Contributors: 64
Author Tokens Token Proportion Commits Commit Proportion
Srikar Dronamraju 1346 23.00% 21 10.40%
Gautham R. Shenoy 1165 19.91% 7 3.47%
Nicholas Piggin 760 12.99% 17 8.42%
Milton D. Miller II 378 6.46% 7 3.47%
Anton Blanchard 349 5.96% 18 8.91%
Benjamin Herrenschmidt 298 5.09% 16 7.92%
Oliver O'Halloran 201 3.43% 4 1.98%
Nathan T. Lynch 185 3.16% 4 1.98%
Paul Mackerras 177 3.02% 11 5.45%
Michael Ellerman 155 2.65% 12 5.94%
Zwane Mwaikambo 143 2.44% 2 0.99%
Andrew Morton 111 1.90% 8 3.96%
Jens Axboe 71 1.21% 1 0.50%
Andy Fleming 54 0.92% 1 0.50%
Suresh E. Warrier 49 0.84% 3 1.49%
Chen-Hui Zhao 42 0.72% 3 1.49%
Srivatsa S. Bhat 37 0.63% 2 0.99%
Vaidyanathan Srinivasan 37 0.63% 1 0.50%
Balbir Singh 32 0.55% 1 0.50%
Thomas Gleixner 25 0.43% 7 3.47%
Becky Bruce 23 0.39% 1 0.50%
Christophe Leroy 16 0.27% 4 1.98%
Will Schmidt 16 0.27% 1 0.50%
Li Zhong 15 0.26% 1 0.50%
Olof Johansson 15 0.26% 1 0.50%
Kumar Gala 14 0.24% 1 0.50%
Naveen N. Rao 14 0.24% 2 0.99%
Nishanth Aravamudan 13 0.22% 2 0.99%
Satyam Sharma 11 0.19% 1 0.50%
Santosh Sivaraj 8 0.14% 2 0.99%
Rusty Russell 8 0.14% 2 0.99%
Mike Travis 6 0.10% 1 0.50%
Qian Cai 6 0.10% 1 0.50%
Daniel Axtens 6 0.10% 2 0.99%
Ingo Molnar 5 0.09% 3 1.49%
Mauricio Faria de Oliveira 5 0.09% 1 0.50%
Cédric Le Goater 5 0.09% 3 1.49%
Christian Krafft 4 0.07% 1 0.50%
Michael Neuling 4 0.07% 1 0.50%
Tony Breeds 3 0.05% 1 0.50%
Peter Zijlstra 3 0.05% 1 0.50%
yu kuai 3 0.05% 1 0.50%
David Howells 3 0.05% 1 0.50%
Aneesh Kumar K.V 3 0.05% 1 0.50%
Mike Rapoport 3 0.05% 1 0.50%
Kevin Hao 3 0.05% 1 0.50%
Avi Kivity 2 0.03% 1 0.50%
Darren Hart 2 0.03% 1 0.50%
Arnaldo Carvalho de Melo 2 0.03% 1 0.50%
Vincent Guittot 2 0.03% 1 0.50%
Arun Sharma 1 0.02% 1 0.50%
Vegard Nossum 1 0.02% 1 0.50%
David Gibson 1 0.02% 1 0.50%
Matthew Dobson 1 0.02% 1 0.50%
Thiago Jung Bauermann 1 0.02% 1 0.50%
Jon Loeliger 1 0.02% 1 0.50%
Motohiro Kosaki 1 0.02% 1 0.50%
Srivatsa Vaddagiri 1 0.02% 1 0.50%
Tejun Heo 1 0.02% 1 0.50%
Paul Gortmaker 1 0.02% 1 0.50%
Oleg Nesterov 1 0.02% 1 0.50%
Hugh Dickins 1 0.02% 1 0.50%
Kay Sievers 1 0.02% 1 0.50%
Chen Gang S 1 0.02% 1 0.50%
Total 5852 202


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * SMP support for ppc.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
 * deal of code from the sparc and intel versions.
 *
 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
 *
 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched/mm.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/topology.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/profile.h>
#include <linux/processor.h>
#include <linux/random.h>
#include <linux/stackprotector.h>
#include <linux/pgtable.h>
#include <linux/clockchips.h>

#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include <asm/kvm_ppc.h>
#include <asm/dbell.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#include <asm/vdso.h>
#include <asm/debug.h>
#include <asm/kexec.h>
#include <asm/asm-prototypes.h>
#include <asm/cpu_has_feature.h>
#include <asm/ftrace.h>
#include <asm/kup.h>

#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
#endif

struct task_struct *secondary_current;
bool has_big_cores;
bool coregroup_enabled;
bool thread_group_shares_l2;

DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);

EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
EXPORT_SYMBOL_GPL(has_big_cores);

enum {
#ifdef CONFIG_SCHED_SMT
	smt_idx,
#endif
	cache_idx,
	mc_idx,
	die_idx,
};

#define MAX_THREAD_LIST_SIZE	8
#define THREAD_GROUP_SHARE_L1   1
#define THREAD_GROUP_SHARE_L2   2
struct thread_groups {
	unsigned int property;
	unsigned int nr_groups;
	unsigned int threads_per_group;
	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
};

