Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 2633 | 58.46% | 21 | 34.43% |
Ralf Baechle | 1257 | 27.91% | 7 | 11.48% |
Aaro Koskinen | 273 | 6.06% | 14 | 22.95% |
Steven J. Hill | 194 | 4.31% | 3 | 4.92% |
Chandrakala Chavva | 48 | 1.07% | 2 | 3.28% |
Hidehiro Kawai | 42 | 0.93% | 1 | 1.64% |
Thomas Bogendoerfer | 14 | 0.31% | 2 | 3.28% |
Kevin Hao | 13 | 0.29% | 1 | 1.64% |
Eunbong Song 송은봉 | 8 | 0.18% | 1 | 1.64% |
Rob Herring | 7 | 0.16% | 1 | 1.64% |
Alexander Sverdlin | 4 | 0.09% | 1 | 1.64% |
Paul Gortmaker | 3 | 0.07% | 1 | 1.64% |
Aurelien Jarno | 2 | 0.04% | 1 | 1.64% |
Masanari Iida | 2 | 0.04% | 1 | 1.64% |
Matt Bennett | 1 | 0.02% | 1 | 1.64% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.64% |
Christoph Hellwig | 1 | 0.02% | 1 | 1.64% |
Paul Menzel | 1 | 0.02% | 1 | 1.64% |
Total | 4504 | 61 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004-2007 Cavium Networks * Copyright (C) 2008, 2009 Wind River Systems * written by Ralf Baechle <ralf@linux-mips.org> */ #include <linux/compiler.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/memblock.h> #include <linux/serial.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/string.h> /* for memset */ #include <linux/tty.h> #include <linux/time.h> #include <linux/platform_device.h> #include <linux/serial_core.h> #include <linux/serial_8250.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <linux/kexec.h> #include <asm/processor.h> #include <asm/reboot.h> #include <asm/smp-ops.h> #include <asm/irq_cpu.h> #include <asm/mipsregs.h> #include <asm/bootinfo.h> #include <asm/sections.h> #include <asm/fw/fw.h> #include <asm/setup.h> #include <asm/prom.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include <asm/octeon/pci-octeon.h> #include <asm/octeon/cvmx-rst-defs.h> /* * TRUE for devices having registers with little-endian byte * order, FALSE for registers with native-endian byte order. * PCI mandates little-endian, USB and SATA are configuraable, * but we chose little-endian for these. */ const bool octeon_should_swizzle_table[256] = { [0x00] = true, /* bootbus/CF */ [0x1b] = true, /* PCI mmio window */ [0x1c] = true, /* PCI mmio window */ [0x1d] = true, /* PCI mmio window */ [0x1e] = true, /* PCI mmio window */ [0x68] = true, /* OCTEON III USB */ [0x69] = true, /* OCTEON III USB */ [0x6c] = true, /* OCTEON III SATA */ [0x6f] = true, /* OCTEON II USB */ }; EXPORT_SYMBOL(octeon_should_swizzle_table); #ifdef CONFIG_PCI extern void pci_console_init(const char *arg); #endif static unsigned long long max_memory = ULLONG_MAX; static unsigned long long reserve_low_mem; DEFINE_SEMAPHORE(octeon_bootbus_sem); EXPORT_SYMBOL(octeon_bootbus_sem); static struct octeon_boot_descriptor *octeon_boot_desc_ptr; struct cvmx_bootinfo *octeon_bootinfo; EXPORT_SYMBOL(octeon_bootinfo); #ifdef CONFIG_KEXEC #ifdef CONFIG_SMP /* * Wait for relocation code is prepared and send * secondary CPUs to spin until kernel is relocated. */ static void octeon_kexec_smp_down(void *ignored) { int cpu = smp_processor_id(); local_irq_disable(); set_cpu_online(cpu, false); while (!atomic_read(&kexec_ready_to_reboot)) cpu_relax(); asm volatile ( " sync \n" " synci ($0) \n"); kexec_reboot(); } #endif #define OCTEON_DDR0_BASE (0x0ULL) #define OCTEON_DDR0_SIZE (0x010000000ULL) #define OCTEON_DDR1_BASE (0x410000000ULL) #define OCTEON_DDR1_SIZE (0x010000000ULL) #define OCTEON_DDR2_BASE (0x020000000ULL) #define OCTEON_DDR2_SIZE (0x3e0000000ULL) #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) static struct kimage *kimage_ptr; static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) { int64_t addr; struct cvmx_bootmem_desc *bootmem_desc; bootmem_desc = cvmx_bootmem_get_desc(); if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { mem_size = OCTEON_MAX_PHY_MEM_SIZE; pr_err("Error: requested memory too large," "truncating to maximum size\n"); } bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes); bootmem_desc->head_addr = 0; if (mem_size <= OCTEON_DDR0_SIZE) { __cvmx_bootmem_phy_free(addr, mem_size - reserve_low_mem - low_reserved_bytes, 0); return; } __cvmx_bootmem_phy_free(addr, OCTEON_DDR0_SIZE - reserve_low_mem - low_reserved_bytes, 0); mem_size -= OCTEON_DDR0_SIZE; if (mem_size > OCTEON_DDR1_SIZE) { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0); } else __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); } static int octeon_kexec_prepare(struct kimage *image) { int i; char *bootloader = "kexec"; octeon_boot_desc_ptr->argc = 0; for (i = 0; i < image->nr_segments; i++) { if (!strncmp(bootloader, (char *)image->segment[i].buf, strlen(bootloader))) { /* * convert command line string to array * of parameters (as bootloader does). */ int argc = 0, offt; char *str = (char *)image->segment[i].buf; char *ptr = strchr(str, ' '); while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { *ptr = '\0'; if (ptr[1] != ' ') { offt = (int)(ptr - str + 1); octeon_boot_desc_ptr->argv[argc] = image->segment[i].mem + offt; argc++; } ptr = strchr(ptr + 1, ' '); } octeon_boot_desc_ptr->argc = argc; break; } } /* * Information about segments will be needed during pre-boot memory * initialization. */ kimage_ptr = image; return 0; } static void octeon_generic_shutdown(void) { int i; #ifdef CONFIG_SMP int cpu; #endif struct cvmx_bootmem_desc *bootmem_desc; void *named_block_array_ptr; bootmem_desc = cvmx_bootmem_get_desc(); named_block_array_ptr = cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); #ifdef CONFIG_SMP /* disable watchdogs */ for_each_online_cpu(cpu) cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); #else cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); #endif if (kimage_ptr != kexec_crash_image) { memset(named_block_array_ptr, 0x0, CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(struct cvmx_bootmem_named_block_desc)); /* * Mark all memory (except low 0x100000 bytes) as free. * It is the same thing that bootloader does. */ kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, 0x100000); /* * Allocate all segments to avoid their corruption during boot. */ for (i = 0; i < kimage_ptr->nr_segments; i++) cvmx_bootmem_alloc_address( kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, kimage_ptr->segment[i].mem - PAGE_SIZE, PAGE_SIZE); } else { /* * Do not mark all memory as free. Free only named sections * leaving the rest of memory unchanged. */ struct cvmx_bootmem_named_block_desc *ptr = (struct cvmx_bootmem_named_block_desc *) named_block_array_ptr; for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) if (ptr[i].size) cvmx_bootmem_free_named(ptr[i].name); } kexec_args[2] = 1UL; /* running on octeon_main_processor */ kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; #ifdef CONFIG_SMP secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; #endif } static void octeon_shutdown(void) { octeon_generic_shutdown(); #ifdef CONFIG_SMP smp_call_function(octeon_kexec_smp_down, NULL, 0); smp_wmb(); while (num_online_cpus() > 1) { cpu_relax(); mdelay(1); } #endif } static void octeon_crash_shutdown(struct pt_regs *regs) { octeon_generic_shutdown(); default_machine_crash_shutdown(regs); } #ifdef CONFIG_SMP void octeon_crash_smp_send_stop(void) { int cpu; /* disable watchdogs */ for_each_online_cpu(cpu) cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); } #endif #endif /* CONFIG_KEXEC */ #ifdef CONFIG_CAVIUM_RESERVE32 uint64_t octeon_reserve32_memory; EXPORT_SYMBOL(octeon_reserve32_memory); #endif #ifdef CONFIG_KEXEC /* crashkernel cmdline parameter is parsed _after_ memory setup * we also parse it here (workaround for EHB5200) */ static uint64_t crashk_size, crashk_base; #endif static int octeon_uart; extern asmlinkage void handle_int(void); /** * Return non zero if we are currently running in the Octeon simulator * * Returns */ int