Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Richter | 5366 | 99.87% | 8 | 72.73% |
Heiko Carstens | 6 | 0.11% | 2 | 18.18% |
Vasily Gorbik | 1 | 0.02% | 1 | 9.09% |
Total | 5373 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * Performance event support for s390x - CPU-measurement Counter Sets * * Copyright IBM Corp. 2019, 2021 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com> * Thomas Richer <tmricht@linux.ibm.com> */ #define KMSG_COMPONENT "cpum_cf_diag" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/init.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/processor.h> #include <linux/miscdevice.h> #include <linux/mutex.h> #include <asm/ctl_reg.h> #include <asm/irq.h> #include <asm/cpu_mcf.h> #include <asm/timex.h> #include <asm/debug.h> #include <asm/hwctrset.h> #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */ /* interval in seconds */ static unsigned int cf_diag_cpu_speed; static debug_info_t *cf_diag_dbg; struct cf_diag_csd { /* Counter set data per CPU */ size_t used; /* Bytes used in data/start */ unsigned char start[PAGE_SIZE]; /* Counter set at event start */ unsigned char data[PAGE_SIZE]; /* Counter set at event delete */ unsigned int sets; /* # Counter set saved in data */ }; static DEFINE_PER_CPU(struct cf_diag_csd, cf_diag_csd); /* Counter sets are stored as data stream in a page sized memory buffer and * exported to user space via raw data attached to the event sample data. * Each counter set starts with an eight byte header consisting of: * - a two byte eye catcher (0xfeef) * - a one byte counter set number * - a two byte counter set size (indicates the number of counters in this set) * - a three byte reserved value (must be zero) to make the header the same * size as a counter value. * All counter values are eight byte in size. * * All counter sets are followed by a 64 byte trailer. * The trailer consists of a: * - flag field indicating valid fields when corresponding bit set * - the counter facility first and second version number * - the CPU speed if nonzero * - the time stamp the counter sets have been collected * - the time of day (TOD) base value * - the machine type. * * The counter sets are saved when the process is prepared to be executed on a * CPU and saved again when the process is going to be removed from a CPU. * The difference of both counter sets are calculated and stored in the event * sample data area. */ struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */ unsigned int def:16; /* 0-15 Data Entry Format */ unsigned int set:16; /* 16-31 Counter set identifier */ unsigned int ctr:16; /* 32-47 Number of stored counters */ unsigned int res1:16; /* 48-63 Reserved */ }; struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */ /* 0 - 7 */ union { struct { unsigned int clock_base:1; /* TOD clock base set */ unsigned int speed:1; /* CPU speed set */ /* Measurement alerts */ unsigned int mtda:1; /* Loss of MT ctr. data alert */ unsigned int caca:1; /* Counter auth. change alert */ unsigned int lcda:1; /* Loss of counter data alert */ }; unsigned long flags; /* 0-63 All indicators */ }; /* 8 - 15 */ unsigned int cfvn:16; /* 64-79 Ctr First Version */ unsigned int csvn:16; /* 80-95 Ctr Second Version */ unsigned int cpu_speed:32; /* 96-127 CPU speed */ /* 16 - 23 */ unsigned long timestamp; /* 128-191 Timestamp (TOD) */ /* 24 - 55 */ union { struct { unsigned long progusage1; unsigned long progusage2; unsigned long progusage3; unsigned long tod_base; }; unsigned long progusage[4]; }; /* 56 - 63 */ unsigned int mach_type:16; /* Machine type */ unsigned int res1:16; /* Reserved */ unsigned int res2:32; /* Reserved */ }; /* Create the trailer data at the end of a page. */ static void cf_diag_trailer(struct cf_trailer_entry *te) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cpuid cpuid; te->cfvn = cpuhw->info.cfvn; /* Counter version numbers */ te->csvn = cpuhw->info.csvn; get_cpu_id(&cpuid); /* Machine type */ te->mach_type = cpuid.machine; te->cpu_speed = cf_diag_cpu_speed; if (te->cpu_speed) te->speed = 1; te->clock_base = 1; /* Save clock base */ te->tod_base = tod_clock_base.tod; te->timestamp = get_tod_clock_fast(); } /* * Change the CPUMF state to active. * Enable and activate the CPU-counter sets according * to the per-cpu control state. */ static void cf_diag_enable(struct pmu *pmu) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); int err; debug_sprintf_event(cf_diag_dbg, 5, "%s pmu %p cpu %d flags %#x state %#llx\n", __func__, pmu, smp_processor_id(), cpuhw->flags, cpuhw->state); if (cpuhw->flags & PMU_F_ENABLED) return; err = lcctl(cpuhw->state); if (err) { pr_err("Enabling the performance measuring unit " "failed with rc=%x\n", err); return; } cpuhw->flags |= PMU_F_ENABLED; } /* * Change the CPUMF state to inactive. * Disable and enable (inactive) the CPU-counter sets according * to the per-cpu control state. */ static void cf_diag_disable(struct pmu *pmu) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); u64 inactive; int err; debug_sprintf_event(cf_diag_dbg, 5, "%s pmu %p cpu %d flags %#x state %#llx\n", __func__, pmu, smp_processor_id(), cpuhw->flags, cpuhw->state); if (!(cpuhw->flags & PMU_F_ENABLED)) return; inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1); err = lcctl(inactive); if (err) { pr_err("Disabling the performance measuring unit " "failed with rc=%x\n", err); return; } cpuhw->flags &= ~PMU_F_ENABLED; } /* Number of perf events counting hardware events */ static atomic_t cf_diag_events = ATOMIC_INIT(0); /* Used to avoid races in calling reserve/release_cpumf_hardware */ static DEFINE_MUTEX(cf_diag_reserve_mutex); /* Release the PMU if event is the last perf event */ static void cf_diag_perf_event_destroy(struct perf_event *event) { debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d cf_diag_events %d\n", __func__, event, smp_processor_id(), atomic_read(&cf_diag_events)); if (atomic_dec_return(&cf_diag_events) == 0) __kernel_cpumcf_end(); } static int get_authctrsets(void) { struct cpu_cf_events *cpuhw; unsigned long auth = 0; enum cpumf_ctr_set i; cpuhw = &get_cpu_var(cpu_cf_events); for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { if (cpuhw->info.auth_ctl & cpumf_ctr_ctl[i]) auth |= cpumf_ctr_ctl[i]; } put_cpu_var(cpu_cf_events); return auth; } /* Setup the event. Test for authorized counter sets and only include counter * sets which are authorized at the time of the setup. Including unauthorized * counter sets result in specification exception (and panic). */ static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; int err = 0; debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d\n", __func__, event, event->cpu); event->hw.config = attr->config; /* Add all authorized counter sets to config_base. The * the hardware init function is either called per-cpu or just once * for all CPUS (event->cpu == -1). This depends on the whether * counting is started for all CPUs or on a per workload base where * the perf event moves from one CPU to another CPU. * Checking the authorization on any CPU is fine as the hardware * applies the same authorization settings to all CPUs. */ event->hw.config_base = get_authctrsets(); /* No authorized counter sets, nothing to count/sample */ if (!event->hw.config_base) { err = -EINVAL; goto out; } /* Set sample_period to indicate sampling */ event->hw.sample_period = attr->sample_period; local64_set(&event->hw.period_left, event->hw.sample_period); event->hw.last_period = event->hw.sample_period; out: debug_sprintf_event(cf_diag_dbg, 5, "%s err %d config_base %#lx\n", __func__, err, event->hw.config_base); return err; } /* Return 0 if the CPU-measurement counter facility is currently free * and an error otherwise. */ static int cf_diag_perf_event_inuse(void) { int err = 0; if (!atomic_inc_not_zero(&cf_diag_events)) { mutex_lock(&cf_diag_reserve_mutex); if (atomic_read(&cf_diag_events) == 0 && __kernel_cpumcf_begin()) err = -EBUSY; else err = atomic_inc_return(&cf_diag_events); mutex_unlock(&cf_diag_reserve_mutex); } return