/* Maximum number of properties that groups of threads within a core can share */
#define MAX_THREAD_GROUP_PROPERTIES 2

struct thread_groups_list {
	unsigned int nr_properties;
	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
};

static struct thread_groups_list tgl[NR_CPUS] __initdata;
/*
 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
 * the set its siblings that share the L1-cache.
 */
static DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);

/*
 * On some big-cores system, thread_group_l2_cache_map for each CPU
 * corresponds to the set its siblings within the core that share the
 * L2-cache.
 */
static DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);

/* SMP operations for this machine */
struct smp_ops_t *smp_ops;

/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];

int smt_enabled_at_boot = 1;

/*
 * Returns 1 if the specified cpu should be brought up during boot.
 * Used to inhibit booting threads if they've been disabled or
 * limited on the command line
 */
int smp_generic_cpu_bootable(unsigned int nr)
{
	/* Special case - we inhibit secondary thread startup
	 * during boot if the user requests it.
	 */
	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
			return 0;
		if (smt_enabled_at_boot
		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
			return 0;
	}

	return 1;
}


#ifdef CONFIG_PPC64
int smp_generic_kick_cpu(int nr)
{
	if (nr < 0 || nr >= nr_cpu_ids)
		return -EINVAL;

	/*
	 * The processor is currently spinning, waiting for the
	 * cpu_start field to become non-zero After we set cpu_start,
	 * the processor will continue on to secondary_start
	 */
	if (!paca_ptrs[nr]->cpu_start) {
		paca_ptrs[nr]->cpu_start = 1;
		smp_mb();
		return 0;
	}

#ifdef CONFIG_HOTPLUG_CPU
	/*
	 * Ok it's not there, so it might be soft-unplugged, let's
	 * try to bring it back
	 */
	generic_set_cpu_up(nr);
	smp_wmb();
	smp_send_reschedule(nr);
#endif /* CONFIG_HOTPLUG_CPU */

	return 0;
}
#endif /* CONFIG_PPC64 */

static irqreturn_t call_function_action(int irq, void *data)
{
	generic_smp_call_function_interrupt();
	return IRQ_HANDLED;
}

static irqreturn_t reschedule_action(int irq, void *data)
{
	scheduler_ipi();
	return IRQ_HANDLED;
}

#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
{
	timer_broadcast_interrupt();
	return IRQ_HANDLED;
}
#endif

#ifdef CONFIG_NMI_IPI
static irqreturn_t nmi_ipi_action(int irq, void *data)
{
	smp_handle_nmi_ipi(get_irq_regs());
	return IRQ_HANDLED;
}
#endif

static irq_handler_t smp_ipi_action[] = {
	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
	[PPC_MSG_RESCHEDULE] = reschedule_action,
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
#endif
#ifdef CONFIG_NMI_IPI
	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
#endif
};

/*
 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 * than going through the call function infrastructure, and strongly
 * serialized, so it is more appropriate for debugging.
 */
const char *smp_ipi_name[] = {
	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
#endif
#ifdef CONFIG_NMI_IPI
	[PPC_MSG_NMI_IPI] = "nmi ipi",
#endif
};

/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
	int err;

	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
		return -EINVAL;
#ifndef CONFIG_NMI_IPI
	if (msg == PPC_MSG_NMI_IPI)
		return 1;
#endif

	err = request_irq(virq, smp_ipi_action[msg],
			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
			  smp_ipi_name[msg], NULL);
	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
		virq, smp_ipi_name[msg], err);

	return err;
}

#ifdef CONFIG_PPC_SMP_MUXED_IPI
struct cpu_messages {
	long messages;			/* current messages */
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);

void smp_muxed_ipi_set_message(int cpu, int msg)
{
	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
	char *message = (char *)&info->messages;

	/*
	 * Order previous accesses before accesses in the IPI handler.
	 */
	smp_mb();
	message[msg] = 1;
}

void smp_muxed_ipi_message_pass(int cpu, int msg)
{
	smp_muxed_ipi_set_message(cpu, msg);

	/*
	 * cause_ipi functions are required to include a full barrier
	 * before doing whatever causes the IPI.
	 */
	smp_ops->cause_ipi(cpu);
}

#ifdef __BIG_ENDIAN__
#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
#else
#define IPI_MESSAGE(A) (1uL << (8 * (A)))
#endif

irqreturn_t smp_ipi_demux(void)
{
	mb();	/* order any irq clear */

	return smp_ipi_demux_relaxed();
}

/* sync-free variant. Callers should ensure synchronization */
irqreturn_t smp_ipi_demux_relaxed(void)
{
	struct cpu_messages *info;
	unsigned long all;

	info = this_cpu_ptr(&ipi_message);
	do {
		all = xchg(&info->messages, 0);
#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
		/*
		 * Must check for PPC_MSG_RM_HOST_ACTION messages
		 * before PPC_MSG_CALL_FUNCTION messages because when
		 * a VM is destroyed, we call kick_all_cpus_sync()
		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
		 * messages have completed before we free any VCPUs.
		 */
		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
			kvmppc_xics_ipi_action();
#endif
		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
			generic_smp_call_function_interrupt();
		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
			scheduler_ipi();
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
			timer_broadcast_interrupt();
#endif
#ifdef CONFIG_NMI_IPI
		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
			nmi_ipi_action(0, NULL);
#endif
	} while (info->messages);

