Contributors: 14
Author Tokens Token Proportion Commits Commit Proportion
Aneesh Kumar K.V 1518 78.13% 25 52.08%
Nicholas Piggin 193 9.93% 7 14.58%
Michael Anderson 75 3.86% 1 2.08%
Reza Arbab 74 3.81% 3 6.25%
Benjamin Herrenschmidt 28 1.44% 1 2.08%
Mike Rapoport 18 0.93% 2 4.17%
Christophe Leroy 10 0.51% 2 4.17%
Oliver O'Halloran 9 0.46% 1 2.08%
Logan Gunthorpe 7 0.36% 1 2.08%
Michael Ellerman 3 0.15% 1 2.08%
Ingo Molnar 3 0.15% 1 2.08%
Thomas Gleixner 2 0.10% 1 2.08%
Mauricio Faria de Oliveira 2 0.10% 1 2.08%
Claudio Carvalho 1 0.05% 1 2.08%
Total 1943 48


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 */

#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/memblock.h>
#include <misc/cxl-base.h>

#include <asm/debugfs.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/trace.h>
#include <asm/powernv.h>
#include <asm/firmware.h>
#include <asm/ultravisor.h>
#include <asm/kexec.h>

#include <mm/mmu_decl.h>
#include <trace/events/thp.h>

#include "internal.h"

unsigned long __pmd_frag_nr;
EXPORT_SYMBOL(__pmd_frag_nr);
unsigned long __pmd_frag_size_shift;
EXPORT_SYMBOL(__pmd_frag_size_shift);

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * This is called when relaxing access to a hugepage. It's also called in the page
 * fault path when we don't hit any of the major fault cases, ie, a minor
 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 * handled those two for us, we additionally deal with missing execute
 * permission here on some processors
 */
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pmd_t *pmdp, pmd_t entry, int dirty)
{
	int changed;
#ifdef CONFIG_DEBUG_VM
	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
#endif
	changed = !pmd_same(*(pmdp), entry);
	if (changed) {
		/*
		 * We can use MMU_PAGE_2M here, because only radix
		 * path look at the psize.
		 */
		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
					pmd_pte(entry), address, MMU_PAGE_2M);
	}
	return changed;
}

int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long address, pmd_t *pmdp)
{
	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}
/*
 * set a new huge pmd. We should not be called for updating
 * an existing pmd entry. That should go via pmd_hugepage_update.
 */
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		pmd_t *pmdp, pmd_t pmd)
{
#ifdef CONFIG_DEBUG_VM
	/*
	 * Make sure hardware valid bit is not set. We don't do
	 * tlb flush for this update.
	 */

	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
	assert_spin_locked(pmd_lockptr(mm, pmdp));
	WARN_ON(!(pmd_large(pmd)));
#endif
	trace_hugepage_set_pmd(addr, pmd_val(pmd));
	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
}

static void do_serialize(void *arg)
{
	/* We've taken the IPI, so try to trim the mask while here */
	if (radix_enabled()) {
		struct mm_struct *mm = arg;
		exit_lazy_flush_tlb(mm, false);
	}
}

/*
 * Serialize against find_current_mm_pte which does lock-less
 * lookup in page tables with local interrupts disabled. For huge pages
 * it casts pmd_t to pte_t. Since format of pte_t is different from
 * pmd_t we want to prevent transit from pmd pointing to page table
 * to pmd pointing to huge page (and back) while interrupts are disabled.
 * We clear pmd to possibly replace it with page table pointer in
 * different code paths. So make sure we wait for the parallel
 * find_current_mm_pte to finish.
 */
void serialize_against_pte_lookup(struct mm_struct *mm)
{
	smp_mb();
	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
}

/*
 * We use this to invalidate a pmdp entry before switching from a
 * hugepte to regular pmd entry.
 */
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
		     pmd_t *pmdp)
{
	unsigned long old_pmd;

	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
	return __pmd(old_pmd);
}

pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
				   unsigned long addr, pmd_t *pmdp, int full)
{
	pmd_t pmd;
	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
	/*
	 * if it not a fullmm flush, then we can possibly end up converting
	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
	 * Make sure we flush the tlb in this case.
	 */
	if (!full)
		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
	return pmd;
}

static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
{
	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
}

