Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hari Bathini | 2780 | 96.19% | 2 | 33.33% |
Sourabh Jain | 101 | 3.49% | 1 | 16.67% |
Al Viro | 6 | 0.21% | 1 | 16.67% |
Qinglang Miao | 2 | 0.07% | 1 | 16.67% |
Bixuan Cui | 1 | 0.03% | 1 | 16.67% |
Total | 2890 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * Interface for exporting the OPAL ELF core. * Heavily inspired from fs/proc/vmcore.c * * Copyright 2019, Hari Bathini, IBM Corporation. */ #define pr_fmt(fmt) "opal core: " fmt #include <linux/memblock.h> #include <linux/uaccess.h> #include <linux/proc_fs.h> #include <linux/elf.h> #include <linux/elfcore.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <linux/slab.h> #include <linux/crash_core.h> #include <linux/of.h> #include <asm/page.h> #include <asm/opal.h> #include <asm/fadump-internal.h> #include "opal-fadump.h" #define MAX_PT_LOAD_CNT 8 /* NT_AUXV note related info */ #define AUXV_CNT 1 #define AUXV_DESC_SZ (((2 * AUXV_CNT) + 1) * sizeof(Elf64_Off)) struct opalcore_config { u32 num_cpus; /* PIR value of crashing CPU */ u32 crashing_cpu; /* CPU state data info from F/W */ u64 cpu_state_destination_vaddr; u64 cpu_state_data_size; u64 cpu_state_entry_size; /* OPAL memory to be exported as PT_LOAD segments */ u64 ptload_addr[MAX_PT_LOAD_CNT]; u64 ptload_size[MAX_PT_LOAD_CNT]; u64 ptload_cnt; /* Pointer to the first PT_LOAD in the ELF core file */ Elf64_Phdr *ptload_phdr; /* Total size of opalcore file. */ size_t opalcore_size; /* Buffer for all the ELF core headers and the PT_NOTE */ size_t opalcorebuf_sz; char *opalcorebuf; /* NT_AUXV buffer */ char auxv_buf[AUXV_DESC_SZ]; }; struct opalcore { struct list_head list; u64 paddr; size_t size; loff_t offset; }; static LIST_HEAD(opalcore_list); static struct opalcore_config *oc_conf; static const struct opal_mpipl_fadump *opalc_metadata; static const struct opal_mpipl_fadump *opalc_cpu_metadata; static struct kobject *mpipl_kobj; /* * Set crashing CPU's signal to SIGUSR1. if the kernel is triggered * by kernel, SIGTERM otherwise. */ bool kernel_initiated; static struct opalcore * __init get_new_element(void) { return kzalloc(sizeof(struct opalcore), GFP_KERNEL); } static inline int is_opalcore_usable(void) { return (oc_conf && oc_conf->opalcorebuf != NULL) ? 1 : 0; } static Elf64_Word *append_elf64_note(Elf64_Word *buf, char *name, u32 type, void *data, size_t data_len) { Elf64_Nhdr *note = (Elf64_Nhdr *)buf; Elf64_Word namesz = strlen(name) + 1; note->n_namesz = cpu_to_be32(namesz); note->n_descsz = cpu_to_be32(data_len); note->n_type = cpu_to_be32(type); buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf64_Word)); memcpy(buf, name, namesz); buf += DIV_ROUND_UP(namesz, sizeof(Elf64_Word)); memcpy(buf, data, data_len); buf += DIV_ROUND_UP(data_len, sizeof(Elf64_Word)); return buf; } static void fill_prstatus(struct elf_prstatus *prstatus, int pir, struct pt_regs *regs) { memset(prstatus, 0, sizeof(struct elf_prstatus)); elf_core_copy_kernel_regs(&(prstatus->pr_reg), regs); /* * Overload PID with PIR value. * As a PIR value could also be '0', add an offset of '100' * to every PIR to avoid misinterpretations in GDB. */ prstatus->common.pr_pid = cpu_to_be32(100 + pir); prstatus->common.pr_ppid = cpu_to_be32(1); /* * Indicate SIGUSR1 for crash initiated from kernel. * SIGTERM otherwise. */ if (pir == oc_conf->crashing_cpu) { short sig; sig = kernel_initiated ? SIGUSR1 : SIGTERM; prstatus->common.pr_cursig = cpu_to_be16(sig); } } static Elf64_Word *auxv_to_elf64_notes(Elf64_Word *buf, u64 opal_boot_entry) { Elf64_Off *bufp = (Elf64_Off *)oc_conf->auxv_buf; int idx = 0; memset(bufp, 0, AUXV_DESC_SZ); /* Entry point of OPAL */ bufp[idx++] = cpu_to_be64(AT_ENTRY); bufp[idx++] = cpu_to_be64(opal_boot_entry); /* end of vector */ bufp[idx++] = cpu_to_be64(AT_NULL); buf = append_elf64_note(buf, CRASH_CORE_NOTE_NAME, NT_AUXV, oc_conf->auxv_buf, AUXV_DESC_SZ); return buf; } /* * Read from the ELF header and then the crash dump. * Returns number of bytes read on success, -errno on failure. */ static ssize_t read_opalcore(struct file *file, struct kobject *kobj, struct bin_attribute *bin_attr, char *to, loff_t pos, size_t count) { struct opalcore *m; ssize_t tsz, avail; loff_t tpos = pos; if (pos >= oc_conf->opalcore_size) return 0; /* Adjust count if it goes beyond opalcore size */ avail = oc_conf->opalcore_size - pos; if (count > avail) count = avail; if (count == 0) return 0; /* Read ELF core header and/or PT_NOTE segment */ if (tpos < oc_conf->opalcorebuf_sz) { tsz = min_t(size_t, oc_conf->opalcorebuf_sz - tpos, count); memcpy(to, oc_conf->opalcorebuf + tpos, tsz); to += tsz; tpos += tsz; count -= tsz; } list_for_each_entry(m, &opalcore_list, list) { /* nothing more to read here */ if (count == 0) break; if (tpos < m->offset + m->size) { void *addr; tsz = min_t(size_t, m->offset + m->size - tpos, count); addr = (void *)(m->paddr + tpos - m->offset); memcpy(to, __va(addr), tsz); to += tsz; tpos += tsz; count -= tsz; } } return (tpos - pos); } static struct bin_attribute opal_core_attr = { .attr = {.name = "core", .mode = 0400}, .read = read_opalcore }; /* * Read CPU state dump data and convert it into ELF notes. * * Each register entry is of 16 bytes, A numerical identifier along with * a GPR/SPR flag in the first 8 bytes and the register value in the next * 8 bytes. For more details refer to F/W documentation. */ static Elf64_Word * __init opalcore_append_cpu_notes(Elf64_Word *buf) { u32 thread_pir, size_per_thread, regs_offset, regs_cnt, reg_esize; struct hdat_fadump_thread_hdr *thdr; struct elf_prstatus prstatus; Elf64_Word *first_cpu_note; struct pt_regs regs; char *bufp; int i; size_per_thread = oc_conf->cpu_state_entry_size; bufp = __va(oc_conf->cpu_state_destination_vaddr); /* * Offset for register entries, entry size and registers count is * duplicated in every thread header in keeping with HDAT format. * Use these values from the first thread header. */ thdr = (struct hdat_fadump_thread_hdr *)bufp; regs_offset = (offsetof(struct hdat_fadump_thread_hdr, offset) + be32_to_cpu(thdr->offset)); reg_esize = be32_to_cpu(thdr->esize); regs_cnt = be32_to_cpu(thdr->ecnt); pr_debug("--------CPU State Data------------\n"); pr_debug("NumCpus : %u\n", oc_conf->num_cpus); pr_debug("\tOffset: %u, Entry size: %u, Cnt: %u\n", regs_offset, reg_esize, regs_cnt); /* * Skip past the first CPU note. Fill this note with the * crashing CPU's prstatus. */ first_cpu_note = buf; buf = append_elf64_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, &prstatus, sizeof(prstatus)); for (i = 0; i < oc_conf->num_cpus; i++, bufp += size_per_thread) { thdr = (struct hdat_fadump_thread_hdr *)bufp; thread_pir = be32_to_cpu(thdr->pir); pr_debug("[%04d] PIR: 0x%x, core state: 0x%02x\n", i, thread_pir, thdr->core_state); /* * Register