	return IRQ_HANDLED;
}
#endif /* CONFIG_PPC_SMP_MUXED_IPI */

static inline void do_message_pass(int cpu, int msg)
{
	if (smp_ops->message_pass)
		smp_ops->message_pass(cpu, msg);
#ifdef CONFIG_PPC_SMP_MUXED_IPI
	else
		smp_muxed_ipi_message_pass(cpu, msg);
#endif
}

void smp_send_reschedule(int cpu)
{
	if (likely(smp_ops))
		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
}
EXPORT_SYMBOL_GPL(smp_send_reschedule);

void arch_send_call_function_single_ipi(int cpu)
{
	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}

void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
	unsigned int cpu;

	for_each_cpu(cpu, mask)
		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}

#ifdef CONFIG_NMI_IPI

/*
 * "NMI IPI" system.
 *
 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 * a running system. They can be used for crash, debug, halt/reboot, etc.
 *
 * The IPI call waits with interrupts disabled until all targets enter the
 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 * have returned from their handlers, so there is no guarantee about
 * concurrency or re-entrancy.
 *
 * A new NMI can be issued before all targets exit the handler.
 *
 * The IPI call may time out without all targets entering the NMI handler.
 * In that case, there is some logic to recover (and ignore subsequent
 * NMI interrupts that may eventually be raised), but the platform interrupt
 * handler may not be able to distinguish this from other exception causes,
 * which may cause a crash.
 */

static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
static struct cpumask nmi_ipi_pending_mask;
static bool nmi_ipi_busy = false;
static void (*nmi_ipi_function)(struct pt_regs *) = NULL;

static void nmi_ipi_lock_start(unsigned long *flags)
{
	raw_local_irq_save(*flags);
	hard_irq_disable();
	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
		raw_local_irq_restore(*flags);
		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
		raw_local_irq_save(*flags);
		hard_irq_disable();
	}
}

static void nmi_ipi_lock(void)
{
	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
}

static void nmi_ipi_unlock(void)
{
	smp_mb();
	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
	atomic_set(&__nmi_ipi_lock, 0);
}

static void nmi_ipi_unlock_end(unsigned long *flags)
{
	nmi_ipi_unlock();
	raw_local_irq_restore(*flags);
}

/*
 * Platform NMI handler calls this to ack
 */
int smp_handle_nmi_ipi(struct pt_regs *regs)
{
	void (*fn)(struct pt_regs *) = NULL;
	unsigned long flags;
	int me = raw_smp_processor_id();
	int ret = 0;

	/*
	 * Unexpected NMIs are possible here because the interrupt may not
	 * be able to distinguish NMI IPIs from other types of NMIs, or
	 * because the caller may have timed out.
	 */
	nmi_ipi_lock_start(&flags);
	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
		fn = READ_ONCE(nmi_ipi_function);
		WARN_ON_ONCE(!fn);
		ret = 1;
	}
	nmi_ipi_unlock_end(&flags);

	if (fn)
		fn(regs);

	return ret;
}

static void do_smp_send_nmi_ipi(int cpu, bool safe)
{
	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
		return;

	if (cpu >= 0) {
		do_message_pass(cpu, PPC_MSG_NMI_IPI);
	} else {
		int c;

		for_each_online_cpu(c) {
			if (c == raw_smp_processor_id())
				continue;
			do_message_pass(c, PPC_MSG_NMI_IPI);
		}
	}
}

/*
 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 * - fn is the target callback function.
 * - delay_us > 0 is the delay before giving up waiting for targets to
 *   begin executing the handler, == 0 specifies indefinite delay.
 */
static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
				u64 delay_us, bool safe)
{
	unsigned long flags;
	int me = raw_smp_processor_id();
	int ret = 1;

	BUG_ON(cpu == me);
	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);

	if (unlikely(!smp_ops))
		return 0;

	nmi_ipi_lock_start(&flags);
	while (nmi_ipi_busy) {
		nmi_ipi_unlock_end(&flags);
		spin_until_cond(!nmi_ipi_busy);
		nmi_ipi_lock_start(&flags);
	}
	nmi_ipi_busy = true;
	nmi_ipi_function = fn;

	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));

	if (cpu < 0) {
		/* ALL_OTHERS */
		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
	} else {
		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
	}

	nmi_ipi_unlock();

	/* Interrupts remain hard disabled */

	do_smp_send_nmi_ipi(cpu, safe);

	nmi_ipi_lock();
	/* nmi_ipi_busy is set here, so unlock/lock is okay */
	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
		nmi_ipi_unlock();
		udelay(1);
		nmi_ipi_lock();
		if (delay_us) {
			delay_us--;
			if (!delay_us)
				break;
		}
	}

	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
		ret = 0;
		cpumask_clear(&nmi_ipi_pending_mask);
	}

	nmi_ipi_function = NULL;
	nmi_ipi_busy = false;

	nmi_ipi_unlock_end(&flags);

	return ret;
}

int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
}

int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
}
#endif /* CONFIG_NMI_IPI */

