that are stored consecutively in struct pt_regs * can be handled in parallel. If the register order in * struct_pt_regs changes, this code MUST be updated. */ scratch_unat = PUT_BITS( 1, 1, nat); scratch_unat |= PUT_BITS( 2, 3, nat); scratch_unat |= PUT_BITS(12, 13, nat); scratch_unat |= PUT_BITS(14, 14, nat); scratch_unat |= PUT_BITS(15, 15, nat); scratch_unat |= PUT_BITS( 8, 11, nat); scratch_unat |= PUT_BITS(16, 31, nat); return scratch_unat; # undef PUT_BITS } #define IA64_MLX_TEMPLATE 0x2 #define IA64_MOVL_OPCODE 6 void ia64_increment_ip (struct pt_regs *regs) { unsigned long w0, ri = ia64_psr(regs)->ri + 1; if (ri > 2) { ri = 0; regs->cr_iip += 16; } else if (ri == 2) { get_user(w0, (char __user *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 0; regs->cr_iip += 16; } } ia64_psr(regs)->ri = ri; } void ia64_decrement_ip (struct pt_regs *regs) { unsigned long w0, ri = ia64_psr(regs)->ri - 1; if (ia64_psr(regs)->ri == 0) { regs->cr_iip -= 16; ri = 2; get_user(w0, (char __user *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 1; } } ia64_psr(regs)->ri = ri; } /* * This routine is used to read an rnat bits that are stored on the * kernel backing store. Since, in general, the alignment of the user * and kernel are different, this is not completely trivial. In * essence, we need to construct the user RNAT based on up to two * kernel RNAT values and/or the RNAT value saved in the child's * pt_regs. * * user rbs * * +--------+ <-- lowest address * | slot62 | * +--------+ * | rnat | 0x....1f8 * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_regs->ar_rnat * +--------+ | * | slot02 | / kernel rbs * +--------+ +--------+ * <- child_regs->ar_bspstore | slot61 | <-- krbs * +- - - - + +--------+ * | slot62 | * +- - - - + +--------+ * | rnat | * +- - - - + +--------+ * vrnat | slot00 | * +- - - - + +--------+ * = = * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_stack->ar_rnat * +--------+ | * | slot02 | / * +--------+ * <--- child_stack->ar_bspstore * * The way to think of this code is as follows: bit 0 in the user rnat * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat * value. The kernel rnat value holding this bit is stored in * variable rnat0. rnat1 is loaded with the kernel rnat value that * form the upper bits of the user rnat value. * * Boundary cases: * * o when reading the rnat "below" the first rnat slot on the kernel * backing store, rnat0/rnat1 are set to 0 and the low order bits are * merged in from pt->ar_rnat. * * o when reading the rnat "above" the last rnat slot on the kernel * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. */ static unsigned long get_rnat (struct task_struct *task, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr, unsigned long *urbs_end) { unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; unsigned long umask = 0, mask, m; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs, nbits; struct pt_regs *pt; pt = task_pt_regs(task); kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; if (urbs_end < urnat_addr) nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); else nbits = 63; mask = MASK(nbits); /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be merged in from pt->ar_rnat */ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; urnat = (pt->ar_rnat & umask); mask &= ~umask; if (!mask) return urnat; } m = mask << shift; if (rnat0_kaddr >= kbsp) rnat0 = sw->ar_rnat; else if (rnat0_kaddr > krbs) rnat0 = *rnat0_kaddr; urnat |= (rnat0 & m) >> shift; m = mask >> (63 - shift); if (rnat1_kaddr >= kbsp) rnat1 = sw->ar_rnat; else if (rnat1_kaddr > krbs) rnat1 = *rnat1_kaddr; urnat |= (rnat1 & m) << (63 - shift); return urnat; } /* * The reverse of get_rnat. */ static void put_rnat (struct task_struct *task, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, unsigned long *urbs_end) { unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs, nbits; struct pt_regs *pt; unsigned long cfm, *urbs_kargs; pt = task_pt_regs(task); kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; urbs_kargs = urbs_end; if (in_syscall(pt)) { /* * If entered via syscall, don't allow user to set rnat bits * for syscall args. */ cfm = pt->cr_ifs; urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); } if (urbs_kargs >= urnat_addr) nbits = 63; else { if ((urnat_addr - 63) >= urbs_kargs) return; nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); } mask = MASK(nbits); /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be place in pt->ar_rnat: */ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); mask &= ~umask; if (!mask) return; } /* * Note: Section 11.1 of the EAS guarantees that bit 63 of an * rnat slot is ignored. so we don't have to clear it here. */ rnat0 = (urnat << shift); m = mask << shift; if (rnat0_kaddr >= kbsp) sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); else if (rnat0_kaddr > krbs) *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); rnat1 = (urnat >> (63 - shift)); m = mask >> (63 - shift); if (rnat1_kaddr >= kbsp) sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); else if (rnat1_kaddr > krbs) *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); } static inline int on_kernel_rbs (unsigned long addr, unsigned long bspstore, unsigned long urbs_end) { unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) urbs_end); return (addr >= bspstore && addr <= (unsigned long) rnat_addr); } /* * Read a word from the user-level backing store of task CHILD. ADDR * is the user-level address to read the word from, VAL a pointer to * the return value, and USER_BSP gives the end of the user-level * backing store (i.e., it's the address that would be in ar.bsp after * the user executed a "cover" instruction). * * This routine takes care of accessing the kernel register backing * store for those registers that got spilled there. It also takes * care of calculating the appropriate RNaT collection words. */ long ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long *val) { unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; struct pt_regs *child_regs; size_t copied; long ret; urbs_end = (long *) user_rbs_end; laddr = (unsigned long *) addr; child_regs = task_pt_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (on_kernel_rbs(addr, (unsigned long) bspstore, (unsigned long) urbs_end)) { /* * Attempt to read the RBS in an area that's actually * on the kernel RBS => read the corresponding bits in * the kernel RBS. */ rnat_addr = ia64_rse_rnat_addr(laddr); ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); if (laddr == rnat_addr) { /* return NaT collection word itself */ *val = ret; return 0; } if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { /* * It is implementation dependent whether the * data portion of a NaT value gets saved on a * st8.spill or RSE spill (e.g., see EAS 2.6, * 4.4.4.6 Register Spill and Fill). To get * consistent behavior across all possible * IA-64 implementations, we return zero in * this case. */ *val = 0; return 0; } if (laddr < urbs_end) { /* * The desired word is on the kernel RBS and * is not a NaT. */ regnum = ia64_rse_num_regs(bspstore, laddr); *val = *ia64_rse_skip_regs(krbs, regnum); return 0; } } copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE); if (copied != sizeof(ret)) return -EIO; *val = ret; return 0; } long ia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long val) { unsigned long *bspstore, *krbs, regnum, *laddr; unsigned long *urbs_end = (long *) user_rbs_end; struct pt_regs *child_regs; laddr = (unsigned long *) addr; child_regs = task_pt_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (on_kernel_rbs(addr, (unsigned long) bspstore, (unsigned long) urbs_end)) { /* * Attempt to write the RBS in an area that's actually * on the kernel RBS => write the corresponding bits * in the kernel RBS. */ if (ia64_rse_is_rnat_slot(laddr)) put_rnat(child, child_stack, krbs, laddr, val, urbs_end); else { if (laddr < urbs_end) { regnum = ia64_rse_num_regs(bspstore, laddr); *ia64_rse_skip_regs(krbs, regnum) = val; } } } else if (access_process_vm(child, addr, &val, sizeof(val), FOLL_FORCE | FOLL_WRITE) != sizeof(val)) return -EIO; return 0; } /* * Calculate the address of the end of the user-level register backing * store. This is the address that would have been stored in ar.bsp * if the user had executed a "cover" instruction right before * entering the kernel. If CFMP is not NULL, it is used to return the * "current frame mask" that was active at the time the kernel was * entered. */ unsigned long ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp) { unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; long ndirty; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; bspstore = (unsigned long *) pt->ar_bspstore; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); if (in_syscall(pt)) ndirty += (cfm & 0x7f); else cfm &= ~(1UL << 63); /* clear valid bit */ if (cfmp) *cfmp = cfm; return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); } /* * Synchronize (i.e, write) the RSE backing store living in kernel * space to the VM of the CHILD task. SW and PT are the pointers to * the switch_stack and pt_regs structures, respectively. * USER_RBS_END is the user-level address at which the backing store * ends. */ long ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, unsigned long user_rbs_start, unsigned long user_rbs_end) { unsigned long addr, val; long ret; /* now copy word for word from kernel rbs to user rbs: */ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { ret = ia64_peek(child, sw, user_rbs_end, addr, &val); if (ret < 0) return ret; if (access_process_vm(child, addr, &val, sizeof(val), FOLL_FORCE | FOLL_WRITE) != sizeof(val)) return -EIO; } return 0; } static long ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw, unsigned long user_rbs_start, unsigned long user_rbs_end) { unsigned long addr, val; long ret; /* now copy word for word from user rbs to kernel rbs: */ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { if (access_process_vm(child, addr, &val, sizeof(val), FOLL_FORCE) != sizeof(val)) return -EIO; ret = ia64_poke(child, sw, user_rbs_end, addr, val); if (ret < 0) return ret; } return 0; } typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *, unsigned long, unsigned long); static void do_sync_rbs(struct unw_frame_info *info, void *arg) { struct pt_regs *pt; unsigned long urbs_end; syncfunc_t fn = arg; if (unw_unwind_to_user(info) < 0) return; pt = task_pt_regs(info->task); urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL); fn(info->task, info->sw, pt->ar_bspstore, urbs_end); } /* * when a thread is stopped (ptraced), debugger might change thread's user * stack (change memory