state data of MAX cores is provided by firmware, * but some of this cores may not be active. So, while * processing register state data, check core state and * skip threads that belong to inactive cores. */ if (thdr->core_state == HDAT_FADUMP_CORE_INACTIVE) continue; opal_fadump_read_regs((bufp + regs_offset), regs_cnt, reg_esize, false, ®s); pr_debug("PIR 0x%x - R1 : 0x%llx, NIP : 0x%llx\n", thread_pir, be64_to_cpu(regs.gpr[1]), be64_to_cpu(regs.nip)); fill_prstatus(&prstatus, thread_pir, ®s); if (thread_pir != oc_conf->crashing_cpu) { buf = append_elf64_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, &prstatus, sizeof(prstatus)); } else { /* * Add crashing CPU as the first NT_PRSTATUS note for * GDB to process the core file appropriately. */ append_elf64_note(first_cpu_note, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, &prstatus, sizeof(prstatus)); } } return buf; } static int __init create_opalcore(void) { u64 opal_boot_entry, opal_base_addr, paddr; u32 hdr_size, cpu_notes_size, count; struct device_node *dn; struct opalcore *new; loff_t opalcore_off; struct page *page; Elf64_Phdr *phdr; Elf64_Ehdr *elf; int i, ret; char *bufp; /* Get size of header & CPU notes for OPAL core */ hdr_size = (sizeof(Elf64_Ehdr) + ((oc_conf->ptload_cnt + 1) * sizeof(Elf64_Phdr))); cpu_notes_size = ((oc_conf->num_cpus * (CRASH_CORE_NOTE_HEAD_BYTES + CRASH_CORE_NOTE_NAME_BYTES + CRASH_CORE_NOTE_DESC_BYTES)) + (CRASH_CORE_NOTE_HEAD_BYTES + CRASH_CORE_NOTE_NAME_BYTES + AUXV_DESC_SZ)); /* Allocate buffer to setup OPAL core */ oc_conf->opalcorebuf_sz = PAGE_ALIGN(hdr_size + cpu_notes_size); oc_conf->opalcorebuf = alloc_pages_exact(oc_conf->opalcorebuf_sz, GFP_KERNEL | __GFP_ZERO); if (!oc_conf->opalcorebuf) { pr_err("Not enough memory to setup OPAL core (size: %lu)\n", oc_conf->opalcorebuf_sz); oc_conf->opalcorebuf_sz = 0; return -ENOMEM; } count = oc_conf->opalcorebuf_sz / PAGE_SIZE; page = virt_to_page(oc_conf->opalcorebuf); for (i = 0; i < count; i++) mark_page_reserved(page + i); pr_debug("opalcorebuf = 0x%llx\n", (u64)oc_conf->opalcorebuf); /* Read OPAL related device-tree entries */ dn = of_find_node_by_name(NULL, "ibm,opal"); if (dn) { ret = of_property_read_u64(dn, "opal-base-address", &opal_base_addr); pr_debug("opal-base-address: %llx\n", opal_base_addr); ret |= of_property_read_u64(dn, "opal-boot-address", &opal_boot_entry); pr_debug("opal-boot-address: %llx\n", opal_boot_entry); } if (!dn || ret) pr_warn("WARNING: Failed to read OPAL base & entry values\n"); /* Use count to keep track of the program headers */ count = 0; bufp = oc_conf->opalcorebuf; elf = (Elf64_Ehdr *)bufp; bufp += sizeof(Elf64_Ehdr); memcpy(elf->e_ident, ELFMAG, SELFMAG); elf->e_ident[EI_CLASS] = ELF_CLASS; elf->e_ident[EI_DATA] = ELFDATA2MSB; elf->e_ident[EI_VERSION] = EV_CURRENT; elf->e_ident[EI_OSABI] = ELF_OSABI; memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); elf->e_type = cpu_to_be16(ET_CORE); elf->e_machine = cpu_to_be16(ELF_ARCH); elf->e_version = cpu_to_be32(EV_CURRENT); elf->e_entry = 0; elf->e_phoff = cpu_to_be64(sizeof(Elf64_Ehdr)); elf->e_shoff = 0; elf->e_flags = 0; elf->e_ehsize = cpu_to_be16(sizeof(Elf64_Ehdr)); elf->e_phentsize = cpu_to_be16(sizeof(Elf64_Phdr)); elf->e_phnum = 0; elf->e_shentsize = 0; elf->e_shnum = 0; elf->e_shstrndx = 0; phdr = (Elf64_Phdr *)bufp; bufp += sizeof(Elf64_Phdr); phdr->p_type = cpu_to_be32(PT_NOTE); phdr->p_flags = 0; phdr->p_align = 0; phdr->p_paddr = phdr->p_vaddr = 0; phdr->p_offset = cpu_to_be64(hdr_size); phdr->p_filesz = phdr->p_memsz = cpu_to_be64(cpu_notes_size); count++; opalcore_off = oc_conf->opalcorebuf_sz; oc_conf->ptload_phdr = (Elf64_Phdr *)bufp; paddr = 0; for (i = 0; i < oc_conf->ptload_cnt; i++) { phdr = (Elf64_Phdr *)bufp; bufp += sizeof(Elf64_Phdr); phdr->p_type = cpu_to_be32(PT_LOAD); phdr->p_flags = cpu_to_be32(PF_R|PF_W|PF_X); phdr->p_align = 0; new = get_new_element(); if (!new) return -ENOMEM; new->paddr = oc_conf->ptload_addr[i]; new->size = oc_conf->ptload_size[i]; new->offset = opalcore_off; list_add_tail(&new->list, &opalcore_list); phdr->p_paddr = cpu_to_be64(paddr); phdr->p_vaddr = cpu_to_be64(opal_base_addr + paddr); phdr->p_filesz = phdr->p_memsz = cpu_to_be64(oc_conf->ptload_size[i]); phdr->p_offset = cpu_to_be64(opalcore_off); count++; opalcore_off += oc_conf->ptload_size[i]; paddr += oc_conf->ptload_size[i]; } elf->e_phnum = cpu_to_be16(count); bufp = (char *)opalcore_append_cpu_notes((Elf64_Word *)bufp); bufp = (char *)auxv_to_elf64_notes((Elf64_Word *)bufp, opal_boot_entry); oc_conf->opalcore_size = opalcore_off; return 0; } static void opalcore_cleanup(void) { if (oc_conf == NULL) return; /* Remove OPAL core sysfs file */ sysfs_remove_bin_file(mpipl_kobj, &opal_core_attr); oc_conf->ptload_phdr = NULL; oc_conf->ptload_cnt = 0; /* free the buffer used for setting up OPAL core */ if (oc_conf->opalcorebuf) { void *end = (void *)((u64)oc_conf->opalcorebuf + oc_conf->opalcorebuf_sz); free_reserved_area(oc_conf->opalcorebuf, end, -1, NULL); oc_conf->opalcorebuf = NULL; oc_conf->opalcorebuf_sz = 0; } kfree(oc_conf); oc_conf = NULL; } __exitcall(opalcore_cleanup); static void __init opalcore_config_init(void) { u32 idx, cpu_data_version; struct device_node *np; const __be32 *prop; u64 addr = 0; int i, ret; np = of_find_node_by_path("/ibm,opal/dump"); if (np == NULL) return; if (!of_device_is_compatible(np, "ibm,opal-dump")) { pr_warn("Support missing for this f/w version!\n"); return; } /* Check if dump has been initiated on last reboot */ prop = of_get_property(np, "mpipl-boot", NULL); if (!prop) { of_node_put(np); return; } /* Get OPAL metadata */ ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_OPAL, &addr); if ((ret != OPAL_SUCCESS) || !addr) { pr_err("Failed to get OPAL metadata (%d)\n", ret); goto error_out; } addr = be64_to_cpu(addr); pr_debug("OPAL metadata addr: %llx\n", addr); opalc_metadata = __va(addr); /* Get OPAL CPU metadata */ ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_CPU, &addr); if ((ret != OPAL_SUCCESS) || !addr) { pr_err("Failed to get OPAL CPU metadata (%d)\n", ret); goto error_out; } addr = be64_to_cpu(addr); pr_debug("CPU metadata addr: %llx\n", addr); opalc_cpu_metadata = __va(addr); /* Allocate memory for config buffer */ oc_conf = kzalloc(sizeof(struct opalcore_config), GFP_KERNEL); if (oc_conf == NULL) goto error_out; /* Parse OPAL metadata */ if (opalc_metadata->version != OPAL_MPIPL_VERSION) { pr_warn("Supported OPAL metadata version: %u, found: %u!\n", OPAL_MPIPL_VERSION, opalc_metadata->version); pr_warn("WARNING: F/W using newer OPAL metadata format!!