#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
	unsigned int cpu;

	for_each_cpu(cpu, mask)
		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
}
#endif

#ifdef CONFIG_DEBUGGER
static void debugger_ipi_callback(struct pt_regs *regs)
{
	debugger_ipi(regs);
}

void smp_send_debugger_break(void)
{
	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
}
#endif

#ifdef CONFIG_KEXEC_CORE
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
	int cpu;

	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
	if (kdump_in_progress() && crash_wake_offline) {
		for_each_present_cpu(cpu) {
			if (cpu_online(cpu))
				continue;
			/*
			 * crash_ipi_callback will wait for
			 * all cpus, including offline CPUs.
			 * We don't care about nmi_ipi_function.
			 * Offline cpus will jump straight into
			 * crash_ipi_callback, we can skip the
			 * entire NMI dance and waiting for
			 * cpus to clear pending mask, etc.
			 */
			do_smp_send_nmi_ipi(cpu, false);
		}
	}
}
#endif

#ifdef CONFIG_NMI_IPI
static void nmi_stop_this_cpu(struct pt_regs *regs)
{
	/*
	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
	 */
	spin_begin();
	while (1)
		spin_cpu_relax();
}

void smp_send_stop(void)
{
	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
}

#else /* CONFIG_NMI_IPI */

static void stop_this_cpu(void *dummy)
{
	hard_irq_disable();
	spin_begin();
	while (1)
		spin_cpu_relax();
}

void smp_send_stop(void)
{
	static bool stopped = false;

	/*
	 * Prevent waiting on csd lock from a previous smp_send_stop.
	 * This is racy, but in general callers try to do the right
	 * thing and only fire off one smp_send_stop (e.g., see
	 * kernel/panic.c)
	 */
	if (stopped)
		return;

	stopped = true;

	smp_call_function(stop_this_cpu, NULL, 0);
}
#endif /* CONFIG_NMI_IPI */

struct task_struct *current_set[NR_CPUS];

static void smp_store_cpu_info(int id)
{
	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
#ifdef CONFIG_PPC_FSL_BOOK3E
	per_cpu(next_tlbcam_idx, id)
		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
#endif
}

/*
 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 * rather than just passing around the cpumask we pass around a function that
 * returns the that cpumask for the given CPU.
 */
static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
{
	cpumask_set_cpu(i, get_cpumask(j));
	cpumask_set_cpu(j, get_cpumask(i));
}

#ifdef CONFIG_HOTPLUG_CPU
static void set_cpus_unrelated(int i, int j,
		struct cpumask *(*get_cpumask)(int))
{
	cpumask_clear_cpu(i, get_cpumask(j));
	cpumask_clear_cpu(j, get_cpumask(i));
}
#endif

/*
 * Extends set_cpus_related. Instead of setting one CPU at a time in
 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
 */
static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
				struct cpumask *(*dstmask)(int))
{
	struct cpumask *mask;
	int k;

	mask = srcmask(j);
	for_each_cpu(k, srcmask(i))
		cpumask_or(dstmask(k), dstmask(k), mask);

	if (i == j)
		return;

	mask = srcmask(i);
	for_each_cpu(k, srcmask(j))
		cpumask_or(dstmask(k), dstmask(k), mask);
}

/*
 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 *                      property for the CPU device node @dn and stores
 *                      the parsed output in the thread_groups_list
 *                      structure @tglp.
 *
 * @dn: The device node of the CPU device.
 * @tglp: Pointer to a thread group list structure into which the parsed
 *      output of "ibm,thread-groups" is stored.
 *
 * ibm,thread-groups[0..N-1] array defines which group of threads in
 * the CPU-device node can be grouped together based on the property.
 *
 * This array can represent thread groupings for multiple properties.
 *
 * ibm,thread-groups[i + 0] tells us the property based on which the
 * threads are being grouped together. If this value is 1, it implies
 * that the threads in the same group share L1, translation cache. If
 * the value is 2, it implies that the threads in the same group share
 * the same L2 cache.
 *
 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
 * property ibm,thread-groups[i]
 *
 * ibm,thread-groups[i+2] tells us the number of threads in each such
 * group.
 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
 *
 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 * the grouping.
 *
 * Example:
 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
 * This can be decomposed up into two consecutive arrays:
 * a) [1,2,4,8,10,12,14,9,11,13,15]
 * b) [2,2,4,8,10,12,14,9,11,13,15]
 *
 * where in,
 *
 * a) provides information of Property "1" being shared by "2" groups,
 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
 *  the first group is {8,10,12,14} and the
 *  "ibm,ppc-interrupt-server#s" of the second group is
 *  {9,11,13,15}. Property "1" is indicative of the thread in the
 *  group sharing L1 cache, translation cache and Instruction Data
 *  flow.
 *
 * b) provides information of Property "2" being shared by "2" groups,
 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
 *  the first group is {8,10,12,14} and the
 *  "ibm,ppc-interrupt-server#s" of the second group is
 *  {9,11,13,15}. Property "2" indicates that the threads in each
 *  group share the L2-cache.
 *
 * Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 */
static int parse_thread_groups(struct device_node *dn,
			       struct thread_groups_list *tglp)
{
	unsigned int property_idx = 0;
	u32 *thread_group_array;
	size_t total_threads;
	int ret = 0, count;
	u32 *thread_list;
	int i = 0;

