Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stafford Horne | 293 | 100.00% | 1 | 100.00% |
Total | 293 | 1 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
/* * OR1K timer synchronisation * * Based on work from MIPS implementation. * * All CPUs will have their count registers synchronised to the CPU0 next time * value. This can cause a small timewarp for CPU0. All other CPU's should * not have done anything significant (but they may have had interrupts * enabled briefly - prom_smp_finish() should not be responsible for enabling * interrupts...) */ #include <linux/kernel.h> #include <linux/irqflags.h> #include <linux/cpumask.h> #include <asm/time.h> #include <asm/timex.h> #include <linux/atomic.h> #include <asm/barrier.h> #include <asm/spr.h> static unsigned int initcount; static atomic_t count_count_start = ATOMIC_INIT(0); static atomic_t count_count_stop = ATOMIC_INIT(0); #define COUNTON 100 #define NR_LOOPS 3 void synchronise_count_master(int cpu) { int i; unsigned long flags; pr_info("Synchronize counters for CPU %u: ", cpu); local_irq_save(flags); /* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronised and * the master and slaves each set their cycle counters to a known * value all at once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* slaves loop on '!= 2' */ while (atomic_read(&count_count_start) != 1) mb(); atomic_set(&count_count_stop, 0); smp_wmb(); /* Let the slave writes its count register */ atomic_inc(&count_count_start); /* Count will be initialised to current timer */ if (i == 1) initcount = get_cycles(); /* * Everyone initialises count in the last loop: */ if (i == NR_LOOPS-1) openrisc_timer_set(initcount); /* * Wait for slave to leave the synchronization point: */ while (atomic_read(&count_count_stop) != 1) mb(); atomic_set(&count_count_start, 0); smp_wmb(); atomic_inc(&count_count_stop); } /* Arrange for an interrupt in a short while */ openrisc_timer_set_next(COUNTON); local_irq_restore(flags); /* * i386 code reported the skew here, but the * count registers were almost certainly out of sync * so no point in alarming people */ pr_cont("done.\n"); } void synchronise_count_slave(int cpu) { int i; /* * Not every cpu is online at the time this gets called, * so we first wait for the master to say everyone is ready */ for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&count_count_start); while (atomic_read(&count_count_start) != 2) mb(); /* * Everyone initialises count in the last loop: */ if (i == NR_LOOPS-1) openrisc_timer_set(initcount); atomic_inc(&count_count_stop); while (atomic_read(&count_count_stop) != 2) mb(); } /* Arrange for an interrupt in a short while */ openrisc_timer_set_next(COUNTON); } #undef NR_LOOPS
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1