err; } static int cf_diag_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; int err = -ENOENT; debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d config %#llx type:%u " "sample_type %#llx cf_diag_events %d\n", __func__, event, event->cpu, attr->config, event->pmu->type, attr->sample_type, atomic_read(&cf_diag_events)); if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG || event->attr.type != event->pmu->type) goto out; /* Raw events are used to access counters directly, * hence do not permit excludes. * This event is usesless without PERF_SAMPLE_RAW to return counter set * values as raw data. */ if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv || !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) { err = -EOPNOTSUPP; goto out; } /* Initialize for using the CPU-measurement counter facility */ err = cf_diag_perf_event_inuse(); if (err < 0) goto out; event->destroy = cf_diag_perf_event_destroy; err = __hw_perf_event_init(event); if (unlikely(err)) event->destroy(event); out: debug_sprintf_event(cf_diag_dbg, 5, "%s err %d\n", __func__, err); return err; } static void cf_diag_read(struct perf_event *event) { debug_sprintf_event(cf_diag_dbg, 5, "%s event %p\n", __func__, event); } /* Calculate memory needed to store all counter sets together with header and * trailer data. This is independend of the counter set authorization which * can vary depending on the configuration. */ static size_t cf_diag_ctrset_maxsize(struct cpumf_ctr_info *info) { size_t max_size = sizeof(struct cf_trailer_entry); enum cpumf_ctr_set i; for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { size_t size = cpum_cf_ctrset_size(i, info); if (size) max_size += size * sizeof(u64) + sizeof(struct cf_ctrset_entry); } debug_sprintf_event(cf_diag_dbg, 5, "%s max_size %zu\n", __func__, max_size); return max_size; } /* Read a counter set. The counter set number determines which counter set and * the CPUM-CF first and second version number determine the number of * available counters in this counter set. * Each counter set starts with header containing the counter set number and * the number of 8 byte counters. * * The functions returns the number of bytes occupied by this counter set * including the header. * If there is no counter in the counter set, this counter set is useless and * zero is returned on this case. */ static size_t cf_diag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset, size_t room) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); size_t ctrset_size, need = 0; int rc = 3; /* Assume write failure */ ctrdata->def = CF_DIAG_CTRSET_DEF; ctrdata->set = ctrset; ctrdata->res1 = 0; ctrset_size = cpum_cf_ctrset_size(ctrset, &cpuhw->info); if (ctrset_size) { /* Save data */ need = ctrset_size * sizeof(u64) + sizeof(*ctrdata); if (need <= room) rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)(ctrdata + 1)); if (rc != 3) ctrdata->ctr = ctrset_size; else need = 0; } debug_sprintf_event(cf_diag_dbg, 6, "%s ctrset %d ctrset_size %zu cfvn %d csvn %d" " need %zd rc %d\n", __func__, ctrset, ctrset_size, cpuhw->info.cfvn, cpuhw->info.csvn, need, rc); return need; } /* Read out all counter sets and save them in the provided data buffer. * The last 64 byte host an artificial trailer entry. */ static size_t cf_diag_getctr(void *data, size_t sz, unsigned long auth) { struct cf_trailer_entry *trailer; size_t offset = 0, done; int i; memset(data, 0, sz); sz -= sizeof(*trailer); /* Always room for trailer */ for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { struct cf_ctrset_entry *ctrdata = data + offset; if (!