	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
					 thread_group_array, count);
	if (ret)
		goto out_free;

	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
		int j;
		struct thread_groups *tg = &tglp->property_tgs[property_idx++];

		tg->property = thread_group_array[i];
		tg->nr_groups = thread_group_array[i + 1];
		tg->threads_per_group = thread_group_array[i + 2];
		total_threads = tg->nr_groups * tg->threads_per_group;

		thread_list = &thread_group_array[i + 3];

		for (j = 0; j < total_threads; j++)
			tg->thread_list[j] = thread_list[j];
		i = i + 3 + total_threads;
	}

	tglp->nr_properties = property_idx;

out_free:
	kfree(thread_group_array);
	return ret;
}

/*
 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 *                              that @cpu belongs to.
 *
 * @cpu : The logical CPU whose thread group is being searched.
 * @tg : The thread-group structure of the CPU node which @cpu belongs
 *       to.
 *
 * Returns the index to tg->thread_list that points to the the start
 * of the thread_group that @cpu belongs to.
 *
 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 * tg->thread_list.
 */
static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
{
	int hw_cpu_id = get_hard_smp_processor_id(cpu);
	int i, j;

	for (i = 0; i < tg->nr_groups; i++) {
		int group_start = i * tg->threads_per_group;

		for (j = 0; j < tg->threads_per_group; j++) {
			int idx = group_start + j;

			if (tg->thread_list[idx] == hw_cpu_id)
				return group_start;
		}
	}

	return -1;
}

static struct thread_groups *__init get_thread_groups(int cpu,
						      int group_property,
						      int *err)
{
	struct device_node *dn = of_get_cpu_node(cpu, NULL);
	struct thread_groups_list *cpu_tgl = &tgl[cpu];
	struct thread_groups *tg = NULL;
	int i;
	*err = 0;

	if (!dn) {
		*err = -ENODATA;
		return NULL;
	}

	if (!cpu_tgl->nr_properties) {
		*err = parse_thread_groups(dn, cpu_tgl);
		if (*err)
			goto out;
	}

	for (i = 0; i < cpu_tgl->nr_properties; i++) {
		if (cpu_tgl->property_tgs[i].property == group_property) {
			tg = &cpu_tgl->property_tgs[i];
			break;
		}
	}

	if (!tg)
		*err = -EINVAL;
out:
	of_node_put(dn);
	return tg;
}

static int __init init_thread_group_cache_map(int cpu, int cache_property)

{
	int first_thread = cpu_first_thread_sibling(cpu);
	int i, cpu_group_start = -1, err = 0;
	struct thread_groups *tg = NULL;
	cpumask_var_t *mask = NULL;

	if (cache_property != THREAD_GROUP_SHARE_L1 &&
	    cache_property != THREAD_GROUP_SHARE_L2)
		return -EINVAL;

	tg = get_thread_groups(cpu, cache_property, &err);
	if (!tg)
		return err;

	cpu_group_start = get_cpu_thread_group_start(cpu, tg);

	if (unlikely(cpu_group_start == -1)) {
		WARN_ON_ONCE(1);
		return -ENODATA;
	}

	if (cache_property == THREAD_GROUP_SHARE_L1)
		mask = &per_cpu(thread_group_l1_cache_map, cpu);
	else if (cache_property == THREAD_GROUP_SHARE_L2)
		mask = &per_cpu(thread_group_l2_cache_map, cpu);

	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));

	for (i = first_thread; i < first_thread + threads_per_core; i++) {
		int i_group_start = get_cpu_thread_group_start(i, tg);

		if (unlikely(i_group_start == -1)) {
			WARN_ON_ONCE(1);
			return -ENODATA;
		}

		if (i_group_start == cpu_group_start)
			cpumask_set_cpu(i, *mask);
	}

	return 0;
}

static bool shared_caches;

#ifdef CONFIG_SCHED_SMT
/* cpumask of CPUs with asymmetric SMT dependency */
static int powerpc_smt_flags(void)
{
	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;

	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
		flags |= SD_ASYM_PACKING;
	}
	return flags;
}
#endif

/*
 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
 * since the migrated task remains cache hot. We want to take advantage of this
 * at the scheduler level so an extra topology level is required.
 */
static int powerpc_shared_cache_flags(void)
{
	return SD_SHARE_PKG_RESOURCES;
}

/*
 * We can't just pass cpu_l2_cache_mask() directly because
 * returns a non-const pointer and the compiler barfs on that.
 */
static const struct cpumask *shared_cache_mask(int cpu)
{
	return per_cpu(cpu_l2_cache_map, cpu);
}

#ifdef CONFIG_SCHED_SMT
static const struct cpumask *smallcore_smt_mask(int cpu)
{
	return cpu_smallcore_mask(cpu);
}
#endif

static struct cpumask *cpu_coregroup_mask(int cpu)
{
	return per_cpu(cpu_coregroup_map, cpu);
}

static bool has_coregroup_support(void)
{
	return coregroup_enabled;
}

static const struct cpumask *cpu_mc_mask(int cpu)
{
	return cpu_coregroup_mask(cpu);
}

static struct sched_domain_topology_level powerpc_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
#endif
	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
	{ cpu_mc_mask, SD_INIT_NAME(MC) },
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

static int __init init_big_cores(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);

		if (err)
			return err;