/*
 * At some point we should be able to get rid of
 * pmd_mkhuge() and mk_huge_pmd() when we update all the
 * other archs to mark the pmd huge in pfn_pmd()
 */
pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
	unsigned long pmdv;

	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;

	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
}

pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
{
	return pfn_pmd(page_to_pfn(page), pgprot);
}

pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
	unsigned long pmdv;

	pmdv = pmd_val(pmd);
	pmdv &= _HPAGE_CHG_MASK;
	return pmd_set_protbits(__pmd(pmdv), newprot);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

/* For use by kexec */
void mmu_cleanup_all(void)
{
	if (radix_enabled())
		radix__mmu_cleanup_all();
	else if (mmu_hash_ops.hpte_clear_all)
		mmu_hash_ops.hpte_clear_all();

	reset_sprs();
}

#ifdef CONFIG_MEMORY_HOTPLUG
int __meminit create_section_mapping(unsigned long start, unsigned long end,
				     int nid, pgprot_t prot)
{
	if (radix_enabled())
		return radix__create_section_mapping(start, end, nid, prot);

	return hash__create_section_mapping(start, end, nid, prot);
}

int __meminit remove_section_mapping(unsigned long start, unsigned long end)
{
	if (radix_enabled())
		return radix__remove_section_mapping(start, end);

	return hash__remove_section_mapping(start, end);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

void __init mmu_partition_table_init(void)
{
	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
	unsigned long ptcr;

	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
	/* Initialize the Partition Table with no entries */
	partition_tb = memblock_alloc(patb_size, patb_size);
	if (!partition_tb)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, patb_size, patb_size);

	/*
	 * update partition table control register,
	 * 64 K size.
	 */
	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
	set_ptcr_when_no_uv(ptcr);
	powernv_set_nmmu_ptcr(ptcr);
}

static void flush_partition(unsigned int lpid, bool radix)
{
	if (radix) {
		radix__flush_all_lpid(lpid);
		radix__flush_all_lpid_guest(lpid);
	} else {
		asm volatile("ptesync" : : : "memory");
		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
		/* do we need fixup here ?*/
		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
	}
}

void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
				  unsigned long dw1, bool flush)
{
	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);

	/*
	 * When ultravisor is enabled, the partition table is stored in secure
	 * memory and can only be accessed doing an ultravisor call. However, we
	 * maintain a copy of the partition table in normal memory to allow Nest
	 * MMU translations to occur (for normal VMs).
	 *
	 * Therefore, here we always update partition_tb, regardless of whether
	 * we are running under an ultravisor or not.
	 */
	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
	partition_tb[lpid].patb1 = cpu_to_be64(dw1);

	/*
	 * If ultravisor is enabled, we do an ultravisor call to register the
	 * partition table entry (PATE), which also do a global flush of TLBs
	 * and partition table caches for the lpid. Otherwise, just do the
	 * flush. The type of flush (hash or radix) depends on what the previous
	 * use of the partition ID was, not the new use.
	 */
	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
		uv_register_pate(lpid, dw0, dw1);
		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
			dw0, dw1);
	} else if (flush) {
		/*
		 * Boot does not need to flush, because MMU is off and each
		 * CPU does a tlbiel_all() before switching them on, which
		 * flushes everything.
		 */
		flush_partition(lpid, (old & PATB_HR));
	}
}
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);

static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
{
	void *pmd_frag, *ret;

	if (PMD_FRAG_NR == 1)
		return NULL;

	spin_lock(&mm->page_table_lock);
	ret = mm->context.pmd_frag;
	if (ret) {
		pmd_frag = ret + PMD_FRAG_SIZE;
		/*
		 * If we have taken up all the fragments mark PTE page NULL
		 */
		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
			pmd_frag = NULL;
		mm->context.pmd_frag = pmd_frag;
	}
	spin_unlock(&mm->page_table_lock);
	return (pmd_t *)ret;
}

static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
{
	void *ret = NULL;
	struct page *page;
	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;
	page = alloc_page(gfp);
	if (!page)
		return NULL;
	if (!pgtable_pmd_page_ctor(page)) {
		__free_pages(page, 0);
		return NULL;
	}

	atomic_set(&page->pt_frag_refcount, 1);

