Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 1222 | 80.24% | 3 | 13.64% |
Finn Thain | 155 | 10.18% | 2 | 9.09% |
Geert Uytterhoeven | 44 | 2.89% | 7 | 31.82% |
Adrian Bunk | 42 | 2.76% | 1 | 4.55% |
Roman Zippel | 40 | 2.63% | 1 | 4.55% |
Arnd Bergmann | 10 | 0.66% | 3 | 13.64% |
Paul Gortmaker | 3 | 0.20% | 1 | 4.55% |
Andrew Morton | 3 | 0.20% | 1 | 4.55% |
Linus Torvalds | 2 | 0.13% | 1 | 4.55% |
Stephen Warren | 1 | 0.07% | 1 | 4.55% |
Nishanth Aravamudan | 1 | 0.07% | 1 | 4.55% |
Total | 1523 | 22 |
/* * linux/arch/m68k/atari/time.c * * Atari time and real time clock stuff * * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include <linux/types.h> #include <linux/mc146818rtc.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/rtc.h> #include <linux/bcd.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/export.h> #include <asm/atariints.h> #include <asm/machdep.h> DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL_GPL(rtc_lock); static u64 atari_read_clk(struct clocksource *cs); static struct clocksource atari_clk = { .name = "mfp", .rating = 100, .read = atari_read_clk, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u32 clk_total; static u8 last_timer_count; static irqreturn_t mfp_timer_c_handler(int irq, void *dev_id) { unsigned long flags; local_irq_save(flags); do { last_timer_count = st_mfp.tim_dt_c; } while (last_timer_count == 1); clk_total += INT_TICKS; legacy_timer_tick(1); timer_heartbeat(); local_irq_restore(flags); return IRQ_HANDLED; } void __init atari_sched_init(void) { /* set Timer C data Register */ st_mfp.tim_dt_c = INT_TICKS; /* start timer C, div = 1:100 */ st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60; /* install interrupt service routine for MFP Timer C */ if (request_irq(IRQ_MFP_TIMC, mfp_timer_c_handler, IRQF_TIMER, "timer", NULL)) pr_err("Couldn't register timer interrupt\n"); clocksource_register_hz(&atari_clk, INT_CLK); } /* ++andreas: gettimeoffset fixed to check for pending interrupt */ static u64 atari_read_clk(struct clocksource *cs) { unsigned long flags; u8 count; u32 ticks; local_irq_save(flags); /* Ensure that the count is monotonically decreasing, even though * the result may briefly stop changing after counter wrap-around. */ count = min(st_mfp.tim_dt_c, last_timer_count); last_timer_count = count; ticks = INT_TICKS - count; ticks += clk_total; local_irq_restore(flags); return ticks; } static void mste_read(struct MSTE_RTC *val) { #define COPY(v) val->v=(mste_rtc.v & 0xf) do { COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; COPY(year_tens) ; /* prevent from reading the clock while it changed */ } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); #undef COPY } static void mste_write(struct MSTE_RTC *val) { #define COPY(v) mste_rtc.v=val->v do { COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; COPY(year_tens) ; /* prevent from writing the clock while it changed */ } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); #undef COPY } #define RTC_READ(reg) \ ({ unsigned char __val; \ (void) atari_writeb(reg,&tt_rtc.regsel); \ __val = tt_rtc.data; \ __val; \ }) #define RTC_WRITE(reg,val) \ do { \ atari_writeb(reg,&tt_rtc.regsel); \ tt_rtc.data = (val); \ } while(0) #define HWCLK_POLL_INTERVAL 5 int atari_mste_hwclk( int op, struct rtc_time *t ) { int hour, year; int hr24=0; struct MSTE_RTC val; mste_rtc.mode=(mste_rtc.mode | 1); hr24=mste_rtc.mon_tens & 1; mste_rtc.mode=(mste_rtc.mode & ~1); if (op) { /* write: prepare values */ val.sec_ones = t->tm_sec % 10; val.sec_tens = t->tm_sec / 10; val.min_ones = t->tm_min % 10; val.min_tens = t->tm_min / 10; hour = t->tm_hour; if (!hr24) { if (hour > 11) hour += 20 - 12; if (hour == 0 || hour == 20) hour += 12; } val.hr_ones = hour % 10; val.hr_tens = hour / 10; val.day_ones = t->tm_mday % 10; val.day_tens = t->tm_mday / 10; val.mon_ones = (t->tm_mon+1) % 10; val.mon_tens = (t->tm_mon+1) / 10; year = t->tm_year - 80; val.year_ones = year % 10; val.year_tens = year / 10; val.weekday = t->tm_wday; mste_write(&val); mste_rtc.mode=(mste_rtc.mode | 1); val.year_ones = (year % 4); /* leap year register */ mste_rtc.mode=(mste_rtc.mode & ~1); } else { mste_read(&val); t->tm_sec = val.sec_ones + val.sec_tens * 10; t->tm_min = val.min_ones + val.min_tens * 10; hour = val.hr_ones + val.hr_tens * 10; if (!hr24) { if (hour == 12 || hour == 12 + 20) hour -= 12; if (hour >= 20) hour += 12 - 20; } t->tm_hour = hour; t->tm_mday = val.day_ones + val.day_tens * 10; t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1; t->tm_year = val.year_ones + val.year_tens * 10 + 80; t->tm_wday = val.weekday; } return 0; } int atari_tt_hwclk( int op, struct rtc_time *t ) { int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; unsigned long flags; unsigned char ctrl; int pm = 0; ctrl = RTC_READ(RTC_CONTROL); /* control registers are * independent from the UIP */ if (op) { /* write: prepare values */ sec = t->tm_sec; min = t->tm_min; hour = t->tm_hour; day = t->tm_mday; mon = t->tm_mon + 1; year = t->tm_year - atari_rtc_year_offset; wday = t->tm_wday + (t->tm_wday >= 0); if (!(ctrl & RTC_24H)) { if (hour > 11) { pm = 0x80; if (hour != 12) hour -= 12; } else if (hour == 0) hour = 12; } if (!(ctrl & RTC_DM_BINARY)) { sec = bin2bcd(sec); min = bin2bcd(min); hour = bin2bcd(hour); day = bin2bcd(day); mon = bin2bcd(mon); year = bin2bcd(year); if (wday >= 0) wday = bin2bcd(wday); } } /* Reading/writing the clock registers is a bit critical due to * the regular update cycle of the RTC. While an update is in * progress, registers 0..9 shouldn't be touched. * The problem is solved like that: If an update is currently in * progress (the UIP bit is set), the process sleeps for a while * (50ms). This really should be enough, since the update cycle * normally needs 2 ms. * If the UIP bit reads as 0, we have at least 244 usecs until the * update starts. This should be enough... But to be sure, * additionally the RTC_SET bit is set to prevent an update cycle. */ while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) { if (in_atomic() || irqs_disabled()) mdelay(1); else schedule_timeout_interruptible(HWCLK_POLL_INTERVAL); } local_irq_save(flags); RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET ); if (!op) { sec = RTC_READ( RTC_SECONDS ); min = RTC_READ( RTC_MINUTES ); hour = RTC_READ( RTC_HOURS ); day = RTC_READ( RTC_DAY_OF_MONTH ); mon = RTC_READ( RTC_MONTH ); year = RTC_READ( RTC_YEAR ); wday = RTC_READ( RTC_DAY_OF_WEEK ); } else { RTC_WRITE( RTC_SECONDS, sec ); RTC_WRITE( RTC_MINUTES, min ); RTC_WRITE( RTC_HOURS, hour + pm); RTC_WRITE( RTC_DAY_OF_MONTH, day ); RTC_WRITE( RTC_MONTH, mon ); RTC_WRITE( RTC_YEAR, year ); if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday ); } RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET ); local_irq_restore(flags); if (!op) { /* read: adjust values */ if (hour & 0x80) { hour &= ~0x80; pm = 1; } if (!(ctrl & RTC_DM_BINARY)) { sec = bcd2bin(sec); min = bcd2bin(min); hour = bcd2bin(hour); day = bcd2bin(day); mon = bcd2bin(mon); year = bcd2bin(year); wday = bcd2bin(wday); } if (!(ctrl & RTC_24H)) { if (!pm && hour == 12) hour = 0; else if (pm && hour != 12) hour += 12; } t->tm_sec = sec; t->tm_min = min; t->tm_hour = hour; t->tm_mday = day; t->tm_mon = mon - 1; t->tm_year = year + atari_rtc_year_offset; t->tm_wday = wday - 1; } return( 0 ); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1