		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
					GFP_KERNEL,
					cpu_to_node(cpu));
	}

	has_big_cores = true;

	for_each_possible_cpu(cpu) {
		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2);

		if (err)
			return err;
	}

	thread_group_shares_l2 = true;
	pr_debug("L2 cache only shared by the threads in the small core\n");
	return 0;
}

void __init smp_prepare_cpus(unsigned int max_cpus)
{
	unsigned int cpu;

	DBG("smp_prepare_cpus\n");

	/* 
	 * setup_cpu may need to be called on the boot cpu. We havent
	 * spun any cpus up but lets be paranoid.
	 */
	BUG_ON(boot_cpuid != smp_processor_id());

	/* Fixup boot cpu */
	smp_store_cpu_info(boot_cpuid);
	cpu_callin_map[boot_cpuid] = 1;

	for_each_possible_cpu(cpu) {
		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		if (has_coregroup_support())
			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
						GFP_KERNEL, cpu_to_node(cpu));

#ifdef CONFIG_NEED_MULTIPLE_NODES
		/*
		 * numa_node_id() works after this.
		 */
		if (cpu_present(cpu)) {
			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
			set_cpu_numa_mem(cpu,
				local_memory_node(numa_cpu_lookup_table[cpu]));
		}
#endif
	}

	/* Init the cpumasks so the boot CPU is related to itself */
	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));

	if (has_coregroup_support())
		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));

	init_big_cores();
	if (has_big_cores) {
		cpumask_set_cpu(boot_cpuid,
				cpu_smallcore_mask(boot_cpuid));
	}

	if (cpu_to_chip_id(boot_cpuid) != -1) {
		int idx = num_possible_cpus() / threads_per_core;

		/*
		 * All threads of a core will all belong to the same core,
		 * chip_id_lookup_table will have one entry per core.
		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
		 * other CPUs, will also not have chip-id.
		 */
		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
		if (chip_id_lookup_table)
			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
	}

	if (smp_ops && smp_ops->probe)
		smp_ops->probe();
}

void smp_prepare_boot_cpu(void)
{
	BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
	paca_ptrs[boot_cpuid]->__current = current;
#endif
	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
	current_set[boot_cpuid] = current;
}

#ifdef CONFIG_HOTPLUG_CPU

int generic_cpu_disable(void)
{
	unsigned int cpu = smp_processor_id();

	if (cpu == boot_cpuid)
		return -EBUSY;

	set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
	vdso_data->processorCount--;
#endif
	/* Update affinity of all IRQs previously aimed at this CPU */
	irq_migrate_all_off_this_cpu();

	/*
	 * Depending on the details of the interrupt controller, it's possible
	 * that one of the interrupts we just migrated away from this CPU is
	 * actually already pending on this CPU. If we leave it in that state
	 * the interrupt will never be EOI'ed, and will never fire again. So
	 * temporarily enable interrupts here, to allow any pending interrupt to
	 * be received (and EOI'ed), before we take this CPU offline.
	 */
	local_irq_enable();
	mdelay(1);
	local_irq_disable();

	return 0;
}

void generic_cpu_die(unsigned int cpu)
{
	int i;

	for (i = 0; i < 100; i++) {
		smp_rmb();
		if (is_cpu_dead(cpu))
			return;
		msleep(100);
	}
	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}

void generic_set_cpu_dead(unsigned int cpu)
{
	per_cpu(cpu_state, cpu) = CPU_DEAD;
}

/*
 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 * which makes the delay in generic_cpu_die() not happen.
 */
void generic_set_cpu_up(unsigned int cpu)
{
	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
}

int generic_check_cpu_restart(unsigned int cpu)
{
	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
}

int is_cpu_dead(unsigned int cpu)
{
	return per_cpu(cpu_state, cpu) == CPU_DEAD;
}

static bool secondaries_inhibited(void)
{
	return kvm_hv_mode_active();
}

#else /* HOTPLUG_CPU */

#define secondaries_inhibited()		0

#endif

static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
{
#ifdef CONFIG_PPC64
	paca_ptrs[cpu]->__current = idle;
	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
#endif
	idle->cpu = cpu;
	secondary_current = current_set[cpu] = idle;
}

int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
	int rc, c;

	/*
	 * Don't allow secondary threads to come online if inhibited
	 */
	if (threads_per_core > 1 && secondaries_inhibited() &&
	    cpu_thread_in_subcore(cpu))
		return -EBUSY;

	if (smp_ops == NULL ||
	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
		return -EINVAL;

	cpu_idle_thread_init(cpu, tidle);

	/*
	 * The platform might need to allocate resources prior to bringing
	 * up the CPU
	 */
	if (smp_ops->prepare_cpu) {
		rc = smp_ops->prepare_cpu(cpu);
		if (rc)
			return rc;
	}

	/* Make sure callin-map entry is 0 (can be leftover a CPU
	 * hotplug
	 */
	cpu_callin_map[cpu] = 0;