directly), and we must avoid the RSE stored in kernel * to override user stack (user space's RSE is newer than kernel's in the * case). To workaround the issue, we copy kernel RSE to user RSE before the * task is stopped, so user RSE has updated data. we then copy user RSE to * kernel after the task is resummed from traced stop and kernel will use the * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need * synchronize user RSE to kernel. */ void ia64_ptrace_stop(void) { if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE)) return; set_notify_resume(current); unw_init_running(do_sync_rbs, ia64_sync_user_rbs); } /* * This is called to read back the register backing store. */ void ia64_sync_krbs(void) { clear_tsk_thread_flag(current, TIF_RESTORE_RSE); unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs); } /* * After PTRACE_ATTACH, a thread's register backing store area in user * space is assumed to contain correct data whenever the thread is * stopped. arch_ptrace_stop takes care of this on tracing stops. * But if the child was already stopped for job control when we attach * to it, then it might not ever get into ptrace_stop by the time we * want to examine the user memory containing the RBS. */ void ptrace_attach_sync_user_rbs (struct task_struct *child) { int stopped = 0; struct unw_frame_info info; /* * If the child is in TASK_STOPPED, we need to change that to * TASK_TRACED momentarily while we operate on it. This ensures * that the child won't be woken up and return to user mode while * we are doing the sync. (It can only be woken up for SIGKILL.) */ read_lock(&tasklist_lock); if (child->sighand) { spin_lock_irq(&child->sighand->siglock); if (child->state == TASK_STOPPED && !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) { set_notify_resume(child); child->state = TASK_TRACED; stopped = 1; } spin_unlock_irq(&child->sighand->siglock); } read_unlock(&tasklist_lock); if (!stopped) return; unw_init_from_blocked_task(&info, child); do_sync_rbs(&info, ia64_sync_user_rbs); /* * Now move the child back into TASK_STOPPED if it should be in a * job control stop, so that SIGCONT can be used to wake it up. */ read_lock(&tasklist_lock); if (child->sighand) { spin_lock_irq(&child->sighand->siglock); if (child->state == TASK_TRACED && (child->signal->flags & SIGNAL_STOP_STOPPED)) { child->state = TASK_STOPPED; } spin_unlock_irq(&child->sighand->siglock); } read_unlock(&tasklist_lock); } /* * Write f32-f127 back to task->thread.fph if it has been modified. */ inline void ia64_flush_fph (struct task_struct *task) { struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); /* * Prevent migrating this task while * we're fiddling with the FPU state */ preempt_disable(); if (ia64_is_local_fpu_owner(task) && psr->mfh) { psr->mfh = 0; task->thread.flags |= IA64_THREAD_FPH_VALID; ia64_save_fpu(&task->thread.fph[0]); } preempt_enable(); } /* * Sync the fph state of the task so that it can be manipulated * through thread.fph. If necessary, f32-f127 are written back to * thread.fph or, if the fph state hasn't been used before, thread.fph * is cleared to zeroes. Also, access to f32-f127 is disabled to * ensure that the task picks up the state from thread.fph when it * executes again. */ void ia64_sync_fph (struct task_struct *task) { struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); ia64_flush_fph(task); if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { task->thread.flags |= IA64_THREAD_FPH_VALID; memset(&task->thread.fph, 0, sizeof(task->thread.fph)); } ia64_drop_fpu(task); psr->dfh = 1; } /* * Change the machine-state of CHILD such that it will return via the normal * kernel exit-path, rather than the syscall-exit path. */ static void convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, unsigned long cfm) { struct unw_frame_info info, prev_info; unsigned long ip, sp, pr; unw_init_from_blocked_task(&info, child); while (1) { prev_info = info; if (unw_unwind(&info) < 0) return; unw_get_sp(&info, &sp); if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) < IA64_PT_REGS_SIZE) { dprintk("ptrace.%s: ran off the top of the kernel " "stack\n", __func__); return; } if (unw_get_pr (&prev_info, &pr) < 0) { unw_get_rp(&prev_info, &ip); dprintk("ptrace.%s: failed to read " "predicate register (ip=0x%lx)\n", __func__, ip); return; } if (unw_is_intr_frame(&info) && (pr & (1UL << PRED_USER_STACK))) break; } /* * Note: at the time of this call, the target task is blocked * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL * (aka, "pLvSys") we redirect execution from * .work_pending_syscall_end to .work_processed_kernel. */ unw_get_pr(&prev_info, &pr); pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); pr |= (1UL << PRED_NON_SYSCALL); unw_set_pr(&prev_info, pr); pt->cr_ifs = (1UL << 63) | cfm; /* * Clear the memory that is NOT written on syscall-entry to * ensure we do not leak kernel-state to user when execution * resumes. */ pt->r2 = 0; pt->r3 = 0; pt->r14 = 0; memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ pt->b7 = 0; pt->ar_ccv = 0; pt->ar_csd = 0; pt->ar_ssd = 0; } static int access_nat_bits (struct task_struct *child, struct pt_regs *pt, struct unw_frame_info *info, unsigned long *data, int write_access) { unsigned long regnum, nat_bits, scratch_unat, dummy = 0; char nat = 0; if (write_access) { nat_bits = *data; scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { dprintk("ptrace: failed to set ar.unat\n"); return -1; } for (regnum = 4; regnum <= 7; ++regnum) { unw_get_gr(info, regnum, &dummy, &nat); unw_set_gr(info, regnum, dummy, (nat_bits >> regnum) & 1); } } else { if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { dprintk("ptrace: failed to read ar.unat\n"); return -1; } nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); for (regnum = 4; regnum <= 7; ++regnum) { unw_get_gr(info, regnum, &dummy, &nat); nat_bits |= (nat != 0) << regnum; } *data = nat_bits; } return 0; } static int access_elf_reg(struct task_struct *target, struct unw_frame_info *info, unsigned long addr, unsigned long *data, int write_access); static long ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) { unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; struct unw_frame_info info; struct ia64_fpreg fpval; struct switch_stack *sw; struct pt_regs *pt; long ret, retval = 0; char nat = 0; int i; if (!access_ok(ppr, sizeof(struct pt_all_user_regs))) return -EIO; pt = task_pt_regs(child); sw = (struct switch_stack *) (child->thread.ksp + 16); unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) { return -EIO; } if (((unsigned long) ppr & 0x7) != 0) { dprintk("ptrace:unaligned register address %p\n", ppr); return -EIO; } if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 || access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 || access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 || access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 || access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 || access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 || access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0) return -EIO; /* control regs */ retval |= __put_user(pt->cr_iip, &ppr->cr_iip); retval |= __put_user(psr, &ppr->cr_ipsr); /* app regs */ retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); retval |= __put_user(cfm, &ppr->cfm); /* gr1-gr3 */ retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); /* gr4-gr7 */ for (i = 4; i < 8; i++) { if (unw_access_gr(&info, i, &val, &nat, 0) < 0) return -EIO; retval |= __put_user(val, &ppr->gr[i]); } /* gr8-gr11 */ retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); /* gr12-gr15 */ retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); /* gr16-gr31 */ retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); /* b0 */ retval |= __put_user(pt->b0, &ppr->br[0]); /* b1-b5 */ for (i = 1; i < 6; i++) { if (unw_access_br(&info, i, &val, 0) < 0) return -EIO; __put_user(val, &ppr->br[i]); } /* b6-b7 */ retval |= __put_user(pt->b6, &ppr->br[6]); retval |= __put_user(pt->b7, &ppr->br[7]); /* fr2-fr5 */ for (i = 2; i < 6; i++) { if (unw_get_fr(&info, i, &fpval) < 0) return -EIO; retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); } /* fr6-fr11 */ retval |= __copy_to_user(&ppr->fr[6], &pt->f6, sizeof(struct ia64_fpreg) * 6); /* fp scratch regs(12-15) */ retval |= __copy_to_user(&ppr->fr[12], &sw->f12, sizeof(struct ia64_fpreg) * 4); /* fr16-fr31 */ for (i = 16; i < 32; i++) { if (unw_get_fr(&info, i, &fpval) < 0) return -EIO; retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); } /* fph */ ia64_flush_fph(child); retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, sizeof(ppr->fr[32]) * 96); /* preds */ retval |= __put_user(pt->pr, &ppr->pr); /* nat bits */ retval |= __put_user(nat_bits, &ppr->nat); ret = retval ? -EIO : 0; return ret; } static long ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) { unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; struct unw_frame_info info; struct switch_stack *sw; struct ia64_fpreg fpval; struct pt_regs *pt; long retval = 0; int i; memset(&fpval, 0, sizeof(fpval)); if (!access_ok(ppr, sizeof(struct pt_all_user_regs))) return -EIO; pt = task_pt_regs(child); sw = (struct switch_stack *) (child->thread.ksp + 16); unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) { return -EIO; } if (((unsigned long) ppr & 0x7) != 0) { dprintk("ptrace:unaligned register address %p\n", ppr); return -EIO; } /* control regs */ retval |= __get_user(pt->cr_iip, &ppr->cr_iip); retval |= __get_user(psr, &ppr->cr_ipsr); /* app regs */ retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); retval |= __get_user(cfm, &ppr->cfm); /* gr1-gr3 */ retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); /* gr4-gr7 */ for (i = 4; i < 8; i++) { retval |= __get_user(val, &ppr->gr[i]); /* NaT bit will be set via PT_NAT_BITS: */ if (unw_set_gr(&info, i, val, 0) < 0) return -EIO; } /* gr8-gr11 */ retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); /* gr12-gr15 */ retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); /* gr16-gr31 */ retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); /* b0 */ retval |= __get_user(pt->b0, &ppr->br[0]); /* b1-b5 */ for (i = 1; i < 6; i++) { retval |= __get_user(val, &ppr->br[i]); unw_set_br(&info, i, val); } /* b6-b7 */ retval |= __get_user(pt->b6, &ppr->br[6]); retval |= __get_user(pt->b7, &ppr->br[7]); /* fr2-fr5 */ for (i = 2; i < 6; i++) { retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); if (unw_set_fr(&info, i, fpval) < 0) return -EIO; } /* fr6-fr11 */ retval |= __copy_from_user(&pt->f6, &ppr->fr[6], sizeof(ppr->fr[6]) * 6); /* fp scratch regs(12-15) */ retval |= __copy_from_user(&sw->f12, &ppr->fr[12], sizeof(ppr->fr[12]) * 4); /* fr16-fr31 */ for (i = 16; i < 32; i++) { retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); if (unw_set_fr(&info, i, fpval) < 0) return -EIO; } /* fph */ ia64_sync_fph(child); retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], sizeof(ppr->fr[32]) * 96); /* preds */ retval |= __get_user(pt->pr, &ppr->pr); /* nat bits */ retval |= __get_user(nat_bits, &ppr->nat); retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1); retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1); retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1); retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1); retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1); retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1); retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1); retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1); return retval ? -EIO : 0; } void user_enable_single_step (struct task_struct *child) { struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); set_tsk_thread_flag(child, TIF_SINGLESTEP); child_psr->ss = 1; } void user_enable_block_step (struct task_struct *child) { struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); set_tsk_thread_flag(child, TIF_SINGLESTEP); child_psr->tb = 1; } void user_disable_single_step (struct task_struct *child) { struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); /* make sure the single step/taken-branch trap bits are not set: */ clear_tsk_thread_flag(child, TIF_SINGLESTEP); child_psr->ss = 0; child_psr->tb = 0; } /* * Called by kernel/ptrace.c when detaching.. * * Make sure the single step bit is not set. */ void ptrace_disable (struct task_struct *child) { user_disable_single_step(child); } static int access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access); long arch_ptrace (struct task_struct *child, long request, unsigned long addr, unsigned long data) { switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: /* read word at location addr */ if (ptrace_access_vm(child, addr, &data, sizeof(data), FOLL_FORCE) != sizeof(data)) return -EIO; /* ensure return value is not mistaken for error code */ force_successful_syscall_return(); return data; /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled * by the generic ptrace_request(). */ case PTRACE_PEEKUSR: /* read the word at addr in the USER area */ if (access_uarea(child, addr, &data, 0) < 0) return -EIO; /* ensure return value is not mistaken for error code */ force_successful_syscall_return(); return data; case PTRACE_POKEUSR: /* write the word at addr in the USER area */ if (access_uarea(child, addr, &data, 1) < 0) return -EIO; return 0; case PTRACE_OLD_GETSIGINFO: /* for backwards-compatibility */ return ptrace_request(child, PTRACE_GETSIGINFO, addr, data); case PTRACE_OLD_SETSIGINFO: /* for backwards-compatibility */ return ptrace_request(child, PTRACE_SETSIGINFO, addr, data); case PTRACE_GETREGS: return ptrace_getregs(child, (struct pt_all_user_regs __user *) data); case PTRACE_SETREGS: return ptrace_setregs(child, (struct pt_all_user_regs __user *) data); default: return ptrace_request(child, request, addr, data); } } /* "asmlinkage" so the input arguments are preserved... */ asmlinkage long syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, struct pt_regs regs) { if (test_thread_flag(TIF_SYSCALL_TRACE)) if (tracehook_report_syscall_entry(®s)) return -ENOSYS; /* copy user rbs to kernel rbs */ if (test_thread_flag(TIF_RESTORE_RSE)) ia64_sync_krbs(); audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3); return 0; } /* "asmlinkage" so the input arguments are preserved... */ asmlinkage void syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, struct pt_regs regs) { int step; audit_syscall_exit(®s); step = test_thread_flag(TIF_SINGLESTEP); if (step || test_thread_flag(TIF_SYSCALL_TRACE)) tracehook_report_syscall_exit(®s, step); /* copy user rbs to kernel rbs */ if (test_thread_flag(TIF_RESTORE_RSE)) ia64_sync_krbs(); } /* Utrace implementation starts here */ struct regset_get { void *kbuf; void __user *ubuf; }; struct regset_set { const void *kbuf; const void __user *ubuf; }; struct regset_getset { struct task_struct *target; const struct user_regset *regset; union { struct regset_get get; struct regset_set set; } u; unsigned int pos; unsigned int count; int ret; }; static const ptrdiff_t pt_offsets[32] = { #define R(n) offsetof(struct pt_regs, r##n) [0] = -1, R(1), R(2), R(3), [4] = -1, [5] = -1, [6] = -1, [7] = -1, R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15), R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23), R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31), #undef R }; static int access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info, unsigned long addr, unsigned long *data, int write_access) { struct pt_regs *pt = task_pt_regs(target); unsigned reg = addr / sizeof(unsigned long); ptrdiff_t d = pt_offsets[reg]; if (d >= 0) { unsigned long *ptr = (void *)pt + d; if (write_access) *ptr = *data; else *data = *ptr; return 0; } else { char nat = 0; if (write_access) { /* read NaT bit first: */ unsigned long dummy; int ret = unw_get_gr(info, reg, &dummy, &nat); if (ret < 0) return ret; } return unw_access_gr(info, reg, data, &nat, write_access); } } static int