	ret = page_address(page);
	/*
	 * if we support only one fragment just return the
	 * allocated page.
	 */
	if (PMD_FRAG_NR == 1)
		return ret;

	spin_lock(&mm->page_table_lock);
	/*
	 * If we find pgtable_page set, we return
	 * the allocated page with single fragement
	 * count.
	 */
	if (likely(!mm->context.pmd_frag)) {
		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
	}
	spin_unlock(&mm->page_table_lock);

	return (pmd_t *)ret;
}

pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
{
	pmd_t *pmd;

	pmd = get_pmd_from_cache(mm);
	if (pmd)
		return pmd;

	return __alloc_for_pmdcache(mm);
}

void pmd_fragment_free(unsigned long *pmd)
{
	struct page *page = virt_to_page(pmd);

	if (PageReserved(page))
		return free_reserved_page(page);

	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
		pgtable_pmd_page_dtor(page);
		__free_page(page);
	}
}

static inline void pgtable_free(void *table, int index)
{
	switch (index) {
	case PTE_INDEX:
		pte_fragment_free(table, 0);
		break;
	case PMD_INDEX:
		pmd_fragment_free(table);
		break;
	case PUD_INDEX:
		__pud_free(table);
		break;
#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
		/* 16M hugepd directory at pud level */
	case HTLB_16M_INDEX:
		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
		break;
		/* 16G hugepd directory at the pgd level */
	case HTLB_16G_INDEX:
		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
		break;
#endif
		/* We don't free pgd table via RCU callback */
	default:
		BUG();
	}
}

void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
{
	unsigned long pgf = (unsigned long)table;

	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
	pgf |= index;
	tlb_remove_table(tlb, (void *)pgf);
}

void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;

	return pgtable_free(table, index);
}

#ifdef CONFIG_PROC_FS
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];

void arch_report_meminfo(struct seq_file *m)
{
	/*
	 * Hash maps the memory with one size mmu_linear_psize.
	 * So don't bother to print these on hash
	 */
	if (!radix_enabled())
		return;
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
	seq_printf(m, "DirectMap64k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
	seq_printf(m, "DirectMap1G:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
}
#endif /* CONFIG_PROC_FS */

pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
			     pte_t *ptep)
{
	unsigned long pte_val;

	/*
	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
	 * possible. Also keep the pte_present true so that we don't take
	 * wrong fault.
	 */
	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);

	return __pte(pte_val);

}

void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
			     pte_t *ptep, pte_t old_pte, pte_t pte)
{
	if (radix_enabled())
		return radix__ptep_modify_prot_commit(vma, addr,
						      ptep, old_pte, pte);
	set_pte_at(vma->vm_mm, addr, ptep, pte);
}

/*
 * For hash translation mode, we use the deposited table to store hash slot
 * information and they are stored at PTRS_PER_PMD offset from related pmd
 * location. Hence a pmd move requires deposit and withdraw.
 *
 * For radix translation with split pmd ptl, we store the deposited table in the
 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 * move.
 *
 * With hash we use deposited table always irrespective of anon or not.
 * With radix we use deposited table only for anonymous mapping.
 */
int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
			   struct spinlock *old_pmd_ptl,
			   struct vm_area_struct *vma)
{
	if (radix_enabled())
		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);

	return true;
}

/*
 * Does the CPU support tlbie?
 */
bool tlbie_capable __read_mostly = true;
EXPORT_SYMBOL(tlbie_capable);

/*
 * Should tlbie be used for management of CPU TLBs, for kernel and process
 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
 * guest address spaces.
 */
bool tlbie_enabled __read_mostly = true;

static int __init setup_disable_tlbie(char *str)
{
	if (!radix_enabled()) {
		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
		return 1;
	}

	tlbie_capable = false;
	tlbie_enabled = false;

        return 1;
}
__setup("disable_tlbie", setup_disable_tlbie);

static int __init pgtable_debugfs_setup(void)
{
	if (!tlbie_capable)
		return 0;

	/*
	 * There is no locking vs tlb flushing when changing this value.
	 * The tlb flushers will see one value or another, and use either
	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
	 * invalidated as expected.
	 */
	debugfs_create_bool("tlbie_enabled", 0600,
			powerpc_debugfs_root,
			&tlbie_enabled);

	return 0;
}
arch_initcall(pgtable_debugfs_setup);