	/* The information for processor bringup must
	 * be written out to main store before we release
	 * the processor.
	 */
	smp_mb();

	/* wake up cpus */
	DBG("smp: kicking cpu %d\n", cpu);
	rc = smp_ops->kick_cpu(cpu);
	if (rc) {
		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
		return rc;
	}

	/*
	 * wait to see if the cpu made a callin (is actually up).
	 * use this value that I found through experimentation.
	 * -- Cort
	 */
	if (system_state < SYSTEM_RUNNING)
		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
			udelay(100);
#ifdef CONFIG_HOTPLUG_CPU
	else
		/*
		 * CPUs can take much longer to come up in the
		 * hotplug case.  Wait five seconds.
		 */
		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
			msleep(1);
#endif

	if (!cpu_callin_map[cpu]) {
		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
		return -ENOENT;
	}

	DBG("Processor %u found.\n", cpu);

	if (smp_ops->give_timebase)
		smp_ops->give_timebase();

	/* Wait until cpu puts itself in the online & active maps */
	spin_until_cond(cpu_online(cpu));

	return 0;
}

/* Return the value of the reg property corresponding to the given
 * logical cpu.
 */
int cpu_to_core_id(int cpu)
{
	struct device_node *np;
	const __be32 *reg;
	int id = -1;

	np = of_get_cpu_node(cpu, NULL);
	if (!np)
		goto out;

	reg = of_get_property(np, "reg", NULL);
	if (!reg)
		goto out;

	id = be32_to_cpup(reg);
out:
	of_node_put(np);
	return id;
}
EXPORT_SYMBOL_GPL(cpu_to_core_id);

/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
	return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);

int cpu_first_thread_of_core(int core)
{
	return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);

/* Must be called when no change can occur to cpu_present_mask,
 * i.e. during cpu online or offline.
 */
static struct device_node *cpu_to_l2cache(int cpu)
{
	struct device_node *np;
	struct device_node *cache;

	if (!cpu_present(cpu))
		return NULL;

	np = of_get_cpu_node(cpu, NULL);
	if (np == NULL)
		return NULL;

	cache = of_find_next_cache_node(np);

	of_node_put(np);

	return cache;
}

static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	struct device_node *l2_cache, *np;
	int i;

	if (has_big_cores)
		submask_fn = cpu_smallcore_mask;

	/*
	 * If the threads in a thread-group share L2 cache, then the
	 * L2-mask can be obtained from thread_group_l2_cache_map.
	 */
	if (thread_group_shares_l2) {
		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));

		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
			if (cpu_online(i))
				set_cpus_related(i, cpu, cpu_l2_cache_mask);
		}

		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
				     cpu);
		}

		return true;
	}

	l2_cache = cpu_to_l2cache(cpu);
	if (!l2_cache || !*mask) {
		/* Assume only core siblings share cache with this CPU */
		for_each_cpu(i, submask_fn(cpu))
			set_cpus_related(cpu, i, cpu_l2_cache_mask);

		return false;
	}

	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));

	/* Update l2-cache mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);

	/* Skip all CPUs already part of current CPU l2-cache mask */
	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));

	for_each_cpu(i, *mask) {
		/*
		 * when updating the marks the current CPU has not been marked
		 * online, but we need to update the cache masks
		 */
		np = cpu_to_l2cache(i);

		/* Skip all CPUs already part of current CPU l2-cache */
		if (np == l2_cache) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
			cpumask_andnot(*mask, *mask, submask_fn(i));
		} else {
			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
		}

		of_node_put(np);
	}
	of_node_put(l2_cache);

	return true;
}

#ifdef CONFIG_HOTPLUG_CPU
static void remove_cpu_from_masks(int cpu)
{
	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
	int i;

	if (shared_caches)
		mask_fn = cpu_l2_cache_mask;

	for_each_cpu(i, mask_fn(cpu)) {
		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
		if (has_big_cores)
			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
	}

	for_each_cpu(i, cpu_core_mask(cpu))
		set_cpus_unrelated(cpu, i, cpu_core_mask);

	if (has_coregroup_support()) {
		for_each_cpu(i, cpu_coregroup_mask(cpu))
			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
	}
}
#endif

static inline void add_cpu_to_smallcore_masks(int cpu)
{
	int i;

	if (!has_big_cores)
		return;

	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));

	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
		if (cpu_online(i))
			set_cpus_related(i, cpu, cpu_smallcore_mask);
	}
}

static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	int coregroup_id = cpu_to_coregroup_id(cpu);
	int i;

	if (shared_caches)
		submask_fn = cpu_l2_cache_mask;

	if (!*mask) {
		/* Assume only siblings are part of this CPU's coregroup */
		for_each_cpu(i, submask_fn(cpu))
			set_cpus_related(cpu, i, cpu_coregroup_mask);

		return;
	}

	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));

	/* Update coregroup mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);

	/* Skip all CPUs already part of coregroup mask */
	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));

	for_each_cpu(i, *mask) {
		/* Skip all CPUs not part of this coregroup */
		if (coregroup_id == cpu_to_coregroup_id(i)) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
			cpumask_andnot(*mask, *mask, submask_fn(i));
		} else {
			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
		}
	}
}

static void add_cpu_to_masks(int cpu)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	int first_thread = cpu_first_thread_sibling(cpu);
	cpumask_var_t mask;
	int chip_id = -1;
	bool ret;
	int i;

