Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Bogendoerfer | 2697 | 37.76% | 1 | 1.92% |
James Hogan | 2434 | 34.08% | 39 | 75.00% |
Sanjay Lal | 1451 | 20.31% | 1 | 1.92% |
Huacai Chen | 538 | 7.53% | 1 | 1.92% |
Deng-Cheng Zhu | 10 | 0.14% | 4 | 7.69% |
Liangliang Huang | 4 | 0.06% | 1 | 1.92% |
Tianjia Zhang | 3 | 0.04% | 1 | 1.92% |
David Daney | 3 | 0.04% | 1 | 1.92% |
Mike Rapoport | 1 | 0.01% | 1 | 1.92% |
Radim Krčmář | 1 | 0.01% | 1 | 1.92% |
Paul Burton | 1 | 0.01% | 1 | 1.92% |
Total | 7143 | 52 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: Instruction/Exception emulation * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal <sanjayl@kymasys.com> */ #include <linux/errno.h> #include <linux/err.h> #include <linux/ktime.h> #include <linux/kvm_host.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <linux/memblock.h> #include <linux/random.h> #include <asm/page.h> #include <asm/cacheflush.h> #include <asm/cacheops.h> #include <asm/cpu-info.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include <asm/inst.h> #undef CONFIG_MIPS_MT #include <asm/r4kcache.h> #define CONFIG_MIPS_MT #include "interrupt.h" #include "trace.h" /* * Compute the return address and do emulate branch simulation, if required. * This function should be called only in branch delay slot active. */ static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, unsigned long *out) { unsigned int dspcontrol; union mips_instruction insn; struct kvm_vcpu_arch *arch = &vcpu->arch; long epc = instpc; long nextpc; int err; if (epc & 3) { kvm_err("%s: unaligned epc\n", __func__); return -EINVAL; } /* Read the instruction */ err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); if (err) return err; switch (insn.i_format.opcode) { /* jr and jalr are in r_format format. */ case spec_op: switch (insn.r_format.func) { case jalr_op: arch->gprs[insn.r_format.rd] = epc + 8; fallthrough; case jr_op: nextpc = arch->gprs[insn.r_format.rs]; break; default: return -EINVAL; } break; /* * This group contains: * bltz_op, bgez_op, bltzl_op, bgezl_op, * bltzal_op, bgezal_op, bltzall_op, bgezall_op. */ case bcond_op: switch (insn.i_format.rt) { case bltz_op: case bltzl_op: if ((long)arch->gprs[insn.i_format.rs] < 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bgez_op: case bgezl_op: if ((long)arch->gprs[insn.i_format.rs] >= 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bltzal_op: case bltzall_op: arch->gprs[31] = epc + 8; if ((long)arch->gprs[insn.i_format.rs] < 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bgezal_op: case bgezall_op: arch->gprs[31] = epc + 8; if ((long)arch->gprs[insn.i_format.rs] >= 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bposge32_op: if (!cpu_has_dsp) { kvm_err("%s: DSP branch but not DSP ASE\n", __func__); return -EINVAL; } dspcontrol = rddsp(0x01); if (dspcontrol >= 32) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; default: return -EINVAL; } break; /* These are unconditional and in j_format. */ case jal_op: arch->gprs[31] = instpc + 8; fallthrough; case j_op: epc += 4; epc >>= 28; epc <<= 28; epc |= (insn.j_format.target << 2); nextpc = epc; break; /* These are conditional and in i_format. */ case beq_op: case beql_op: if (arch->gprs[insn.i_format.rs] == arch->gprs[insn.i_format.rt]) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bne_op: case bnel_op: if (arch->gprs[insn.i_format.rs] != arch->gprs[insn.i_format.rt]) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case blez_op: /* POP06 */ #ifndef CONFIG_CPU_MIPSR6 case blezl_op: /* removed in R6 */ #endif if (insn.i_format.rt != 0) goto compact_branch; if ((long)arch->gprs[insn.i_format.rs] <= 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; case bgtz_op: /* POP07 */ #ifndef CONFIG_CPU_MIPSR6 case bgtzl_op: /* removed in R6 */ #endif if (insn.i_format.rt != 0) goto compact_branch; if ((long)arch->gprs[insn.i_format.rs] > 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; nextpc = epc; break; /* And now the FPA/cp1 branch instructions. */ case cop1_op: kvm_err("%s: unsupported cop1_op\n", __func__); return -EINVAL; #ifdef CONFIG_CPU_MIPSR6 /* R6 added the following compact branches with forbidden slots */ case blezl_op: /* POP26 */ case bgtzl_op: /* POP27 */ /* only rt == 0 isn't compact branch */ if (insn.i_format.rt != 0) goto compact_branch; return -EINVAL; case pop10_op: case pop30_op: /* only rs == rt == 0 is reserved, rest are compact branches */ if (insn.i_format.rs != 0 || insn.i_format.rt != 0) goto compact_branch; return -EINVAL; case pop66_op: case pop76_op: /* only rs == 0 isn't compact branch */ if (insn.i_format.rs != 0) goto compact_branch; return -EINVAL; compact_branch: /* * If we've hit an exception on the forbidden slot, then * the branch must