Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zong Li | 420 | 47.57% | 2 | 28.57% |
Palmer Dabbelt | 349 | 39.52% | 1 | 14.29% |
Yash Shah | 60 | 6.80% | 1 | 14.29% |
Atish Patra | 50 | 5.66% | 1 | 14.29% |
Kefeng Wang | 2 | 0.23% | 1 | 14.29% |
Thomas Gleixner | 2 | 0.23% | 1 | 14.29% |
Total | 883 | 7 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 SiFive */ #include <linux/cpu.h> #include <linux/of.h> #include <linux/of_device.h> #include <asm/cacheinfo.h> static struct riscv_cacheinfo_ops *rv_cache_ops; void riscv_set_cacheinfo_ops(struct riscv_cacheinfo_ops *ops) { rv_cache_ops = ops; } EXPORT_SYMBOL_GPL(riscv_set_cacheinfo_ops); const struct attribute_group * cache_get_priv_group(struct cacheinfo *this_leaf) { if (rv_cache_ops && rv_cache_ops->get_priv_group) return rv_cache_ops->get_priv_group(this_leaf); return NULL; } static struct cacheinfo *get_cacheinfo(u32 level, enum cache_type type) { /* * Using raw_smp_processor_id() elides a preemptability check, but this * is really indicative of a larger problem: the cacheinfo UABI assumes * that cores have a homonogenous view of the cache hierarchy. That * happens to be the case for the current set of RISC-V systems, but * likely won't be true in general. Since there's no way to provide * correct information for these systems via the current UABI we're * just eliding the check for now. */ struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(raw_smp_processor_id()); struct cacheinfo *this_leaf; int index; for (index = 0; index < this_cpu_ci->num_leaves; index++) { this_leaf = this_cpu_ci->info_list + index; if (this_leaf->level == level && this_leaf->type == type) return this_leaf; } return NULL; } uintptr_t get_cache_size(u32 level, enum cache_type type) { struct cacheinfo *this_leaf = get_cacheinfo(level, type); return this_leaf ? this_leaf->size : 0; } uintptr_t get_cache_geometry(u32 level, enum cache_type type) { struct cacheinfo *this_leaf = get_cacheinfo(level, type); return this_leaf ? (this_leaf->ways_of_associativity << 16 | this_leaf->coherency_line_size) : 0; } static void ci_leaf_init(struct cacheinfo *this_leaf, enum cache_type type, unsigned int level, unsigned int size, unsigned int sets, unsigned int line_size) { this_leaf->level = level; this_leaf->type = type; this_leaf->size = size; this_leaf->number_of_sets = sets; this_leaf->coherency_line_size = line_size; /* * If the cache is fully associative, there is no need to * check the other properties. */ if (sets == 1) return; /* * Set the ways number for n-ways associative, make sure * all properties are big than zero. */ if (sets > 0 && size > 0 && line_size > 0) this_leaf->ways_of_associativity = (size / sets) / line_size; } static void fill_cacheinfo(struct cacheinfo **this_leaf, struct device_node *node, unsigned int level) { unsigned int size, sets, line_size; if (!of_property_read_u32(node, "cache-size", &size) && !of_property_read_u32(node, "cache-block-size", &line_size) && !of_property_read_u32(node, "cache-sets", &sets)) { ci_leaf_init((*this_leaf)++, CACHE_TYPE_UNIFIED, level, size, sets, line_size); } if (!of_property_read_u32(node, "i-cache-size", &size) && !of_property_read_u32(node, "i-cache-sets", &sets) && !of_property_read_u32(node, "i-cache-block-size", &line_size)) { ci_leaf_init((*this_leaf)++, CACHE_TYPE_INST, level, size, sets, line_size); } if (!of_property_read_u32(node, "d-cache-size", &size) && !of_property_read_u32(node, "d-cache-sets", &sets) && !of_property_read_u32(node, "d-cache-block-size", &line_size)) { ci_leaf_init((*this_leaf)++, CACHE_TYPE_DATA, level, size, sets, line_size); } } static int __init_cache_level(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct device_node *np = of_cpu_device_node_get(cpu); struct device_node *prev = NULL; int levels = 0, leaves = 0, level; if (of_property_read_bool(np, "cache-size")) ++leaves; if (of_property_read_bool(np, "i-cache-size")) ++leaves; if (of_property_read_bool(np, "d-cache-size")) ++leaves; if (leaves > 0) levels = 1; prev = np; while ((np = of_find_next_cache_node(np))) { of_node_put(prev); prev = np; if (!of_device_is_compatible(np, "cache")) break; if (of_property_read_u32(np, "cache-level", &level)) break; if (level <= levels) break; if (of_property_read_bool(np, "cache-size")) ++leaves; if (of_property_read_bool(np, "i-cache-size")) ++leaves; if (of_property_read_bool(np, "d-cache-size")) ++leaves; levels = level; } of_node_put(np); this_cpu_ci->num_levels = levels; this_cpu_ci->num_leaves = leaves; return 0; } static int __populate_cache_leaves(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf = this_cpu_ci->info_list; struct device_node *np = of_cpu_device_node_get(cpu); struct device_node *prev = NULL; int levels = 1, level = 1; /* Level 1 caches in cpu node */ fill_cacheinfo(&this_leaf, np, level); /* Next level caches in cache nodes */ prev = np; while ((np = of_find_next_cache_node(np))) { of_node_put(prev); prev = np; if (!of_device_is_compatible(np, "cache")) break; if (of_property_read_u32(np, "cache-level", &level)) break; if (level <= levels) break; fill_cacheinfo(&this_leaf, np, level); levels = level; } of_node_put(np); return 0; } DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level) DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1