	/*
	 * This CPU will not be in the online mask yet so we need to manually
	 * add it to it's own thread sibling mask.
	 */
	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));

	for (i = first_thread; i < first_thread + threads_per_core; i++)
		if (cpu_online(i))
			set_cpus_related(i, cpu, cpu_sibling_mask);

	add_cpu_to_smallcore_masks(cpu);

	/* In CPU-hotplug path, hence use GFP_ATOMIC */
	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
	update_mask_by_l2(cpu, &mask);

	if (has_coregroup_support())
		update_coregroup_mask(cpu, &mask);

	if (chip_id_lookup_table && ret)
		chip_id = cpu_to_chip_id(cpu);

	if (chip_id == -1) {
		cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu));
		goto out;
	}

	if (shared_caches)
		submask_fn = cpu_l2_cache_mask;

	/* Update core_mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);

	/* Skip all CPUs already part of current CPU core mask */
	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));

	for_each_cpu(i, mask) {
		if (chip_id == cpu_to_chip_id(i)) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
			cpumask_andnot(mask, mask, submask_fn(i));
		} else {
			cpumask_andnot(mask, mask, cpu_core_mask(i));
		}
	}

out:
	free_cpumask_var(mask);
}

/* Activate a secondary processor. */
void start_secondary(void *unused)
{
	unsigned int cpu = raw_smp_processor_id();

	mmgrab(&init_mm);
	current->active_mm = &init_mm;

	smp_store_cpu_info(cpu);
	set_dec(tb_ticks_per_jiffy);
	rcu_cpu_starting(cpu);
	preempt_disable();
	cpu_callin_map[cpu] = 1;

	if (smp_ops->setup_cpu)
		smp_ops->setup_cpu(cpu);
	if (smp_ops->take_timebase)
		smp_ops->take_timebase();

	secondary_cpu_time_init();

#ifdef CONFIG_PPC64
	if (system_state == SYSTEM_RUNNING)
		vdso_data->processorCount++;

	vdso_getcpu_init();
#endif
	set_numa_node(numa_cpu_lookup_table[cpu]);
	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));

	/* Update topology CPU masks */
	add_cpu_to_masks(cpu);

	/*
	 * Check for any shared caches. Note that this must be done on a
	 * per-core basis because one core in the pair might be disabled.
	 */
	if (!shared_caches) {
		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
		struct cpumask *mask = cpu_l2_cache_mask(cpu);

		if (has_big_cores)
			sibling_mask = cpu_smallcore_mask;

		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
			shared_caches = true;
	}

	smp_wmb();
	notify_cpu_starting(cpu);
	set_cpu_online(cpu, true);

	boot_init_stack_canary();

	local_irq_enable();

	/* We can enable ftrace for secondary cpus now */
	this_cpu_enable_ftrace();

	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);

	BUG();
}

int setup_profiling_timer(unsigned int multiplier)
{
	return 0;
}

static void fixup_topology(void)
{
	int i;

#ifdef CONFIG_SCHED_SMT
	if (has_big_cores) {
		pr_info("Big cores detected but using small core scheduling\n");
		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
	}
#endif

	if (!has_coregroup_support())
		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;

	/*
	 * Try to consolidate topology levels here instead of
	 * allowing scheduler to degenerate.
	 * - Dont consolidate if masks are different.
	 * - Dont consolidate if sd_flags exists and are different.
	 */
	for (i = 1; i <= die_idx; i++) {
		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
			continue;

		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
			continue;

		if (!powerpc_topology[i - 1].sd_flags)
			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;

		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
#ifdef CONFIG_SCHED_DEBUG
		powerpc_topology[i].name = powerpc_topology[i + 1].name;
#endif
	}
}

void __init smp_cpus_done(unsigned int max_cpus)
{
	/*
	 * We are running pinned to the boot CPU, see rest_init().
	 */
	if (smp_ops && smp_ops->setup_cpu)
		smp_ops->setup_cpu(boot_cpuid);

	if (smp_ops && smp_ops->bringup_done)
		smp_ops->bringup_done();

	dump_numa_cpu_topology();

	fixup_topology();
	set_sched_topology(powerpc_topology);
}

#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
	int cpu = smp_processor_id();
	int err;

	if (!smp_ops->cpu_disable)
		return -ENOSYS;

	this_cpu_disable_ftrace();

	err = smp_ops->cpu_disable();
	if (err)
		return err;

	/* Update sibling maps */
	remove_cpu_from_masks(cpu);

	return 0;
}

void __cpu_die(unsigned int cpu)
{
	if (smp_ops->cpu_die)
		smp_ops->cpu_die(cpu);
}

void arch_cpu_idle_dead(void)
{
	sched_preempt_enable_no_resched();

	/*
	 * Disable on the down path. This will be re-enabled by
	 * start_secondary() via start_secondary_resume() below
	 */
	this_cpu_disable_ftrace();

	if (smp_ops->cpu_offline_self)
		smp_ops->cpu_offline_self();

	/* If we return, we re-enter start_secondary */
	start_secondary_resume();
}

#endif