not have been taken. */ epc += 8; nextpc = epc; break; #else compact_branch: /* Fall through - Compact branches not supported before R6 */ #endif default: return -EINVAL; } *out = nextpc; return 0; } enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) { int err; if (cause & CAUSEF_BD) { err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, &vcpu->arch.pc); if (err) return EMULATE_FAIL; } else { vcpu->arch.pc += 4; } kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); return EMULATE_DONE; } /** * kvm_get_badinstr() - Get bad instruction encoding. * @opc: Guest pointer to faulting instruction. * @vcpu: KVM VCPU information. * * Gets the instruction encoding of the faulting instruction, using the saved * BadInstr register value if it exists, otherwise falling back to reading guest * memory at @opc. * * Returns: The instruction encoding of the faulting instruction. */ int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) { if (cpu_has_badinstr) { *out = vcpu->arch.host_cp0_badinstr; return 0; } else { WARN_ONCE(1, "CPU doesn't have BadInstr register\n"); return -EINVAL; } } /** * kvm_get_badinstrp() - Get bad prior instruction encoding. * @opc: Guest pointer to prior faulting instruction. * @vcpu: KVM VCPU information. * * Gets the instruction encoding of the prior faulting instruction (the branch * containing the delay slot which faulted), using the saved BadInstrP register * value if it exists, otherwise falling back to reading guest memory at @opc. * * Returns: The instruction encoding of the prior faulting instruction. */ int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) { if (cpu_has_badinstrp) { *out = vcpu->arch.host_cp0_badinstrp; return 0; } else { WARN_ONCE(1, "CPU doesn't have BadInstrp register\n"); return -EINVAL; } } /** * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. * @vcpu: Virtual CPU. * * Returns: 1 if the CP0_Count timer is disabled by either the guest * CP0_Cause.DC bit or the count_ctl.DC bit. * 0 otherwise (in which case CP0_Count timer is running). */ int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); } /** * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. * * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. * * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). */ static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) { s64 now_ns, periods; u64 delta; now_ns = ktime_to_ns(now); delta = now_ns + vcpu->arch.count_dyn_bias; if (delta >= vcpu->arch.count_period) { /* If delta is out of safe range the bias needs adjusting */ periods = div64_s64(now_ns, vcpu->arch.count_period); vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; /* Recalculate delta with new bias */ delta = now_ns + vcpu->arch.count_dyn_bias; } /* * We've ensured that: * delta < count_period * * Therefore the intermediate delta*count_hz will never overflow since * at the boundary condition: * delta = count_period * delta = NSEC_PER_SEC * 2^32 / count_hz * delta * count_hz = NSEC_PER_SEC * 2^32 */ return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); } /** * kvm_mips_count_time() - Get effective current time. * @vcpu: Virtual CPU. * * Get effective monotonic ktime. This is usually a straightforward ktime_get(), * except when the master disable bit is set in count_ctl, in which case it is * count_resume, i.e. the time that the count was disabled. * * Returns: Effective monotonic ktime for CP0_Count. */ static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) { if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) return vcpu->arch.count_resume; return ktime_get(); } /** * kvm_mips_read_count_running() - Read the current count value as if running. * @vcpu: Virtual CPU. * @now: Kernel time to read CP0_Count at. * * Returns the current guest CP0_Count register at time @now and handles if the * timer interrupt is pending and hasn't been handled yet. * * Returns: The current value of the guest CP0_Count register. */ static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) { struct mips_coproc *cop0 = vcpu->arch.cop0; ktime_t expires, threshold; u32 count, compare; int running; /* Calculate the biased and scaled guest CP0_Count */ count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); compare = kvm_read_c0_guest_compare(cop0); /* * Find whether CP0_Count has reached the closest timer interrupt. If * not, we shouldn't inject it. */ if ((s32)(count - compare) < 0) return count; /* * The CP0_Count we're going to return has already reached the closest * timer interrupt. Quickly check if it really is a new interrupt by * looking at whether the interval until the hrtimer expiry time is * less than 1/4 of the timer period. */ expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); if (ktime_before(expires, threshold)) { /* * Cancel