octeon_is_simulation(void) { return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; } EXPORT_SYMBOL(octeon_is_simulation); /** * Return true if Octeon is in PCI Host mode. This means * Linux can control the PCI bus. * * Returns Non zero if Octeon in host mode. */ int octeon_is_pci_host(void) { #ifdef CONFIG_PCI return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; #else return 0; #endif } /** * Get the clock rate of Octeon * * Returns Clock rate in HZ */ uint64_t octeon_get_clock_rate(void) { struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); return sysinfo->cpu_clock_hz; } EXPORT_SYMBOL(octeon_get_clock_rate); static u64 octeon_io_clock_rate; u64 octeon_get_io_clock_rate(void) { return octeon_io_clock_rate; } EXPORT_SYMBOL(octeon_get_io_clock_rate); /** * Write to the LCD display connected to the bootbus. This display * exists on most Cavium evaluation boards. If it doesn't exist, then * this function doesn't do anything. * * @s: String to write */ static void octeon_write_lcd(const char *s) { if (octeon_bootinfo->led_display_base_addr) { void __iomem *lcd_address = ioremap(octeon_bootinfo->led_display_base_addr, 8); int i; for (i = 0; i < 8; i++, s++) { if (*s) iowrite8(*s, lcd_address + i); else iowrite8(' ', lcd_address + i); } iounmap(lcd_address); } } /** * Return the console uart passed by the bootloader * * Returns uart (0 or 1) */ static int octeon_get_boot_uart(void) { return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? 1 : 0; } /** * Get the coremask Linux was booted on. * * Returns Core mask */ int octeon_get_boot_coremask(void) { return octeon_boot_desc_ptr->core_mask; } /** * Check the hardware BIST results for a CPU */ void octeon_check_cpu_bist(void) { const int coreid = cvmx_get_core_num(); unsigned long long mask; unsigned long long bist_val; /* Check BIST results for COP0 registers */ mask = 0x1f00000000ull; bist_val = read_octeon_c0_icacheerr(); if (bist_val & mask) pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", coreid, bist_val); bist_val = read_octeon_c0_dcacheerr(); if (bist_val & 1) pr_err("Core%d L1 Dcache parity error: " "CacheErr(dcache) = 0x%llx\n", coreid, bist_val); mask = 0xfc00000000000000ull; bist_val = read_c0_cvmmemctl(); if (bist_val & mask) pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", coreid, bist_val); write_octeon_c0_dcacheerr(0); } /** * Reboot Octeon * * @command: Command to pass to the bootloader. Currently ignored. */ static void octeon_restart(char *command) { /* Disable all watchdogs before soft reset. They don't get cleared */ #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); #else cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); #endif mb(); while (1) if (OCTEON_IS_OCTEON3()) cvmx_write_csr(CVMX_RST_SOFT_RST, 1); else cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); } /** * Permanently stop a core. * * @arg: Ignored. */ static void octeon_kill_core(void *arg) { if (octeon_is_simulation()) /* A break instruction causes the simulator stop a core */ asm volatile ("break" ::: "memory"); local_irq_disable(); /* Disable watchdog on this core. */ cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); /* Spin in a low power mode. */ while (true) asm volatile ("wait" ::: "memory"); } /** * Halt the system */ static void octeon_halt(void) { smp_call_function(octeon_kill_core, NULL, 0); switch (octeon_bootinfo->board_type) { case CVMX_BOARD_TYPE_NAO38: /* Driving a 1 to GPIO 12 shuts off this board */ cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); break; default: octeon_write_lcd("PowerOff"); break; } octeon_kill_core(NULL); } static char __read_mostly octeon_system_type[80]; static void __init init_octeon_system_type(void) { char const *board_type; board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type); if (board_type == NULL) { struct device_node *root; int ret; root = of_find_node_by_path("/"); ret = of_property_read_string(root, "model", &board_type); of_node_put(root); if (ret) board_type = "Unsupported Board"; } snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", board_type, octeon_model_get_string(read_c0_prid())); } /** * Return a string representing the system type * * Returns */ const char *octeon_board_type_string(void) { return octeon_system_type; } const char *get_system_type(void) __attribute__ ((alias("octeon_board_type_string"))); void octeon_user_io_init(void) { union octeon_cvmemctl cvmmemctl; /* Get the current settings for CP0_CVMMEMCTL_REG */ cvmmemctl.u64 = read_c0_cvmmemctl(); /* R/W If set, marked write-buffer entries time out the same * as as other entries; if clear, marked write-buffer entries * use the maximum timeout. */ cvmmemctl.s.dismarkwblongto = 1; /* R/W If set, a merged store does not clear the write-buffer * entry timeout state. */ cvmmemctl.s.dismrgclrwbto = 0; /* R/W Two bits that are the MSBs of the resultant CVMSEG LM * word location for an IOBDMA. The other 8 bits come from the * SCRADDR field of the IOBDMA. */ cvmmemctl.s.iobdmascrmsb = 0; /* R/W If set, SYNCWS and SYNCS only order marked stores; if * clear, SYNCWS and SYNCS only order unmarked * stores. SYNCWSMARKED has no effect when DISSYNCWS is * set. */ cvmmemctl.s.syncwsmarked = 0; /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ cvmmemctl.s.dissyncws = 0; /* R/W If set, no stall happens on write buffer full. */ if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) cvmmemctl.s.diswbfst = 1; else cvmmemctl.s.diswbfst = 0; /* R/W If set (and SX set), supervisor-level loads/stores can * use XKPHYS addresses with <48>==0 */ cvmmemctl.s.xkmemenas = 0; /* R/W If set (and UX set), user-level loads/stores can use * XKPHYS addresses with VA<48>==0 */ cvmmemctl.s.xkmemenau = 0; /* R/W If set (and SX set), supervisor-level loads/stores can * use XKPHYS addresses with VA<48>==1 */ cvmmemctl.s.xkioenas = 0; /* R/W If set (and UX set), user-level loads/stores can use * XKPHYS addresses with VA<48>==1 */ cvmmemctl.s.xkioenau = 0; /* R/W If set, all stores act as SYNCW (NOMERGE must be set * when this is set) RW, reset to 0. */ cvmmemctl.s.allsyncw = 0; /* R/W If set, no stores merge, and all stores reach the * coherent bus in order. */ cvmmemctl.s.nomerge = 0; /* R/W Selects the bit in the counter used for DID time-outs 0 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is * between 1x and 2x this interval. For example, with * DIDTTO=3, expiration interval is between 16K and 32K. */ cvmmemctl.s.didtto = 0; /* R/W If set, the (mem) CSR clock never turns off. */ cvmmemctl.s.csrckalwys = 0; /* R/W If set, mclk never turns off. */ cvmmemctl.s.mclkalwys = 0; /* R/W Selects the bit in the counter used for write buffer * flush time-outs (WBFLT+11) is the bit position in an * internal counter used to determine expiration. The write * buffer expires between 1x and 2x this interval. For * example, with WBFLT = 0, a write buffer expires between 2K * and 4K cycles after the write buffer entry is allocated. */ cvmmemctl.s.wbfltime = 0; /* R/W If set, do not put Istream in the L2 cache. */ cvmmemctl.s.istrnol2 = 0; /* * R/W The write buffer threshold. As per erratum Core-14752 * for CN63XX, a sc/scd might fail if the write buffer is * full. Lowering WBTHRESH greatly lowers the chances of the * write buffer ever being full and triggering the erratum. */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) cvmmemctl.s.wbthresh = 4; else cvmmemctl.s.wbthresh = 10; /* R/W If set, CVMSEG is available for loads/stores in * kernel/debug mode. */ #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 cvmmemctl.s.cvmsegenak = 1; #else cvmmemctl.s.cvmsegenak = 0; #endif /* R/W If set, CVMSEG is available for loads/stores in * supervisor mode. */ cvmmemctl.s.cvmsegenas = 0; /* R/W If set, CVMSEG is available for loads/stores in user * mode. */ cvmmemctl.s.cvmsegenau = 0; write_c0_cvmmemctl(cvmmemctl.u64); /* Setup of CVMSEG is done in kernel-entry-init.h */ if (smp_processor_id() == 0) pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); if (octeon_has_feature(OCTEON_FEATURE_FAU)) { union cvmx_iob_fau_timeout fau_timeout; /* Set a default for the hardware timeouts */ fau_timeout.u64 = 0; fau_timeout.s.tout_val = 0xfff; /* Disable tagwait FAU timeout */ fau_timeout.s.tout_enb = 0; cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); } if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) && !OCTEON_IS_MODEL(OCTEON_CN7XXX)) || OCTEON_IS_MODEL(OCTEON_CN70XX)) { union cvmx_pow_nw_tim nm_tim; nm_tim.u64 = 0; /* 4096 cycles */ nm_tim.s.nw_tim = 3; cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); } write_octeon_c0_icacheerr(0); write_c0_derraddr1(0); } /** * Early entry point for arch setup */ void __init prom_init(void) { struct cvmx_sysinfo *sysinfo; const char *arg; char *p; int i; u64 t; int argc; #ifdef CONFIG_CAVIUM_RESERVE32 int64_t addr = -1; #endif /* * The bootloader passes a pointer to the boot descriptor in * $a3, this is available as fw_arg3. */ octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; octeon_bootinfo = cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); sysinfo = cvmx_sysinfo_get(); memset(sysinfo, 0, sizeof(*sysinfo)); sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr); if ((octeon_bootinfo->major_version > 1) || (octeon_bootinfo->major_version == 1 && octeon_bootinfo->minor_version >= 4)) cvmx_coremask_copy(&sysinfo->core_mask, &octeon_bootinfo->ext_core_mask); else cvmx_coremask_set64(&sysinfo->core_mask, octeon_bootinfo->core_mask); /* Some broken u-boot pass garbage in upper bits, clear them out */ if (!OCTEON_IS_MODEL(OCTEON_CN78XX)) for (i = 512; i < 1024; i++) cvmx_coremask_clear_core(&sysinfo->core_mask, i); sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; sysinfo->board_type = octeon_bootinfo->board_type; sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, sizeof(sysinfo->mac_addr_base)); sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; memcpy(sysinfo->board_serial_number, octeon_bootinfo->board_serial_number, sizeof(sysinfo->board_serial_number)); sysinfo->compact_flash_common_base_addr = octeon_bootinfo->compact_flash_common_base_addr; sysinfo->compact_flash_attribute_base_addr = octeon_bootinfo->compact_flash_attribute_base_addr; sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; if (OCTEON_IS_OCTEON2()) { /* I/O clock runs at a different rate than the CPU. */ union cvmx_mio_rst_boot rst_boot; rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; } else if (OCTEON_IS_OCTEON3()) { /* I/O clock runs at a different rate than the CPU. */ union cvmx_rst_boot rst_boot; rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; } else { octeon_io_clock_rate = sysinfo->cpu_clock_hz; } t = read_c0_cvmctl(); if ((t & (1ull << 27)) == 0) { /* * Setup the multiplier save/restore code if * CvmCtl[NOMUL] clear. */ void *save; void *save_end; void *restore; void *restore_end; int save_len; int restore_len; int save_max = (char *)octeon_mult_save_end - (char *)octeon_mult_save; int restore_max = (char *)octeon_mult_restore_end - (char *)octeon_mult_restore; if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) { save = octeon_mult_save3; save_end = octeon_mult_save3_end; restore = octeon_mult_restore3; restore_end = octeon_mult_restore3_end; } else { save = octeon_mult_save2; save_end = octeon_mult_save2_end; restore = octeon_mult_restore2; restore_end = octeon_mult_restore2_end; } save_len = (char *)save_end - (char *)save; restore_len = (char *)restore_end - (char *)restore; if (!WARN_ON(save_len > save_max || restore_len > restore_max)) { memcpy(octeon_mult_save, save, save_len); memcpy(octeon_mult_restore, restore, restore_len); } } /* * Only enable the LED controller if we're running on a CN38XX, CN58XX, * or