\n"); } oc_conf->ptload_cnt = 0; idx = be32_to_cpu(opalc_metadata->region_cnt); if (idx > MAX_PT_LOAD_CNT) { pr_warn("WARNING: OPAL regions count (%d) adjusted to limit (%d)", idx, MAX_PT_LOAD_CNT); idx = MAX_PT_LOAD_CNT; } for (i = 0; i < idx; i++) { oc_conf->ptload_addr[oc_conf->ptload_cnt] = be64_to_cpu(opalc_metadata->region[i].dest); oc_conf->ptload_size[oc_conf->ptload_cnt++] = be64_to_cpu(opalc_metadata->region[i].size); } oc_conf->ptload_cnt = i; oc_conf->crashing_cpu = be32_to_cpu(opalc_metadata->crashing_pir); if (!oc_conf->ptload_cnt) { pr_err("OPAL memory regions not found\n"); goto error_out; } /* Parse OPAL CPU metadata */ cpu_data_version = be32_to_cpu(opalc_cpu_metadata->cpu_data_version); if (cpu_data_version != HDAT_FADUMP_CPU_DATA_VER) { pr_warn("Supported CPU data version: %u, found: %u!\n", HDAT_FADUMP_CPU_DATA_VER, cpu_data_version); pr_warn("WARNING: F/W using newer CPU state data format!!\n"); } addr = be64_to_cpu(opalc_cpu_metadata->region[0].dest); if (!addr) { pr_err("CPU state data not found!\n"); goto error_out; } oc_conf->cpu_state_destination_vaddr = (u64)__va(addr); oc_conf->cpu_state_data_size = be64_to_cpu(opalc_cpu_metadata->region[0].size); oc_conf->cpu_state_entry_size = be32_to_cpu(opalc_cpu_metadata->cpu_data_size); if ((oc_conf->cpu_state_entry_size == 0) || (oc_conf->cpu_state_entry_size > oc_conf->cpu_state_data_size)) { pr_err("CPU state data is invalid.\n"); goto error_out; } oc_conf->num_cpus = (oc_conf->cpu_state_data_size / oc_conf->cpu_state_entry_size); of_node_put(np); return; error_out: pr_err("Could not export /sys/firmware/opal/core\n"); opalcore_cleanup(); of_node_put(np); } static ssize_t release_core_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int input = -1; if (kstrtoint(buf, 0, &input)) return -EINVAL; if (input == 1) { if (oc_conf == NULL) { pr_err("'/sys/firmware/opal/core' file not accessible!\n"); return -EPERM; } /* * Take away '/sys/firmware/opal/core' and release all memory * used for exporting this file. */ opalcore_cleanup(); } else return -EINVAL; return count; } static struct kobj_attribute opalcore_rel_attr = __ATTR_WO(release_core); static struct attribute *mpipl_attr[] = { &opalcore_rel_attr.attr, NULL, }; static struct bin_attribute *mpipl_bin_attr[] = { &opal_core_attr, NULL, }; static struct attribute_group mpipl_group = { .attrs = mpipl_attr, .bin_attrs = mpipl_bin_attr, }; static int __init opalcore_init(void) { int rc = -1; opalcore_config_init(); if (oc_conf == NULL) return rc; create_opalcore(); /* * If oc_conf->opalcorebuf= is set in the 2nd kernel, * then capture the dump. */ if (!(is_opalcore_usable())) { pr_err("Failed to export /sys/firmware/opal/mpipl/core\n"); opalcore_cleanup(); return rc; } /* Set OPAL core file size */ opal_core_attr.size = oc_conf->opalcore_size; mpipl_kobj = kobject_create_and_add("mpipl", opal_kobj); if (!mpipl_kobj) { pr_err("unable to create mpipl kobject\n"); return -ENOMEM; } /* Export OPAL core sysfs file */ rc = sysfs_create_group(mpipl_kobj, &mpipl_group); if (rc) { pr_err("mpipl sysfs group creation failed (%d)", rc); opalcore_cleanup(); return rc; } /* The /sys/firmware/opal/core is moved to /sys/firmware/opal/mpipl/ * directory, need to create symlink at old location to maintain * backward compatibility. */ rc = compat_only_sysfs_link_entry_to_kobj(opal_kobj, mpipl_kobj, "core", NULL); if (rc) { pr_err("unable to create core symlink (%d)\n", rc); return rc; } return 0; } fs_initcall(opalcore_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1