it while we handle it so there's no chance of * interference with the timeout handler. */ running = hrtimer_cancel(&vcpu->arch.comparecount_timer); /* Nothing should be waiting on the timeout */ kvm_mips_callbacks->queue_timer_int(vcpu); /* * Restart the timer if it was running based on the expiry time * we read, so that we don't push it back 2 periods. */ if (running) { expires = ktime_add_ns(expires, vcpu->arch.count_period); hrtimer_start(&vcpu->arch.comparecount_timer, expires, HRTIMER_MODE_ABS); } } return count; } /** * kvm_mips_read_count() - Read the current count value. * @vcpu: Virtual CPU. * * Read the current guest CP0_Count value, taking into account whether the timer * is stopped. * * Returns: The current guest CP0_Count value. */ u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; /* If count disabled just read static copy of count */ if (kvm_mips_count_disabled(vcpu)) return kvm_read_c0_guest_count(cop0); return kvm_mips_read_count_running(vcpu, ktime_get()); } /** * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. * @vcpu: Virtual CPU. * @count: Output pointer for CP0_Count value at point of freeze. * * Freeze the hrtimer safely and return both the ktime and the CP0_Count value * at the point it was frozen. It is guaranteed that any pending interrupts at * the point it was frozen are handled, and none after that point. * * This is useful where the time/CP0_Count is needed in the calculation of the * new parameters. * * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). * * Returns: The ktime at the point of freeze. */ ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) { ktime_t now; /* stop hrtimer before finding time */ hrtimer_cancel(&vcpu->arch.comparecount_timer); now = ktime_get(); /* find count at this point and handle pending hrtimer */ *count = kvm_mips_read_count_running(vcpu, now); return now; } /** * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. * @vcpu: Virtual CPU. * @now: ktime at point of resume. * @count: CP0_Count at point of resume. * * Resumes the timer and updates the timer expiry based on @now and @count. * This can be used in conjunction with kvm_mips_freeze_timer() when timer * parameters need to be changed. * * It is guaranteed that a timer interrupt immediately after resume will be * handled, but not if CP_Compare is exactly at @count. That case is already * handled by kvm_mips_freeze_timer(). * * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). */ static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, ktime_t now, u32 count) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 compare; u64 delta; ktime_t expire; /* Calculate timeout (wrap 0 to 2^32) */ compare = kvm_read_c0_guest_compare(cop0); delta = (u64)(u32)(compare - count - 1) + 1; delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); expire = ktime_add_ns(now, delta); /* Update hrtimer to use new timeout */ hrtimer_cancel(&vcpu->arch.comparecount_timer); hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); } /** * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. * @vcpu: Virtual CPU. * @before: Time before Count was saved, lower bound of drift calculation. * @count: CP0_Count at point of restore. * @min_drift: Minimum amount of drift permitted before correction. * Must be <= 0. * * Restores the timer from a particular @count, accounting for drift. This can * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is * to be used for a period of time, but the exact ktime corresponding to the * final Count that must be restored is not known. * * It is gauranteed that a timer interrupt immediately after restore will be * handled, but not if CP0_Compare is exactly at @count. That case should * already be handled when the hardware timer state is saved. * * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not * stopped). * * Returns: Amount of correction to count_bias due to drift. */ int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, u32 count, int min_drift) { ktime_t now, count_time; u32 now_count, before_count; u64 delta; int drift, ret = 0; /* Calculate expected count at before */ before_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, before); /* * Detect significantly negative drift, where count is lower than * expected. Some negative drift is expected when hardware counter is * set after kvm_mips_freeze_timer(), and it is harmless to allow the * time to jump forwards a little, within reason. If the drift is too * significant, adjust the bias to avoid a big Guest.CP0_Count jump. */ drift = count - before_count; if (drift < min_drift) { count_time = before; vcpu->arch.count_bias += drift; ret = drift; goto resume; } /* Calculate expected count right now */ now = ktime_get(); now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); /* * Detect positive drift, where count is higher than expected, and * adjust the bias to avoid guest time going backwards. */ drift = count - now_count; if (drift > 0) { count_time = now; vcpu->arch.count_bias += drift; ret = drift; goto resume; } /* Subtract nanosecond delta to find ktime when count was read */ delta = (u64)(u32)(now_count - count); delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); count_time = ktime_sub_ns(now, delta); resume: /* Resume using the calculated ktime */ kvm_mips_resume_hrtimer(vcpu, count_time, count); return ret; } /** * kvm_mips_write_count() - Modify the count and update timer. * @vcpu: Virtual CPU. * @count: Guest CP0_Count value to set. * * Sets the CP0_Count value and updates the timer accordingly. */ void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) { struct mips_coproc *cop0 = vcpu->arch.cop0; ktime_t now; /* Calculate bias */ now = kvm_mips_count_time(vcpu); vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); if (kvm_mips_count_disabled(vcpu)) /* The timer's disabled, adjust the static count */ kvm_write_c0_guest_count(cop0, count); else /* Update timeout */ kvm_mips_resume_hrtimer(vcpu, now, count); } /** * kvm_mips_init_count() - Initialise timer. * @vcpu: Virtual CPU. * @count_hz: Frequency of timer. * * Initialise the timer to the specified frequency, zero it, and set it going if * it's enabled. */ void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) { vcpu->arch.count_hz = count_hz; vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); vcpu->arch.count_dyn_bias = 0; /* Starting at 0 */ kvm_mips_write_count(vcpu, 0); } /** * kvm_mips_set_count_hz() - Update the frequency of the timer. * @vcpu: Virtual CPU. * @count_hz: Frequency of CP0_Count timer in Hz. * * Change the frequency of the CP0_Count timer. This is done atomically so that * CP0_Count is continuous and no timer interrupt is lost. * * Returns: -EINVAL if @count_hz is out of range. * 0 on success. */ int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) { struct mips_coproc *cop0 = vcpu->arch.cop0; int dc; ktime_t now; u32 count; /* ensure the frequency is in a sensible range... */ if (count_hz <= 0 || count_hz > NSEC_PER_SEC) return -EINVAL; /* ... and has actually changed */ if (vcpu->arch.count_hz == count_hz) return 0; /* Safely freeze timer so we can keep it continuous */ dc = kvm_mips_count_disabled(vcpu); if (dc) { now = kvm_mips_count_time(vcpu); count = kvm_read_c0_guest_count(cop0); } else { now = kvm_mips_freeze_hrtimer(vcpu, &count); } /* Update the frequency */ vcpu->arch.count_hz = count_hz; vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); vcpu->arch.count_dyn_bias = 0; /* Calculate adjusted bias so dynamic count is unchanged */ vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); /* Update and resume hrtimer */ if (!dc) kvm_mips_resume_hrtimer(vcpu, now, count); return 0; } /** * kvm_mips_write_compare() - Modify compare and update timer. * @vcpu: Virtual CPU. * @compare: New CP0_Compare value. * @ack: Whether to acknowledge timer interrupt. * * Update CP0_Compare to a new value and update the timeout. * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure * any pending timer interrupt is preserved. */ void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) { struct mips_coproc *cop0 = vcpu->arch.cop0; int dc; u32 old_compare = kvm_read_c0_guest_compare(cop0); s32 delta = compare - old_compare; u32 cause; ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ u32 count; /* if unchanged, must just be an ack */ if (old_compare == compare) { if (!ack) return; kvm_mips_callbacks->dequeue_timer_int(vcpu); kvm_write_c0_guest_compare(cop0, compare); return; } /* * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted * too to prevent guest CP0_Count hitting guest CP0_Compare. * * The new GTOffset corresponds to the new value of CP0_Compare, and is * set prior to it being written into the guest context. We disable * preemption until the new value is written to prevent restore of a * GTOffset corresponding to the old CP0_Compare value. */ if (delta > 0) { preempt_disable(); write_c0_gtoffset(compare - read_c0_count()); back_to_back_c0_hazard(); } /* freeze_hrtimer() takes care of timer interrupts <= count */ dc = kvm_mips_count_disabled(vcpu); if (!dc) now = kvm_mips_freeze_hrtimer(vcpu, &count); if (ack) kvm_mips_callbacks->dequeue_timer_int(vcpu); else /* * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so * preserve guest CP0_Cause.TI if we don't want to ack it. */ cause = kvm_read_c0_guest_cause(cop0); kvm_write_c0_guest_compare(cop0, compare); if (delta > 0) preempt_enable(); back_to_back_c0_hazard(); if (!ack && cause & CAUSEF_TI) kvm_write_c0_guest_cause(cop0, cause); /* resume_hrtimer() takes care of timer interrupts > count */ if (!dc) kvm_mips_resume_hrtimer(vcpu, now, count); /* * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change * until after the new CP0_Compare is written, otherwise new guest * CP0_Count could hit new guest CP0_Compare. */ if (delta <= 0) write_c0_gtoffset(compare - read_c0_count()); } /** * kvm_mips_count_disable() - Disable count. * @vcpu: Virtual CPU. * * Disable the CP0_Count timer. A timer interrupt on or before the final stop * time will be handled but not after. * * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or * count_ctl.DC has been set (count disabled). * * Returns: The time that the timer was stopped. */ static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 count; ktime_t now; /* Stop hrtimer */ hrtimer_cancel(&vcpu->arch.comparecount_timer); /* Set the static count from the dynamic count, handling pending TI */ now = ktime_get(); count = kvm_mips_read_count_running(vcpu, now); kvm_write_c0_guest_count(cop0, count); return now; } /** * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. * @vcpu: Virtual CPU. * * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or * before the final stop time will be handled if the timer isn't disabled by * count_ctl.DC, but not after. * * Assumes CP0_Cause.DC is clear (count enabled). */ void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; kvm_set_c0_guest_cause(cop0, CAUSEF_DC); if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) kvm_mips_count_disable(vcpu); } /** * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. * @vcpu: Virtual CPU. * * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after * the start time will be handled if the timer isn't disabled by count_ctl.DC, * potentially before even returning, so the caller should be careful with * ordering of CP0_Cause modifications so as not to lose it. * * Assumes CP0_Cause.DC is set (count disabled). */ void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 count; kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); /* * Set the dynamic count to match the static count. * This starts the hrtimer if count_ctl.DC allows it. * Otherwise it conveniently updates the biases. */ count = kvm_read_c0_guest_count(cop0); kvm_mips_write_count(vcpu, count); } /** * kvm_mips_set_count_ctl() - Update the count control KVM register. * @vcpu: Virtual CPU. * @count_ctl: Count control register new value. * * Set the count control KVM register. The timer is updated accordingly. * * Returns: -EINVAL if reserved bits are set. * 0 on success. */ int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) { struct mips_coproc *cop0 = vcpu->arch.cop0; s64 changed = count_ctl ^ vcpu->arch.count_ctl; s64 delta; ktime_t expire, now; u32 count, compare; /* Only allow defined bits to be changed */ if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) return -EINVAL; /* Apply new value */ vcpu->arch.count_ctl = count_ctl; /* Master CP0_Count disable */ if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { /* Is CP0_Cause.DC already disabling CP0_Count? */ if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) /* Just record the current time */ vcpu->arch.count_resume = ktime_get(); } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { /* disable timer and record current time */ vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); } else { /* * Calculate timeout relative to static count at resume * time (wrap 0 to 2^32). */ count = kvm_read_c0_guest_count(cop0); compare = kvm_read_c0_guest_compare(cop0); delta = (u64)(u32)(compare - count - 1) + 1; delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); expire = ktime_add_ns(vcpu->arch.count_resume, delta); /* Handle pending interrupt */ now = ktime_get(); if (ktime_compare(now, expire) >= 0) /* Nothing should be waiting on the timeout */ kvm_mips_callbacks->queue_timer_int(vcpu); /* Resume hrtimer without changing bias */ count = kvm_mips_read_count_running(vcpu, now); kvm_mips_resume_hrtimer(vcpu, now, count); } } return 0; } /** * kvm_mips_set_count_resume() - Update the count resume KVM register. * @vcpu: Virtual CPU. * @count_resume: Count resume register new value. * * Set the count resume KVM register. * * Returns: -EINVAL if out of valid range (0..now). * 0 on success. */ int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) { /* * It doesn't make sense for the resume time to be in the future, as it * would be possible for the next interrupt to be more than a full * period in the future. */ if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) return -EINVAL; vcpu->arch.count_resume = ns_to_ktime(count_resume); return 0; } /** * kvm_mips_count_timeout() - Push timer forward on timeout. * @vcpu: Virtual CPU. * * Handle an hrtimer event by push the hrtimer forward a period. * * Returns: The hrtimer_restart value to return to the hrtimer subsystem. */ enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) { /* Add the Count period to the current expiry time */ hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, vcpu->arch.count_period); return HRTIMER_RESTART; } enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) { kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, vcpu->arch.pending_exceptions); ++vcpu->stat.wait_exits; trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); if (!vcpu->arch.pending_exceptions) { kvm_vz_lose_htimer(vcpu); vcpu->arch.wait = 1; kvm_vcpu_block(vcpu); /* * We we are runnable, then definitely go off to user space to * check if any I/O interrupts are pending. */ if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { kvm_clear_request(KVM_REQ_UNHALT, vcpu); vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; } } return EMULATE_DONE; } enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, u32 cause, struct kvm_vcpu *vcpu) { int r; enum emulation_result er; u32 rt; struct kvm_run *run = vcpu->run; void *data = run->mmio.data; unsigned int imme; unsigned long curr_pc; /* * Update PC and hold onto current PC in case there is * an error and we want to rollback the PC */ curr_pc = vcpu->arch.pc; er = update_pc(vcpu, cause); if (er == EMULATE_FAIL) return er; rt = inst.i_format.rt; run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr); if (run->mmio.phys_addr == KVM_INVALID_ADDR) goto out_fail; switch (inst.i_format.opcode) { #if defined(CONFIG_64BIT) case sd_op: run->mmio.len = 8; *(u64 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u64 *)data); break; #endif case sw_op: run->mmio.len = 4; *(u32 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u32 *)data); break; case sh_op: run->mmio.len = 2; *(u16 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u16 *)data); break; case sb_op: run->mmio.len = 1; *(u8 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u8 *)data); break; case swl_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x3); run->mmio.len = 4; imme = vcpu->arch.host_cp0_badvaddr & 0x3; switch (imme) { case 0: *(u32 *)data = ((*(u32 *)data) & 0xffffff00) | (vcpu->arch.gprs[rt] >> 24); break; case 1: *(u32 *)data = ((*(u32 *)data) & 0xffff0000) | (vcpu->arch.gprs[rt] >> 16); break; case 2: *(u32 *)data = ((*(u32 *)data) & 0xff000000) | (vcpu->arch.gprs[rt] >> 8); break; case 3: *(u32 *)data = vcpu->arch.gprs[rt]; break; default: break; } kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u32 *)data); break; case swr_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x3); run->mmio.len = 4; imme = vcpu->arch.host_cp0_badvaddr & 0x3; switch (imme) { case 0: *(u32 *)data = vcpu->arch.gprs[rt]; break; case 1: *(u32 *)data = ((*(u32 *)data) & 0xff) | (vcpu->arch.gprs[rt] << 8); break; case 2: *(u32 *)data = ((*(u32 *)data) & 0xffff) | (vcpu->arch.gprs[rt] << 16); break; case 3: *(u32 *)data = ((*(u32 *)data) & 0xffffff) | (vcpu->arch.gprs[rt] << 24); break; default: break; } kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u32 *)data); break; #if defined(CONFIG_64BIT) case sdl_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x7); run->mmio.len = 8; imme = vcpu->arch.host_cp0_badvaddr & 0x7; switch (imme) { case 0: *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) | ((vcpu->arch.gprs[rt] >> 56) & 0xff); break; case 1: *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) | ((vcpu->arch.gprs[rt] >> 48) & 0xffff); break; case 2: *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) | ((vcpu->arch.gprs[rt] >> 40) & 0xffffff); break; case 3: *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) | ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff); break; case 4: *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) | ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff); break; case 5: *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) | ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff); break; case 6: *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) | ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff); break; case 7: *(u64 *)data = vcpu->arch.gprs[rt]; break; default: break; } kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u64 *)data); break; case sdr_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x7); run->mmio.len = 8; imme = vcpu->arch.host_cp0_badvaddr & 0x7; switch (imme) { case 0: *(u64 *)data = vcpu->arch.gprs[rt]; break; case 1: *(u64 *)data = ((*(u64 *)data) & 0xff) | (vcpu->arch.gprs[rt] << 8); break; case 2: *(u64 *)data = ((*(u64 *)data) & 0xffff) | (vcpu->arch.gprs[rt] << 16); break; case 3: *(u64 *)data = ((*(u64 *)data) & 0xffffff) | (vcpu->arch.gprs[rt] << 24); break; case 4: *(u64 *)data = ((*(u64 *)data) & 0xffffffff) | (vcpu->arch.gprs[rt] << 32); break; case 5: *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) | (vcpu->arch.gprs[rt] << 40); break; case 6: *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) | (vcpu->arch.gprs[rt] << 48); break; case 7: *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) | (vcpu->arch.gprs[rt] << 56); break; default: break; } kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u64 *)data); break; #endif #ifdef CONFIG_CPU_LOONGSON64 case sdc2_op: rt = inst.loongson3_lsdc2_format.rt; switch (inst.loongson3_lsdc2_format.opcode1) { /* * Loongson-3 overridden sdc2 instructions. * opcode1 instruction * 0x0 gssbx: store 1 bytes from GPR * 0x1 gsshx: store 2 bytes from GPR * 0x2 gsswx: store 4 bytes from GPR * 0x3 gssdx: store 8 bytes from GPR */ case 0x0: run->mmio.len = 1; *(u8 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u8 *)data); break; case 0x1: run->mmio.len = 2; *(u16 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u16 *)data); break; case 0x2: run->mmio.len = 4; *(u32 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u32 *)data); break; case 0x3: run->mmio.len = 8; *(u64 *)data = vcpu->arch.gprs[rt]; kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n", vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], *(u64 *)data); break; default: kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n", inst.word); break; } break; #endif default: kvm_err("Store not yet supported (inst=0x%08x)\n", inst.word); goto out_fail; } vcpu->mmio_needed = 1; run->mmio.is_write = 1; vcpu->mmio_is_write = 1; r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, run->mmio.len, data); if (!r) { vcpu->mmio_needed = 0; return EMULATE_DONE; } return EMULATE_DO_MMIO; out_fail: /* Rollback PC if emulation was unsuccessful */ vcpu->arch.pc = curr_pc; return EMULATE_FAIL; } enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, u32 cause, struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; int r; enum emulation_result er; unsigned long curr_pc; u32 op, rt; unsigned int imme; rt = inst.i_format.rt; op = inst.i_format.opcode; /* * Find the resume PC now while we have safe and easy access to the * prior branch instruction, and save it for * kvm_mips_complete_mmio_load() to restore later. */ curr_pc = vcpu->arch.pc; er = update_pc(vcpu, cause); if (er == EMULATE_FAIL) return er; vcpu->arch.io_pc = vcpu->arch.pc; vcpu->arch.pc = curr_pc; vcpu->arch.io_gpr = rt; run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr); if (run->mmio.phys_addr == KVM_INVALID_ADDR) return EMULATE_FAIL; vcpu->mmio_needed = 2; /* signed */ switch (op) { #if defined(CONFIG_64BIT) case ld_op: run->mmio.len = 8; break; case lwu_op: vcpu->mmio_needed = 1; /* unsigned */ fallthrough; #endif case lw_op: run->mmio.len = 4; break; case lhu_op: vcpu->mmio_needed = 1; /* unsigned */ fallthrough; case lh_op: run->mmio.len = 2; break; case lbu_op: vcpu->mmio_needed = 1; /* unsigned */ fallthrough; case lb_op: run->mmio.len = 1; break; case lwl_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x3); run->mmio.len = 4; imme = vcpu->arch.host_cp0_badvaddr & 0x3; switch (imme) { case 0: vcpu->mmio_needed = 3; /* 1 byte */ break; case 1: vcpu->mmio_needed = 4; /* 2 bytes */ break; case 2: vcpu->mmio_needed = 5; /* 3 bytes */ break; case 3: vcpu->mmio_needed = 6; /* 4 bytes */ break; default: break; } break; case lwr_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x3); run->mmio.len = 4; imme = vcpu->arch.host_cp0_badvaddr & 0x3; switch (imme) { case 0: vcpu->mmio_needed = 7; /* 4 bytes */ break; case 1: vcpu->mmio_needed = 8; /* 3 bytes */ break; case 2: vcpu->mmio_needed = 9; /* 2 bytes */ break; case 3: vcpu->mmio_needed = 10; /* 1 byte */ break; default: break; } break; #if defined(CONFIG_64BIT) case ldl_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x7); run->mmio.len = 8; imme = vcpu->arch.host_cp0_badvaddr & 0x7; switch (imme) { case 0: vcpu->mmio_needed = 11; /* 1 byte */ break; case 1: vcpu->mmio_needed = 12; /* 2 bytes */ break; case 2: vcpu->mmio_needed = 13; /* 3 bytes */ break; case 3: vcpu->mmio_needed = 14; /* 4 bytes */ break; case 4: vcpu->mmio_needed = 15; /* 5 bytes */ break; case 5: vcpu->mmio_needed = 16; /* 6 bytes */ break; case 6: vcpu->mmio_needed = 17; /* 7 bytes */ break; case 7: vcpu->mmio_needed = 18; /* 8 bytes */ break; default: break; } break; case ldr_op: run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( vcpu->arch.host_cp0_badvaddr) & (~0x7); run->mmio.len = 8; imme = vcpu->arch.host_cp0_badvaddr & 0x7; switch (imme) { case 0: vcpu->mmio_needed = 19; /* 8 bytes */ break; case 1: vcpu->mmio_needed = 20; /* 7 bytes */ break; case 2: vcpu->mmio_needed = 21; /* 6 bytes */ break; case 3: vcpu->mmio_needed = 22; /* 5 bytes */ break; case 4: vcpu->mmio_needed = 23; /* 4 bytes */ break; case 5: vcpu->mmio_needed = 24; /* 3 bytes */ break; case 6: vcpu->mmio_needed = 25; /* 2 bytes */ break; case 7: vcpu->mmio_needed = 26; /* 1 byte */ break; default: break; } break; #endif #ifdef CONFIG_CPU_LOONGSON64 case ldc2_op: rt = inst.loongson3_lsdc2_format.rt; switch (inst.loongson3_lsdc2_format.opcode1) { /* * Loongson-3 overridden ldc2 instructions. * opcode1 instruction * 0x0 gslbx: store 1 bytes from GPR * 0x1 gslhx: store 2 bytes from GPR * 0x2 gslwx: store 4 bytes from GPR * 0x3 gsldx: store 8 bytes from GPR */ case 0x0: run->mmio.len = 1; vcpu->mmio_needed = 27; /* signed */ break; case 0x1: run->mmio.len = 2; vcpu->mmio_needed = 28; /* signed */ break; case 0x2: run->mmio.len = 4; vcpu->mmio_needed = 29; /* signed */ break; case 0x3: run->mmio.len = 8; vcpu->mmio_needed = 30; /* signed */ break; default: kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n", inst.word); break; } break; #endif default: kvm_err("Load not yet supported (inst=0x%08x)\n", inst.word); vcpu->mmio_needed = 0; return EMULATE_FAIL; } run->mmio.is_write = 0; vcpu->mmio_is_write = 0; r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, run->mmio.len, run->mmio.data); if (!r) { kvm_mips_complete_mmio_load(vcpu); vcpu->mmio_needed = 0; return EMULATE_DONE; } return EMULATE_DO_MMIO; } enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; enum emulation_result er = EMULATE_DONE; if (run->mmio.len > sizeof(*gpr)) { kvm_err("Bad MMIO length: %d", run->mmio.len); er = EMULATE_FAIL; goto done; } /* Restore saved resume PC */ vcpu->arch.pc = vcpu->arch.io_pc; switch (run->mmio.len) { case 8: switch (vcpu->mmio_needed) { case 11: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) | (((*(s64 *)run->mmio.data) & 0xff) << 56); break; case 12: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) | (((*(s64 *)run->mmio.data) & 0xffff) << 48); break; case 13: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) | (((*(s64 *)run->mmio.data) & 0xffffff) << 40); break; case 14: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) | (((*(s64 *)run->mmio.data) & 0xffffffff) << 32); break; case 15: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24); break; case 16: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16); break; case 17: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8); break; case 18: case 19: *gpr = *(s64 *)run->mmio.data; break; case 20: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) | ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff); break; case 21: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) | ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff); break; case 22: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) | ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff); break; case 23: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) | ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff); break; case 24: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) | ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff); break; case 25: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) | ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff); break; case 26: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) | ((((*(s64 *)run->mmio.data)) >> 56) & 0xff); break; default: *gpr = *(s64 *)run->mmio.data; } break; case 4: switch (vcpu->mmio_needed) { case 1: *gpr = *(u32 *)run->mmio.data; break; case 2: *gpr = *(s32 *)run->mmio.data; break; case 3: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | (((*(s32 *)run->mmio.data) & 0xff) << 24); break; case 4: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | (((*(s32 *)run->mmio.data) & 0xffff) << 16); break; case 5: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | (((*(s32 *)run->mmio.data) & 0xffffff) << 8); break; case 6: case 7: *gpr = *(s32 *)run->mmio.data; break; case 8: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) | ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff); break; case 9: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) | ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff); break; case 10: *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) | ((((*(s32 *)run->mmio.data)) >> 24) & 0xff); break; default: *gpr = *(s32 *)run->mmio.data; } break; case 2: if (vcpu->mmio_needed == 1) *gpr = *(u16 *)run->mmio.data; else *gpr = *(s16 *)run->mmio.data; break; case 1: if (vcpu->mmio_needed == 1) *gpr = *(u8 *)run->mmio.data; else *gpr = *(s8 *)run->mmio.data; break; } done: return er; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1