access_elf_breg(struct task_struct *target, struct unw_frame_info *info, unsigned long addr, unsigned long *data, int write_access) { struct pt_regs *pt; unsigned long *ptr = NULL; pt = task_pt_regs(target); switch (addr) { case ELF_BR_OFFSET(0): ptr = &pt->b0; break; case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5): return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8, data, write_access); case ELF_BR_OFFSET(6): ptr = &pt->b6; break; case ELF_BR_OFFSET(7): ptr = &pt->b7; } if (write_access) *ptr = *data; else *data = *ptr; return 0; } static int access_elf_areg(struct task_struct *target, struct unw_frame_info *info, unsigned long addr, unsigned long *data, int write_access) { struct pt_regs *pt; unsigned long cfm, urbs_end; unsigned long *ptr = NULL; pt = task_pt_regs(target); if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) { switch (addr) { case ELF_AR_RSC_OFFSET: /* force PL3 */ if (write_access) pt->ar_rsc = *data | (3 << 2); else *data = pt->ar_rsc; return 0; case ELF_AR_BSP_OFFSET: /* * By convention, we use PT_AR_BSP to refer to * the end of the user-level backing store. * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) * to get the real value of ar.bsp at the time * the kernel was entered. * * Furthermore, when changing the contents of * PT_AR_BSP (or PT_CFM) while the task is * blocked in a system call, convert the state * so that the non-system-call exit * path is used. This ensures that the proper * state will be picked up when resuming * execution. However, it *also* means that * once we write PT_AR_BSP/PT_CFM, it won't be * possible to modify the syscall arguments of * the pending system call any longer. This * shouldn't be an issue because modifying * PT_AR_BSP/PT_CFM generally implies that * we're either abandoning the pending system * call or that we defer it's re-execution * (e.g., due to GDB doing an inferior * function call). */ urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); if (write_access) { if (*data != urbs_end) { if (in_syscall(pt)) convert_to_non_syscall(target, pt, cfm); /* * Simulate user-level write * of ar.bsp: */ pt->loadrs = 0; pt->ar_bspstore = *data; } } else *data = urbs_end; return 0; case ELF_AR_BSPSTORE_OFFSET: ptr = &pt->ar_bspstore; break; case ELF_AR_RNAT_OFFSET: ptr = &pt->ar_rnat; break; case ELF_AR_CCV_OFFSET: ptr = &pt->ar_ccv; break; case ELF_AR_UNAT_OFFSET: ptr = &pt->ar_unat; break; case ELF_AR_FPSR_OFFSET: ptr = &pt->ar_fpsr; break; case ELF_AR_PFS_OFFSET: ptr = &pt->ar_pfs; break; case ELF_AR_LC_OFFSET: return unw_access_ar(info, UNW_AR_LC, data, write_access); case ELF_AR_EC_OFFSET: return unw_access_ar(info, UNW_AR_EC, data, write_access); case ELF_AR_CSD_OFFSET: ptr = &pt->ar_csd; break; case ELF_AR_SSD_OFFSET: ptr = &pt->ar_ssd; } } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) { switch (addr) { case ELF_CR_IIP_OFFSET: ptr = &pt->cr_iip; break; case ELF_CFM_OFFSET: urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); if (write_access) { if (((cfm ^ *data) & PFM_MASK) != 0) { if (in_syscall(pt)) convert_to_non_syscall(target, pt, cfm); pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) | (*data & PFM_MASK)); } } else *data = cfm; return 0; case ELF_CR_IPSR_OFFSET: if (write_access) { unsigned long tmp = *data; /* psr.ri==3 is a reserved value: SDM 2:25 */ if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) tmp &= ~IA64_PSR_RI; pt->cr_ipsr = ((tmp & IPSR_MASK) | (pt->cr_ipsr & ~IPSR_MASK)); } else *data = (pt->cr_ipsr & IPSR_MASK); return 0; } } else if (addr == ELF_NAT_OFFSET) return access_nat_bits(target, pt, info, data, write_access); else if (addr == ELF_PR_OFFSET) ptr = &pt->pr; else return -1; if (write_access) *ptr = *data; else *data = *ptr; return 0; } static int access_elf_reg(struct task_struct *target, struct unw_frame_info *info, unsigned long addr, unsigned long *data, int write_access) { if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31)) return access_elf_gpreg(target, info, addr, data, write_access); else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7)) return access_elf_breg(target, info, addr, data, write_access); else return access_elf_areg(target, info, addr, data, write_access); } struct regset_membuf { struct membuf to; int ret; }; static void do_gpregs_get(struct unw_frame_info *info, void *arg) { struct regset_membuf *dst = arg; struct membuf to = dst->to; unsigned int n; elf_greg_t reg; if (unw_unwind_to_user(info) < 0) return; /* * coredump format: * r0-r31 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) * predicate registers (p0-p63) * b0-b7 * ip cfm user-mask * ar.rsc ar.bsp ar.bspstore ar.rnat * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec */ /* Skip r0 */ membuf_zero(&to, 8); for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) { if (access_elf_reg(info->task, info, n, ®, 0) < 0) { dst->ret = -EIO; return; } membuf_store(&to, reg); } } static void do_gpregs_set(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; if (unw_unwind_to_user(info) < 0) return; if (!dst->count) return; /* Skip r0 */ if (dst->pos < ELF_GR_OFFSET(1)) { dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, 0, ELF_GR_OFFSET(1)); if (dst->ret) return; } while (dst->count && dst->pos < ELF_AR_END_OFFSET) { unsigned int n, from, to; elf_greg_t tmp[16]; from = dst->pos; to = from + sizeof(tmp); if (to > ELF_AR_END_OFFSET) to = ELF_AR_END_OFFSET; /* get up to 16 values */ dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, from, to); if (dst->ret) return; /* now copy them into registers */ for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++) if (access_elf_reg(dst->target, info, from, &tmp[n], 1) < 0) { dst->ret = -EIO; return; } } } #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t)) static void do_fpregs_get(struct unw_frame_info *info, void *arg) { struct task_struct *task = info->task; struct regset_membuf *dst = arg; struct membuf to = dst->to; elf_fpreg_t reg; unsigned int n; if (unw_unwind_to_user(info) < 0) return; /* Skip pos 0 and 1 */ membuf_zero(&to, 2 * sizeof(elf_fpreg_t)); /* fr2-fr31 */ for (n = 2; to.left && n < 32; n++) { if (unw_get_fr(info, n, ®)) { dst->ret = -EIO; return; } membuf_write(&to, ®, sizeof(reg)); } /* fph */ if (!to.left) return; ia64_flush_fph(task); if (task->thread.flags & IA64_THREAD_FPH_VALID) membuf_write(&to, &task->thread.fph, 96 * sizeof(reg)); else membuf_zero(&to, 96 * sizeof(reg)); } static void do_fpregs_set(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; elf_fpreg_t fpreg, tmp[30]; int index, start, end; if (unw_unwind_to_user(info) < 0) return; /* Skip pos 0 and 1 */ if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, 0, ELF_FP_OFFSET(2)); if (dst->count == 0 || dst->ret) return; } /* fr2-fr31 */ if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { start = dst->pos; end = min(((unsigned int)ELF_FP_OFFSET(32)), dst->pos + dst->count); dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); if (dst->ret) return; if (start & 0xF) { /* only write high part */ if (unw_get_fr(info, start / sizeof(elf_fpreg_t), &fpreg)) { dst->ret = -EIO; return; } tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0] = fpreg.u.bits[0]; start &= ~0xFUL; } if (end & 0xF) { /* only write low part */ if (unw_get_fr(info, end / sizeof(elf_fpreg_t), &fpreg)) { dst->ret = -EIO; return; } tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1] = fpreg.u.bits[1]; end = (end + 0xF) & ~0xFUL; } for ( ; start < end ; start += sizeof(elf_fpreg_t)) { index = start / sizeof(elf_fpreg_t); if (unw_set_fr(info, index, tmp[index - 2])) { dst->ret = -EIO; return; } } if (dst->ret || dst->count == 0) return; } /* fph */ if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) { ia64_sync_fph(dst->target); dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, &dst->target->thread.fph, ELF_FP_OFFSET(32), -1); } } static void unwind_and_call(void (*call)(struct unw_frame_info *, void *), struct task_struct *target, void *data) { if (target == current) unw_init_running(call, data); else { struct unw_frame_info info; memset(&info, 0, sizeof(info)); unw_init_from_blocked_task(&info, target); (*call)(&info, data); } } static int do_regset_call(void (*call)(struct unw_frame_info *, void *), struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct regset_getset info = { .target = target, .regset = regset, .pos = pos, .count = count, .u.set = { .kbuf = kbuf, .ubuf = ubuf }, .ret = 0 }; unwind_and_call(call, target, &info); return info.ret; } static int gpregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct regset_membuf info = {.to = to}; unwind_and_call(do_gpregs_get, target, &info); return info.ret; } static int gpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return do_regset_call(do_gpregs_set, target, regset, pos, count, kbuf, ubuf); } static void do_gpregs_writeback(struct unw_frame_info *info, void *arg) { do_sync_rbs(info, ia64_sync_user_rbs); } /* * This is called to write back the register backing store. * ptrace does this before it stops, so that a tracer reading the user * memory after the thread stops will get the current register data. */ static int gpregs_writeback(struct task_struct *target, const struct user_regset *regset, int now) { if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE)) return 0; set_notify_resume(target); return do_regset_call(do_gpregs_writeback, target, regset, 0, 0, NULL, NULL); } static int fpregs_active(struct task_struct *target, const struct user_regset *regset) { return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32; } static int fpregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct regset_membuf info = {.to = to}; unwind_and_call(do_fpregs_get, target, &info); return info.ret; } static int fpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return do_regset_call(do_fpregs_set, target, regset, pos, count, kbuf, ubuf); } static int access_uarea(struct task_struct *child, unsigned long addr, unsigned long *data, int write_access) { unsigned int pos = -1; /* an invalid value */ unsigned long *ptr, regnum; if ((addr & 0x7) != 0) { dprintk("ptrace: unaligned register address 0x%lx\n", addr); return -1; } if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) || (addr >= PT_R7 + 8 && addr < PT_B1) || (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) || (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) { dprintk("ptrace: rejecting access to register " "address 0x%lx\n", addr); return -1; } switch (addr) { case PT_F32 ... (PT_F127 + 15): pos = addr - PT_F32 + ELF_FP_OFFSET(32); break; case PT_F2 ... (PT_F5 + 15): pos = addr - PT_F2 + ELF_FP_OFFSET(2); break; case PT_F10 ... (PT_F31 + 15): pos = addr - PT_F10 + ELF_FP_OFFSET(10); break; case PT_F6 ... (PT_F9 + 15): pos = addr - PT_F6 + ELF_FP_OFFSET(6); break; } if (pos != -1) { unsigned reg = pos / sizeof(elf_fpreg_t); int which_half = (pos / sizeof(unsigned long)) & 1; if (reg < 32) { /* fr2-fr31 */ struct unw_frame_info info; elf_fpreg_t fpreg; memset(&info, 0, sizeof(info)); unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) return 0; if (unw_get_fr(&info, reg, &fpreg)) return -1; if (write_access) { fpreg.u.bits[which_half] = *data; if (unw_set_fr(&info, reg, fpreg)) return -1; } else { *data = fpreg.u.bits[which_half]; } } else { /* fph */ elf_fpreg_t *p = &child->thread.fph[reg - 32]; unsigned long *bits = &p->u.bits[which_half]; ia64_sync_fph(child); if (write_access) *bits = *data; else if (child->thread.flags & IA64_THREAD_FPH_VALID) *data = *bits; else *data = 0; } return 0; } switch (addr) { case PT_NAT_BITS: pos = ELF_NAT_OFFSET; break; case PT_R4 ... PT_R7: pos = addr - PT_R4 + ELF_GR_OFFSET(4); break; case PT_B1 ... PT_B5: pos = addr - PT_B1 + ELF_BR_OFFSET(1); break; case PT_AR_EC: pos = ELF_AR_EC_OFFSET; break; case PT_AR_LC: pos = ELF_AR_LC_OFFSET; break; case PT_CR_IPSR: pos = ELF_CR_IPSR_OFFSET; break; case PT_CR_IIP: pos = ELF_CR_IIP_OFFSET; break; case PT_CFM: pos = ELF_CFM_OFFSET; break; case PT_AR_UNAT: pos = ELF_AR_UNAT_OFFSET; break; case PT_AR_PFS: pos = ELF_AR_PFS_OFFSET; break; case PT_AR_RSC: pos = ELF_AR_RSC_OFFSET; break; case PT_AR_RNAT: pos = ELF_AR_RNAT_OFFSET; break; case PT_AR_BSPSTORE: pos = ELF_AR_BSPSTORE_OFFSET; break; case PT_PR: pos = ELF_PR_OFFSET; break; case PT_B6: pos = ELF_BR_OFFSET(6); break; case PT_AR_BSP: pos = ELF_AR_BSP_OFFSET; break; case PT_R1 ... PT_R3: pos = addr - PT_R1 + ELF_GR_OFFSET(1); break; case PT_R12 ... PT_R15: pos = addr - PT_R12 + ELF_GR_OFFSET(12); break; case PT_R8 ... PT_R11: pos = addr - PT_R8 + ELF_GR_OFFSET(8); break; case PT_R16 ... PT_R31: pos = addr - PT_R16 + ELF_GR_OFFSET(16); break; case PT_AR_CCV: pos = ELF_AR_CCV_OFFSET; break; case PT_AR_FPSR: pos = ELF_AR_FPSR_OFFSET; break; case PT_B0: pos = ELF_BR_OFFSET(0); break; case PT_B7: pos = ELF_BR_OFFSET(7); break; case PT_AR_CSD: pos = ELF_AR_CSD_OFFSET; break; case PT_AR_SSD: pos = ELF_AR_SSD_OFFSET; break; } if (pos != -1) { struct unw_frame_info info; memset(&info, 0, sizeof(info)); unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) return 0; return access_elf_reg(child, &info, pos, data, write_access); } /* access debug registers */ if (addr >= PT_IBR) { regnum = (addr - PT_IBR) >> 3; ptr = &child->thread.ibr[0]; } else { regnum = (addr - PT_DBR) >> 3; ptr = &child->thread.dbr[0]; } if (regnum >= 8) { dprintk("ptrace: rejecting access to register " "address 0x%lx\n", addr); return -1; } if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { child->thread.flags |= IA64_THREAD_DBG_VALID; memset(child->thread.dbr, 0, sizeof(child->thread.dbr)); memset(child->thread.ibr, 0, sizeof(child->thread.ibr)); } ptr += regnum; if ((regnum & 1) && write_access) { /* don't let the user set kernel-level breakpoints: */ *ptr = *data & ~(7UL << 56); return 0; } if (write_access) *ptr = *data; else *data = *ptr; return 0; } static const struct user_regset native_regsets[] = { { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t), .regset_get = gpregs_get, .set = gpregs_set, .writeback = gpregs_writeback }, { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active }, }; static const struct user_regset_view user_ia64_view = { .name = "ia64", .e_machine = EM_IA_64, .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) }; const struct user_regset_view *task_user_regset_view(struct task_struct *tsk) { return &user_ia64_view; } struct syscall_get_set_args { unsigned int i; unsigned int n; unsigned long *args; struct pt_regs *regs; int rw; }; static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data) { struct syscall_get_set_args *args = data; struct pt_regs *pt = args->regs; unsigned long *krbs, cfm, ndirty, nlocals, nouts; int i, count; if (unw_unwind_to_user(info) < 0) return; /* * We get here via a few paths: * - break instruction: cfm is shared with caller. * syscall args are in out= regs, locals are non-empty. * - epsinstruction: cfm is set by br.call * locals don't exist. * * For both cases argguments are reachable in cfm.sof - cfm.sol. * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ] */ cfm = pt->cr_ifs; nlocals = (cfm >> 7) & 0x7f; /* aka sol */ nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */ krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); count = 0; if (in_syscall(pt)) count = min_t(int, args->n, nouts); /* Iterate over outs. */ for (i = 0; i < count; i++) { int j = ndirty + nlocals + i + args->i; if (args->rw) *ia64_rse_skip_regs(krbs, j) = args->args[i]; else args->args[i] = *ia64_rse_skip_regs(krbs, j); } if (!args->rw) { while (i < args->n) { args->args[i] = 0; i++; } } } void ia64_syscall_get_set_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args, int rw) { struct syscall_get_set_args data = { .i = 0, .n = 6, .args = args, .regs = regs, .rw = rw, }; if (task == current) unw_init_running(syscall_get_set_args_cb, &data); else { struct unw_frame_info ufi; memset(&ufi, 0, sizeof(ufi)); unw_init_from_blocked_task(&ufi, task); syscall_get_set_args_cb(&ufi, &data); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1