CN56XX. The CN30XX and CN31XX don't have an LED controller. */ if (!octeon_is_simulation() && octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { cvmx_write_csr(CVMX_LED_EN, 0); cvmx_write_csr(CVMX_LED_PRT, 0); cvmx_write_csr(CVMX_LED_DBG, 0); cvmx_write_csr(CVMX_LED_PRT_FMT, 0); cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); cvmx_write_csr(CVMX_LED_EN, 1); } #ifdef CONFIG_CAVIUM_RESERVE32 /* * We need to temporarily allocate all memory in the reserve32 * region. This makes sure the kernel doesn't allocate this * memory when it is getting memory from the * bootloader. Later, after the memory allocations are * complete, the reserve32 will be freed. * * Allocate memory for RESERVED32 aligned on 2MB boundary. This * is in case we later use hugetlb entries with it. */ addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, 0, 0, 2 << 20, "CAVIUM_RESERVE32", 0); if (addr < 0) pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); else octeon_reserve32_memory = addr; #endif #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { pr_info("Skipping L2 locking due to reduced L2 cache size\n"); } else { uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB /* TLB refill */ cvmx_l2c_lock_mem_region(ebase, 0x100); #endif #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION /* General exception */ cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); #endif #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT /* Interrupt handler */ cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); #endif #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); #endif #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); #endif } #endif octeon_check_cpu_bist(); octeon_uart = octeon_get_boot_uart(); #ifdef CONFIG_SMP octeon_write_lcd("LinuxSMP"); #else octeon_write_lcd("Linux"); #endif octeon_setup_delays(); /* * BIST should always be enabled when doing a soft reset. L2 * Cache locking for instance is not cleared unless BIST is * enabled. Unfortunately due to a chip errata G-200 for * Cn38XX and CN31XX, BIST must be disabled on these parts. */ if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || OCTEON_IS_MODEL(OCTEON_CN31XX)) cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); else cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); /* Default to 64MB in the simulator to speed things up */ if (octeon_is_simulation()) max_memory = 64ull << 20; arg = strstr(arcs_cmdline, "mem="); if (arg) { max_memory = memparse(arg + 4, &p); if (max_memory == 0) max_memory = 32ull << 30; if (*p == '@') reserve_low_mem = memparse(p + 1, &p); } arcs_cmdline[0] = 0; argc = octeon_boot_desc_ptr->argc; for (i = 0; i < argc; i++) { const char *arg = cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); if ((strncmp(arg, "MEM=", 4) == 0) || (strncmp(arg, "mem=", 4) == 0)) { max_memory = memparse(arg + 4, &p); if (max_memory == 0) max_memory = 32ull << 30; if (*p == '@') reserve_low_mem = memparse(p + 1, &p); #ifdef CONFIG_KEXEC } else if (strncmp(arg, "crashkernel=", 12) == 0) { crashk_size = memparse(arg+12, &p); if (*p == '@') crashk_base = memparse(p+1, &p); strcat(arcs_cmdline, " "); strcat(arcs_cmdline, arg); /* * To do: switch parsing to new style, something like: * parse_crashkernel(arg, sysinfo->system_dram_size, * &crashk_size, &crashk_base); */ #endif } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < sizeof(arcs_cmdline) - 1) { strcat(arcs_cmdline, " "); strcat(arcs_cmdline, arg); } } if (strstr(arcs_cmdline, "console=") == NULL) { if (octeon_uart == 1) strcat(arcs_cmdline, " console=ttyS1,115200"); else strcat(arcs_cmdline, " console=ttyS0,115200"); } mips_hpt_frequency = octeon_get_clock_rate(); octeon_init_cvmcount(); _machine_restart = octeon_restart; _machine_halt = octeon_halt; #ifdef CONFIG_KEXEC _machine_kexec_shutdown = octeon_shutdown; _machine_crash_shutdown = octeon_crash_shutdown; _machine_kexec_prepare = octeon_kexec_prepare; #ifdef CONFIG_SMP _crash_smp_send_stop = octeon_crash_smp_send_stop; #endif #endif octeon_user_io_init(); octeon_setup_smp(); } /* Exclude a single page from the regions obtained in plat_mem_setup. */ #ifndef CONFIG_CRASH_DUMP static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) { if (addr > *mem && addr < *mem + *size) { u64 inc = addr - *mem; memblock_add(*mem, inc); *mem += inc; *size -= inc; } if (addr == *mem && *size > PAGE_SIZE) { *mem += PAGE_SIZE; *size -= PAGE_SIZE; } } #endif /* CONFIG_CRASH_DUMP */ void __init fw_init_cmdline(void) { int i; octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; for (i = 0; i < octeon_boot_desc_ptr->argc; i++) { const char *arg = cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); if (strlen(arcs_cmdline) + strlen(arg) + 1 < sizeof(arcs_cmdline) - 1) { strcat(arcs_cmdline, " "); strcat(arcs_cmdline, arg); } } } void __init *plat_get_fdt(void) { octeon_bootinfo = cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); return phys_to_virt(octeon_bootinfo->fdt_addr); } void __init plat_mem_setup(void) { uint64_t mem_alloc_size; uint64_t total; uint64_t crashk_end; #ifndef CONFIG_CRASH_DUMP int64_t memory; #endif total = 0; crashk_end = 0; /* * The Mips memory init uses the first memory location for * some memory vectors. When SPARSEMEM is in use, it doesn't * verify that the size is big enough for the final * vectors. Making the smallest chuck 4MB seems to be enough * to consistently work. */ mem_alloc_size = 4 << 20; if (mem_alloc_size > max_memory) mem_alloc_size = max_memory; /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ #ifdef CONFIG_CRASH_DUMP memblock_add(reserve_low_mem, max_memory); total += max_memory; #else #ifdef CONFIG_KEXEC if (crashk_size > 0) { memblock_add(crashk_base, crashk_size); crashk_end = crashk_base + crashk_size; } #endif /* * When allocating memory, we want incrementing addresses, * which is handled by memblock */ cvmx_bootmem_lock(); while (total < max_memory) { memory = cvmx_bootmem_phy_alloc(mem_alloc_size, __pa_symbol(&_end), -1, 0x100000, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (memory >= 0) { u64 size = mem_alloc_size; #ifdef CONFIG_KEXEC uint64_t end; #endif /* * exclude a page at the beginning and end of * the 256MB PCIe 'hole' so the kernel will not * try to allocate multi-page buffers that * span the discontinuity. */ memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, &memory, &size); memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + CVMX_PCIE_BAR1_PHYS_SIZE, &memory, &size); #ifdef CONFIG_KEXEC end = memory + mem_alloc_size; /* * This function automatically merges address regions * next to each other if they are received in * incrementing order */ if (memory < crashk_base && end > crashk_end) { /* region is fully in */ memblock_add(memory, crashk_base - memory); total += crashk_base - memory; memblock_add(crashk_end, end - crashk_end); total += end - crashk_end; continue; } if (memory >= crashk_base && end <= crashk_end) /* * Entire memory region is within the new * kernel's memory, ignore it. */ continue; if (memory > crashk_base && memory < crashk_end && end > crashk_end) { /* * Overlap with the beginning of the region, * reserve the beginning. */ mem_alloc_size -= crashk_end - memory; memory = crashk_end; } else if (memory < crashk_base && end > crashk_base && end < crashk_end) /* * Overlap with the beginning of the region, * chop of end. */ mem_alloc_size -= end - crashk_base; #endif memblock_add(memory, mem_alloc_size); total += mem_alloc_size; /* Recovering mem_alloc_size */ mem_alloc_size = 4 << 20; } else { break; } } cvmx_bootmem_unlock(); #endif /* CONFIG_CRASH_DUMP */ #ifdef CONFIG_CAVIUM_RESERVE32 /* * Now that we've allocated the kernel memory it is safe to * free the reserved region. We free it here so that builtin * drivers can use the memory. */ if (octeon_reserve32_memory) cvmx_bootmem_free_named("CAVIUM_RESERVE32"); #endif /* CONFIG_CAVIUM_RESERVE32 */ if (total == 0) panic("Unable to allocate memory from " "cvmx_bootmem_phy_alloc"); } /* * Emit one character to the boot UART. Exported for use by the * watchdog timer. */ void prom_putchar(char c) { uint64_t lsrval; /* Spin until there is room */ do { lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); } while ((lsrval & 0x20) == 0); /* Write the byte */ cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); } EXPORT_SYMBOL(prom_putchar); void __init prom_free_prom_memory(void) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { /* Check for presence of Core-14449 fix. */ u32 insn; u32 *foo; foo = &insn; asm volatile("# before" : : : "memory"); prefetch(foo); asm volatile( ".set push\n\t" ".set noreorder\n\t" "bal 1f\n\t" "nop\n" "1:\tlw %0,-12($31)\n\t" ".set pop\n\t" : "=r" (insn) : : "$31", "memory"); if ((insn >> 26) != 0x33) panic("No PREF instruction at Core-14449 probe point."); if (((insn >> 16) & 0x1f) != 28) panic("OCTEON II DCache prefetch workaround not in place (%04x).\n" "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn); } } void __init octeon_fill_mac_addresses(void); void __init device_tree_init(void) { const void *fdt; bool do_prune; bool fill_mac; #ifdef CONFIG_MIPS_ELF_APPENDED_DTB if (!fdt_check_header(&__appended_dtb)) { fdt = &__appended_dtb; do_prune = false; fill_mac = true; pr_info("Using appended Device Tree.\n"); } else #endif if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { fdt = phys_to_virt(octeon_bootinfo->fdt_addr); if (fdt_check_header(fdt)) panic("Corrupt Device Tree passed to kernel."); do_prune = false; fill_mac = false; pr_info("Using passed Device Tree.\n"); } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { fdt = &__dtb_octeon_68xx_begin; do_prune = true; fill_mac = true; } else { fdt = &__dtb_octeon_3xxx_begin; do_prune = true; fill_mac = true; } initial_boot_params = (void *)fdt; if (do_prune) { octeon_prune_device_tree(); pr_info("Using internal Device Tree.\n"); } if (fill_mac) octeon_fill_mac_addresses(); unflatten_and_copy_device_tree(); init_octeon_system_type(); } static int __initdata disable_octeon_edac_p; static int __init disable_octeon_edac(char *str) { disable_octeon_edac_p = 1; return 0; } early_param("disable_octeon_edac", disable_octeon_edac); static char *edac_device_names[] = { "octeon_l2c_edac", "octeon_pc_edac", }; static int __init edac_devinit(void) { struct platform_device *dev; int i, err = 0; int num_lmc; char *name; if (disable_octeon_edac_p) return 0; for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { name = edac_device_names[i]; dev = platform_device_register_simple(name, -1, NULL, 0); if (IS_ERR(dev)) { pr_err("Registration of %s failed!\n", name); err = PTR_ERR(dev); } } num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); for (i = 0; i < num_lmc; i++) { dev = platform_device_register_simple("octeon_lmc_edac", i, NULL, 0); if (IS_ERR(dev)) { pr_err("Registration of octeon_lmc_edac %d failed!\n", i); err = PTR_ERR(dev); } } return err; } device_initcall(edac_devinit); static void __initdata *octeon_dummy_iospace; static int __init octeon_no_pci_init(void) { /* * Initially assume there is no PCI. The PCI/PCIe platform code will * later re-initialize these to correct values if they are present. */ octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); set_io_port_base((unsigned long)octeon_dummy_iospace); ioport_resource.start = MAX_RESOURCE; ioport_resource.end = 0; return 0; } core_initcall(octeon_no_pci_init); static int __init octeon_no_pci_release(void) { /* * Release the allocated memory if a real IO space is there. */ if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) vfree(octeon_dummy_iospace); return 0; } late_initcall(octeon_no_pci_release);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1