(auth & cpumf_ctr_ctl[i])) continue; /* Counter set not authorized */ done = cf_diag_getctrset(ctrdata, i, sz - offset); offset += done; debug_sprintf_event(cf_diag_dbg, 6, "%s ctrset %d offset %zu done %zu\n", __func__, i, offset, done); } trailer = data + offset; cf_diag_trailer(trailer); return offset + sizeof(*trailer); } /* Calculate the difference for each counter in a counter set. */ static void cf_diag_diffctrset(u64 *pstart, u64 *pstop, int counters) { for (; --counters >= 0; ++pstart, ++pstop) if (*pstop >= *pstart) *pstop -= *pstart; else *pstop = *pstart - *pstop; } /* Scan the counter sets and calculate the difference of each counter * in each set. The result is the increment of each counter during the * period the counter set has been activated. * * Return true on success. */ static int cf_diag_diffctr(struct cf_diag_csd *csd, unsigned long auth) { struct cf_trailer_entry *trailer_start, *trailer_stop; struct cf_ctrset_entry *ctrstart, *ctrstop; size_t offset = 0; auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1; do { ctrstart = (struct cf_ctrset_entry *)(csd->start + offset); ctrstop = (struct cf_ctrset_entry *)(csd->data + offset); if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) { pr_err("cpum_cf_diag counter set compare error " "in set %i\n", ctrstart->set); return 0; } auth &= ~cpumf_ctr_ctl[ctrstart->set]; if (ctrstart->def == CF_DIAG_CTRSET_DEF) { cf_diag_diffctrset((u64 *)(ctrstart + 1), (u64 *)(ctrstop + 1), ctrstart->ctr); offset += ctrstart->ctr * sizeof(u64) + sizeof(*ctrstart); } debug_sprintf_event(cf_diag_dbg, 6, "%s set %d ctr %d offset %zu auth %lx\n", __func__, ctrstart->set, ctrstart->ctr, offset, auth); } while (ctrstart->def && auth); /* Save time_stamp from start of event in stop's trailer */ trailer_start = (struct cf_trailer_entry *)(csd->start + offset); trailer_stop = (struct cf_trailer_entry *)(csd->data + offset); trailer_stop->progusage[0] = trailer_start->timestamp; return 1; } /* Create perf event sample with the counter sets as raw data. The sample * is then pushed to the event subsystem and the function checks for * possible event overflows. If an event overflow occurs, the PMU is * stopped. * * Return non-zero if an event overflow occurred. */ static int cf_diag_push_sample(struct perf_event *event, struct cf_diag_csd *csd) { struct perf_sample_data data; struct perf_raw_record raw; struct pt_regs regs; int overflow; /* Setup perf sample */ perf_sample_data_init(&data, 0, event->hw.last_period); memset(®s, 0, sizeof(regs)); memset(&raw, 0, sizeof(raw)); if (event->attr.sample_type & PERF_SAMPLE_CPU) data.cpu_entry.cpu = event->cpu; if (event->attr.sample_type & PERF_SAMPLE_RAW) { raw.frag.size = csd->used; raw.frag.data = csd->data; raw.size = csd->used; data.raw = &raw; } overflow = perf_event_overflow(event, &data, ®s); debug_sprintf_event(cf_diag_dbg, 6, "%s event %p cpu %d sample_type %#llx raw %d " "ov %d\n", __func__, event, event->cpu, event->attr.sample_type, raw.size, overflow); if (overflow) event->pmu->stop(event, 0); perf_event_update_userpage(event); return overflow; } static void cf_diag_start(struct perf_event *event, int flags) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd); struct hw_perf_event *hwc = &event->hw; debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d flags %#x hwc-state %#x\n", __func__, event, event->cpu, flags, hwc->state); if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) return; /* (Re-)enable and activate all counter sets */ lcctl(0); /* Reset counter sets */ hwc->state = 0; ctr_set_multiple_enable(&cpuhw->state, hwc->config_base); lcctl(cpuhw->state); /* Enable counter sets */ csd->used = cf_diag_getctr(csd->start, sizeof(csd->start), event->hw.config_base); ctr_set_multiple_start(&cpuhw->state, hwc->config_base); /* Function cf_diag_enable() starts the counter sets. */ } static void cf_diag_stop(struct perf_event *event, int flags) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd); struct hw_perf_event *hwc = &event->hw; debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d flags %#x hwc-state %#x\n", __func__, event, event->cpu, flags, hwc->state); /* Deactivate all counter sets */ ctr_set_multiple_stop(&cpuhw->state, hwc->config_base); local64_inc(&event->count); csd->used = cf_diag_getctr(csd->data, sizeof(csd->data), event->hw.config_base); if (cf_diag_diffctr(csd, event->hw.config_base)) cf_diag_push_sample(event, csd); hwc->state |= PERF_HES_STOPPED; } static int cf_diag_add(struct perf_event *event, int flags) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); int err = 0; debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d flags %#x cpuhw %p\n", __func__, event, event->cpu, flags, cpuhw); if (cpuhw->flags & PMU_F_IN_USE) { err = -EAGAIN; goto out; } event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; cpuhw->flags |= PMU_F_IN_USE; if (flags & PERF_EF_START) cf_diag_start(event, PERF_EF_RELOAD); out: debug_sprintf_event(cf_diag_dbg, 5, "%s err %d\n", __func__, err); return err; } static void cf_diag_del(struct perf_event *event, int flags) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); debug_sprintf_event(cf_diag_dbg, 5, "%s event %p cpu %d flags %#x\n", __func__, event, event->cpu, flags); cf_diag_stop(event, PERF_EF_UPDATE); ctr_set_multiple_stop(&cpuhw->state, event->hw.config_base); ctr_set_multiple_disable(&cpuhw->state, event->hw.config_base); cpuhw->flags &= ~PMU_F_IN_USE; } /* Default counter set events and format attribute groups */ CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG); static struct attribute *cf_diag_events_attr[] = { CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG), NULL, }; PMU_FORMAT_ATTR(event, "config:0-63"); static struct attribute *cf_diag_format_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group cf_diag_events_group = { .name = "events", .attrs = cf_diag_events_attr, }; static struct attribute_group cf_diag_format_group = { .name = "format", .attrs = cf_diag_format_attr, }; static const struct attribute_group *cf_diag_attr_groups[] = { &cf_diag_events_group, &cf_diag_format_group, NULL, }; /* Performance monitoring unit for s390x */ static struct pmu cf_diag = { .task_ctx_nr = perf_sw_context, .pmu_enable = cf_diag_enable, .pmu_disable = cf_diag_disable, .event_init = cf_diag_event_init, .add = cf_diag_add, .del = cf_diag_del, .start = cf_diag_start, .stop = cf_diag_stop, .read = cf_diag_read, .attr_groups = cf_diag_attr_groups }; /* Get the CPU speed, try sampling facility first and CPU attributes second. */ static void cf_diag_get_cpu_speed(void) { if (cpum_sf_avail()) { /* Sampling facility first */ struct hws_qsi_info_block si; memset(&si, 0, sizeof(si)); if (!qsi(&si)) { cf_diag_cpu_speed = si.cpu_speed; return; } } if (test_facility(34)) { /* CPU speed extract static part */ unsigned long mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0); if (mhz != -1UL) cf_diag_cpu_speed = mhz & 0xffffffff; } } /* Code to create device and file I/O operations */ static atomic_t ctrset_opencnt = ATOMIC_INIT(0); /* Excl. access */ static int cf_diag_open(struct inode *inode, struct file *file) { int err = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (atomic_xchg(&ctrset_opencnt, 1)) return -EBUSY; /* Avoid concurrent access with perf_event_open() system call */ mutex_lock(&cf_diag_reserve_mutex); if (atomic_read(&cf_diag_events) || __kernel_cpumcf_begin()) err = -EBUSY; mutex_unlock(&cf_diag_reserve_mutex); if (err) { atomic_set(&ctrset_opencnt, 0); return err; } file->private_data = NULL; debug_sprintf_event(cf_diag_dbg, 2, "%s\n", __func__); /* nonseekable_open() never fails */ return nonseekable_open(inode, file); } /* Variables for ioctl() interface support */ static DEFINE_MUTEX(cf_diag_ctrset_mutex); static struct cf_diag_ctrset { unsigned long ctrset; /* Bit mask of counter set to read */ cpumask_t mask; /* CPU mask to read from */ } cf_diag_ctrset; static void cf_diag_ctrset_clear(void) { cpumask_clear(&cf_diag_ctrset.mask); cf_diag_ctrset.ctrset = 0; } static void cf_diag_release_cpu(void *p) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); debug_sprintf_event(cf_diag_dbg, 3, "%s cpu %d\n", __func__, smp_processor_id()); lcctl(0); /* Reset counter sets */ cpuhw->state = 0; /* Save state in CPU hardware state */ } /* Release function is also called when application gets terminated without * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command. * Since only one application is allowed to open the device, simple stop all * CPU counter sets. */ static int cf_diag_release(struct inode *inode, struct file *file) { on_each_cpu(cf_diag_release_cpu, NULL, 1); cf_diag_ctrset_clear(); atomic_set(&ctrset_opencnt, 0); __kernel_cpumcf_end(); debug_sprintf_event(cf_diag_dbg, 2, "%s\n", __func__); return 0; } struct cf_diag_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */ unsigned int sets; /* Counter set bit mask */ atomic_t cpus_ack; /* # CPUs successfully executed func */ }; static int cf_diag_all_copy(unsigned long arg, cpumask_t *mask) { struct s390_ctrset_read __user *ctrset_read; unsigned int cpu, cpus, rc; void __user *uptr; ctrset_read = (struct s390_ctrset_read __user *)arg; uptr = ctrset_read->data; for_each_cpu(cpu, mask) { struct cf_diag_csd *csd = per_cpu_ptr(&cf_diag_csd, cpu); struct s390_ctrset_cpudata __user *ctrset_cpudata; ctrset_cpudata = uptr; debug_sprintf_event(cf_diag_dbg, 5, "%s cpu %d used %zd\n", __func__, cpu, csd->used); rc = put_user(cpu, &ctrset_cpudata->cpu_nr); rc |= put_user(csd->sets, &ctrset_cpudata->no_sets); rc |= copy_to_user(ctrset_cpudata->data, csd->data, csd->used); if (rc) return -EFAULT; uptr += sizeof(struct s390_ctrset_cpudata) + csd->used; cond_resched(); } cpus = cpumask_weight(mask); if (put_user(cpus, &ctrset_read->no_cpus)) return -EFAULT; debug_sprintf_event(cf_diag_dbg, 5, "%s copied %ld\n", __func__, uptr - (void __user *)ctrset_read->data); return 0; } static size_t cf_diag_cpuset_read(struct s390_ctrset_setdata *p, int ctrset, int ctrset_size, size_t room) { size_t need = 0; int rc = -1; need = sizeof(*p) + sizeof(u64) * ctrset_size; debug_sprintf_event(cf_diag_dbg, 5, "%s room %zd need %zd set %#x set_size %d\n", __func__, room, need, ctrset, ctrset_size); if (need <= room) { p->set = cpumf_ctr_ctl[ctrset]; p->no_cnts = ctrset_size; rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv); if (rc == 3) /* Nothing stored */ need = 0; } debug_sprintf_event(cf_diag_dbg, 5, "%s need %zd rc %d\n", __func__, need, rc); return need; } /* Read all counter sets. Since the perf_event_open() system call with * event cpum_cf_diag/.../ is blocked when this interface is active, reuse * the perf_event_open() data buffer to store the counter sets. */ static void cf_diag_cpu_read(void *parm) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cf_diag_csd *csd = this_cpu_ptr(&cf_diag_csd); struct cf_diag_call_on_cpu_parm *p = parm; int set, set_size; size_t space; debug_sprintf_event(cf_diag_dbg, 5, "%s new %#x flags %#x state %#llx\n", __func__, p->sets, cpuhw->flags, cpuhw->state); /* No data saved yet */ csd->used = 0; csd->sets = 0; memset(csd->data, 0, sizeof(csd->data)); /* Scan the counter sets */ for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) { struct s390_ctrset_setdata *sp = (void *)csd->data + csd->used; if (!(p->sets & cpumf_ctr_ctl[set])) continue; /* Counter set not in list */ set_size = cpum_cf_ctrset_size(set, &cpuhw->info); space = sizeof(csd->data) - csd->used; space = cf_diag_cpuset_read(sp, set, set_size, space); if (space) { csd->used += space; csd->sets += 1; } debug_sprintf_event(cf_diag_dbg, 5, "%s sp %px space %zd\n", __func__, sp, space); } debug_sprintf_event(cf_diag_dbg, 5, "%s sets %d used %zd\n", __func__, csd->sets, csd->used); } static int cf_diag_all_read(unsigned long arg) { struct cf_diag_call_on_cpu_parm p; cpumask_var_t mask; int rc; debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__); if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; p.sets = cf_diag_ctrset.ctrset; cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask); on_each_cpu_mask(mask, cf_diag_cpu_read, &p, 1); rc = cf_diag_all_copy(arg, mask); free_cpumask_var(mask); debug_sprintf_event(cf_diag_dbg, 5, "%s rc %d\n", __func__, rc); return rc; } /* Stop all counter sets via ioctl interface */ static void cf_diag_ioctl_off(void *parm) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cf_diag_call_on_cpu_parm *p = parm; int rc; debug_sprintf_event(cf_diag_dbg, 5, "%s new %#x flags %#x state %#llx\n", __func__, p->sets, cpuhw->flags, cpuhw->state); ctr_set_multiple_disable(&cpuhw->state, p->sets); ctr_set_multiple_stop(&cpuhw->state, p->sets); rc = lcctl(cpuhw->state); /* Stop counter sets */ if (!cpuhw->state) cpuhw->flags &= ~PMU_F_IN_USE; debug_sprintf_event(cf_diag_dbg, 5, "%s rc %d flags %#x state %#llx\n", __func__, rc, cpuhw->flags, cpuhw->state); } /* Start counter sets on particular CPU */ static void cf_diag_ioctl_on(void *parm) { struct cpu_cf_events *cpuhw = this_cpu_ptr(&cpu_cf_events); struct cf_diag_call_on_cpu_parm *p = parm; int rc; debug_sprintf_event(cf_diag_dbg, 5, "%s new %#x flags %#x state %#llx\n", __func__, p->sets, cpuhw->flags, cpuhw->state); if (!(cpuhw->flags & PMU_F_IN_USE)) cpuhw->state = 0; cpuhw->flags |= PMU_F_IN_USE; rc = lcctl(cpuhw->state); /* Reset unused counter sets */ ctr_set_multiple_enable(&cpuhw->state, p->sets); ctr_set_multiple_start(&cpuhw->state, p->sets); rc |= lcctl(cpuhw->state); /* Start counter sets */ if (!rc) atomic_inc(&p->cpus_ack); debug_sprintf_event(cf_diag_dbg, 5, "%s rc %d state %#llx\n", __func__, rc, cpuhw->state); } static int cf_diag_all_stop(void) { struct cf_diag_call_on_cpu_parm p = { .sets = cf_diag_ctrset.ctrset, }; cpumask_var_t mask; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask); on_each_cpu_mask(mask, cf_diag_ioctl_off, &p, 1); free_cpumask_var(mask); return 0; } static int cf_diag_all_start(void) { struct cf_diag_call_on_cpu_parm p = { .sets = cf_diag_ctrset.ctrset, .cpus_ack = ATOMIC_INIT(0), }; cpumask_var_t mask; int rc = 0; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; cpumask_and(mask, &cf_diag_ctrset.mask, cpu_online_mask); on_each_cpu_mask(mask, cf_diag_ioctl_on, &p, 1); if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) { on_each_cpu_mask(mask, cf_diag_ioctl_off, &p, 1); rc = -EIO; } free_cpumask_var(mask); return rc; } /* Return the maximum required space for all possible CPUs in case one * CPU will be onlined during the START, READ, STOP cycles. * To find out the size of the counter sets, any one CPU will do. They * all have the same counter sets. */ static size_t cf_diag_needspace(unsigned int sets) { struct cpu_cf_events *cpuhw = get_cpu_ptr(&cpu_cf_events); size_t bytes = 0; int i; for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { if (!(sets & cpumf_ctr_ctl[i])) continue; bytes += cpum_cf_ctrset_size(i, &cpuhw->info) * sizeof(u64) + sizeof(((struct s390_ctrset_setdata *)0)->set) + sizeof(((struct s390_ctrset_setdata *)0)->no_cnts); } bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids * (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) + sizeof(((struct s390_ctrset_cpudata *)0)->no_sets)); debug_sprintf_event(cf_diag_dbg, 5, "%s bytes %ld\n", __func__, bytes); put_cpu_ptr(&cpu_cf_events); return bytes; } static long cf_diag_ioctl_read(unsigned long arg) { struct s390_ctrset_read read; int ret = 0; debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__); if (copy_from_user(&read, (char __user *)arg, sizeof(read))) return -EFAULT; ret = cf_diag_all_read(arg); debug_sprintf_event(cf_diag_dbg, 5, "%s ret %d\n", __func__, ret); return ret; } static long cf_diag_ioctl_stop(void) { int ret; debug_sprintf_event(cf_diag_dbg, 5, "%s\n", __func__); ret = cf_diag_all_stop(); cf_diag_ctrset_clear(); debug_sprintf_event(cf_diag_dbg, 5, "%s ret %d\n", __func__, ret); return ret; } static long cf_diag_ioctl_start(unsigned long arg) { struct s390_ctrset_start __user *ustart; struct s390_ctrset_start start; void __user *umask; unsigned int len; int ret = 0; size_t need; if (cf_diag_ctrset.ctrset) return -EBUSY; ustart = (struct s390_ctrset_start __user *)arg; if (copy_from_user(&start, ustart, sizeof(start))) return -EFAULT; if (start.version != S390_HWCTR_START_VERSION) return -EINVAL; if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] | cpumf_ctr_ctl[CPUMF_CTR_SET_USER] | cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] | cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] | cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG])) return -EINVAL; /* Invalid counter set */ if (!start.counter_sets) return -EINVAL; /* No counter set at all? */ cpumask_clear(&cf_diag_ctrset.mask); len = min_t(u64, start.cpumask_len, cpumask_size()); umask = (void __user *)start.cpumask; if (copy_from_user(&cf_diag_ctrset.mask, umask, len)) return -EFAULT; if (cpumask_empty(&cf_diag_ctrset.mask)) return -EINVAL; need = cf_diag_needspace(start.counter_sets); if (put_user(need, &ustart->data_bytes)) ret = -EFAULT; if (ret) goto out; cf_diag_ctrset.ctrset = start.counter_sets; ret = cf_diag_all_start(); out: if (ret) cf_diag_ctrset_clear(); debug_sprintf_event(cf_diag_dbg, 2, "%s sets %#lx need %ld ret %d\n", __func__, cf_diag_ctrset.ctrset, need, ret); return ret; } static long cf_diag_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; debug_sprintf_event(cf_diag_dbg, 2, "%s cmd %#x arg %lx\n", __func__, cmd, arg); get_online_cpus(); mutex_lock(&cf_diag_ctrset_mutex); switch (cmd) { case S390_HWCTR_START: ret = cf_diag_ioctl_start(arg); break; case S390_HWCTR_STOP: ret = cf_diag_ioctl_stop(); break; case S390_HWCTR_READ: ret = cf_diag_ioctl_read(arg); break; default: ret = -ENOTTY; break; } mutex_unlock(&cf_diag_ctrset_mutex); put_online_cpus(); debug_sprintf_event(cf_diag_dbg, 2, "%s ret %d\n", __func__, ret); return ret; } static const struct file_operations cf_diag_fops = { .owner = THIS_MODULE, .open = cf_diag_open, .release = cf_diag_release, .unlocked_ioctl = cf_diag_ioctl, .compat_ioctl = cf_diag_ioctl, .llseek = no_llseek }; static struct miscdevice cf_diag_dev = { .name = S390_HWCTR_DEVICE, .minor = MISC_DYNAMIC_MINOR, .fops = &cf_diag_fops, }; static int cf_diag_online_cpu(unsigned int cpu) { struct cf_diag_call_on_cpu_parm p; mutex_lock(&cf_diag_ctrset_mutex); if (!cf_diag_ctrset.ctrset) goto out; p.sets = cf_diag_ctrset.ctrset; cf_diag_ioctl_on(&p); out: mutex_unlock(&cf_diag_ctrset_mutex); return 0; } static int cf_diag_offline_cpu(unsigned int cpu) { struct cf_diag_call_on_cpu_parm p; mutex_lock(&cf_diag_ctrset_mutex); if (!cf_diag_ctrset.ctrset) goto out; p.sets = cf_diag_ctrset.ctrset; cf_diag_ioctl_off(&p); out: mutex_unlock(&cf_diag_ctrset_mutex); return 0; } /* Initialize the counter set PMU to generate complete counter set data as * event raw data. This relies on the CPU Measurement Counter Facility device * already being loaded and initialized. */ static int __init cf_diag_init(void) { struct cpumf_ctr_info info; size_t need; int rc; if (!kernel_cpumcf_avail() || !stccm_avail() || qctri(&info)) return -ENODEV; cf_diag_get_cpu_speed(); /* Make sure the counter set data fits into predefined buffer. */ need = cf_diag_ctrset_maxsize(&info); if (need > sizeof(((struct cf_diag_csd *)0)->start)) { pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n", need); return -ENOMEM; } rc = misc_register(&cf_diag_dev); if (rc) { pr_err("Registration of /dev/" S390_HWCTR_DEVICE "failed rc=%d\n", rc); goto out; } /* Setup s390dbf facility */ cf_diag_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128); if (!cf_diag_dbg) { pr_err("Registration of s390dbf(cpum_cf_diag) failed\n"); rc = -ENOMEM; goto out_dbf; } debug_register_view(cf_diag_dbg, &debug_sprintf_view); rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1); if (rc) { pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n", rc); goto out_perf; } rc = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_S390_CFD_ONLINE, "perf/s390/cfd:online", cf_diag_online_cpu, cf_diag_offline_cpu); if (!rc) goto out; pr_err("Registration of CPUHP_AP_PERF_S390_CFD_ONLINE failed rc=%i\n", rc); perf_pmu_unregister(&cf_diag); out_perf: debug_unregister_view(cf_diag_dbg, &debug_sprintf_view); debug_unregister(cf_diag_dbg); out_dbf: misc_deregister(&cf_diag_dev); out: return rc; } device_initcall(cf_diag_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1