Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sebastian Ott | 2141 | 49.08% | 49 | 54.44% |
Jan Glauber | 1250 | 28.66% | 7 | 7.78% |
Niklas Schnelle | 549 | 12.59% | 17 | 18.89% |
Pierre Morel | 239 | 5.48% | 3 | 3.33% |
Martin Schwidefsky | 70 | 1.60% | 6 | 6.67% |
Michael S. Tsirkin | 63 | 1.44% | 1 | 1.11% |
Joerg Roedel | 18 | 0.41% | 1 | 1.11% |
Denis Efremov | 14 | 0.32% | 1 | 1.11% |
Christian Bornträger | 9 | 0.21% | 1 | 1.11% |
Gerald Schaefer | 3 | 0.07% | 1 | 1.11% |
Heiko Carstens | 3 | 0.07% | 1 | 1.11% |
Björn Helgaas | 2 | 0.05% | 1 | 1.11% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 1.11% |
Total | 4362 | 90 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber <jang@linux.vnet.ibm.com> * * The System z PCI code is a rewrite from a prototype by * the following people (Kudoz!): * Alexander Schmidt * Christoph Raisch * Hannes Hering * Hoang-Nam Nguyen * Jan-Bernd Themann * Stefan Roscher * Thomas Klein */ #define KMSG_COMPONENT "zpci" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/seq_file.h> #include <linux/jump_label.h> #include <linux/pci.h> #include <linux/printk.h> #include <asm/isc.h> #include <asm/airq.h> #include <asm/facility.h> #include <asm/pci_insn.h> #include <asm/pci_clp.h> #include <asm/pci_dma.h> #include "pci_bus.h" #include "pci_iov.h" /* list of all detected zpci devices */ static LIST_HEAD(zpci_list); static DEFINE_SPINLOCK(zpci_list_lock); static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); static DEFINE_SPINLOCK(zpci_domain_lock); #define ZPCI_IOMAP_ENTRIES \ min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ ZPCI_IOMAP_MAX_ENTRIES) unsigned int s390_pci_no_rid; static DEFINE_SPINLOCK(zpci_iomap_lock); static unsigned long *zpci_iomap_bitmap; struct zpci_iomap_entry *zpci_iomap_start; EXPORT_SYMBOL_GPL(zpci_iomap_start); DEFINE_STATIC_KEY_FALSE(have_mio); static struct kmem_cache *zdev_fmb_cache; struct zpci_dev *get_zdev_by_fid(u32 fid) { struct zpci_dev *tmp, *zdev = NULL; spin_lock(&zpci_list_lock); list_for_each_entry(tmp, &zpci_list, entry) { if (tmp->fid == fid) { zdev = tmp; break; } } spin_unlock(&zpci_list_lock); return zdev; } void zpci_remove_reserved_devices(void) { struct zpci_dev *tmp, *zdev; enum zpci_state state; LIST_HEAD(remove); spin_lock(&zpci_list_lock); list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { if (zdev->state == ZPCI_FN_STATE_STANDBY && !clp_get_state(zdev->fid, &state) && state == ZPCI_FN_STATE_RESERVED) list_move_tail(&zdev->entry, &remove); } spin_unlock(&zpci_list_lock); list_for_each_entry_safe(zdev, tmp, &remove, entry) zpci_zdev_put(zdev); } int pci_domain_nr(struct pci_bus *bus) { return ((struct zpci_bus *) bus->sysdata)->domain_nr; } EXPORT_SYMBOL_GPL(pci_domain_nr); int pci_proc_domain(struct pci_bus *bus) { return pci_domain_nr(bus); } EXPORT_SYMBOL_GPL(pci_proc_domain); /* Modify PCI: Register I/O address translation parameters */ int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, u64 base, u64 limit, u64 iota) { u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); struct zpci_fib fib = {0}; u8 status; WARN_ON_ONCE(iota & 0x3fff); fib.pba = base; fib.pal = limit; fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; } /* Modify PCI: Unregister I/O address translation parameters */ int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) { u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); struct zpci_fib fib = {0}; u8 cc, status; cc = zpci_mod_fc(req, &fib, &status); if (cc == 3) /* Function already gone. */ cc = 0; return cc ? -EIO : 0; } /* Modify PCI: Set PCI function measurement parameters */ int zpci_fmb_enable_device(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); struct zpci_fib fib = {0}; u8 cc, status; if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) return -EINVAL; zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); if (!zdev->fmb) return -ENOMEM; WARN_ON((u64) zdev->fmb & 0xf); /* reset software counters */ atomic64_set(&zdev->allocated_pages, 0); atomic64_set(&zdev->mapped_pages, 0); atomic64_set(&zdev->unmapped_pages, 0); fib.fmb_addr = virt_to_phys(zdev->fmb); cc = zpci_mod_fc(req, &fib, &status); if (cc) { kmem_cache_free(zdev_fmb_cache, zdev->fmb); zdev->fmb = NULL; } return cc ? -EIO : 0; } /* Modify PCI: Disable PCI function measurement */ int zpci_fmb_disable_device(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); struct zpci_fib fib = {0}; u8 cc, status; if (!zdev->fmb) return -EINVAL; /* Function measurement is disabled if fmb address is zero */ cc = zpci_mod_fc(req, &fib, &status); if (cc == 3) /* Function already gone. */ cc = 0; if (!cc) { kmem_cache_free(zdev_fmb_cache, zdev->fmb); zdev->fmb = NULL; } return cc ? -EIO : 0; } static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data; int rc; rc = __zpci_load(&data, req, offset); if (!rc) { data = le64_to_cpu((__force __le64) data); data >>= (8 - len) * 8; *val = (u32) data; } else *val = 0xffffffff; return rc; } static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data = val; int rc; data <<= (8 - len) * 8; data = (__force u64) cpu_to_le64(data); rc = __zpci_store(data, req, offset); return rc; } resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { return 0; } /* combine single writes by using store-block insn */ void __iowrite64_copy(void __iomem *to, const void *from, size_t count) { zpci_memcpy_toio(to, from, count); } static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) { unsigned long offset, vaddr; struct vm_struct *area; phys_addr_t last_addr; last_addr = addr + size - 1; if (!size || last_addr < addr) return NULL; if (!static_branch_unlikely(&have_mio)) return (void __iomem *) addr; offset = addr & ~PAGE_MASK; addr &= PAGE_MASK; size = PAGE_ALIGN(size + offset); area = get_vm_area(size, VM_IOREMAP); if (!area) return NULL; vaddr = (unsigned long) area->addr; if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { free_vm_area(area); return NULL; } return (void __iomem *) ((unsigned long) area->addr + offset); } void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) { return __ioremap(addr, size, __pgprot(prot)); } EXPORT_SYMBOL(ioremap_prot); void __iomem *ioremap(phys_addr_t addr, size_t size) { return __ioremap(addr, size, PAGE_KERNEL); } EXPORT_SYMBOL(ioremap); void __iomem *ioremap_wc(phys_addr_t addr, size_t size) { return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); } EXPORT_SYMBOL(ioremap_wc); void __iomem *ioremap_wt(phys_addr_t addr, size_t size) { return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); } EXPORT_SYMBOL(ioremap_wt); void iounmap(volatile void __iomem *addr) { if (static_branch_likely(&have_mio)) vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); } EXPORT_SYMBOL(iounmap); /* Create a virtual mapping cookie for a PCI BAR */ static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { struct zpci_dev *zdev = to_zpci(pdev); int idx; idx = zdev->bars[bar].map_idx; spin_lock(&zpci_iomap_lock); /* Detect overrun */ WARN_ON(!++zpci_iomap_start[idx].count); zpci_iomap_start[idx].fh = zdev->fh; zpci_iomap_start[idx].bar = bar; spin_unlock(&zpci_iomap_lock); return (void __iomem *) ZPCI_ADDR(idx) + offset; } static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { unsigned long barsize = pci_resource_len(pdev, bar); struct zpci_dev *zdev = to_zpci(pdev); void __iomem *iova; iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); return iova ? iova + offset : iova; } void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) return NULL; if (static_branch_likely(&have_mio)) return pci_iomap_range_mio(pdev, bar, offset, max); else return pci_iomap_range_fh(pdev, bar, offset, max); } EXPORT_SYMBOL(pci_iomap_range); void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) { return pci_iomap_range(dev, bar, 0, maxlen); } EXPORT_SYMBOL(pci_iomap); static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { unsigned long barsize = pci_resource_len(pdev, bar); struct zpci_dev *zdev = to_zpci(pdev); void __iomem *iova; iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); return iova ? iova + offset : iova; } void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) return NULL; if (static_branch_likely(&have_mio)) return pci_iomap_wc_range_mio(pdev, bar, offset, max); else return pci_iomap_range_fh(pdev, bar, offset, max); } EXPORT_SYMBOL(pci_iomap_wc_range); void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) { return pci_iomap_wc_range(dev, bar, 0, maxlen); } EXPORT_SYMBOL(pci_iomap_wc); static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) { unsigned int idx = ZPCI_IDX(addr); spin_lock(&zpci_iomap_lock); /* Detect underrun */ WARN_ON(!zpci_iomap_start[idx].count); if (!--zpci_iomap_start[idx].count) { zpci_iomap_start[idx].fh = 0; zpci_iomap_start[idx].bar = 0; } spin_unlock(&zpci_iomap_lock); } static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) { iounmap(addr); } void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) { if (static_branch_likely(&have_mio)) pci_iounmap_mio(pdev, addr); else pci_iounmap_fh(pdev, addr); } EXPORT_SYMBOL(pci_iounmap); static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; } static struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; static void zpci_map_resources(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); resource_size_t len; int i; for (i = 0; i < PCI_STD_NUM_BARS; i++) { len = pci_resource_len(pdev, i); if (!len) continue; if (zpci_use_mio(zdev)) pdev->resource[i].start = (resource_size_t __force) zdev->bars[i].mio_wt; else pdev->resource[i].start = (resource_size_t __force) pci_iomap_range_fh(pdev, i, 0, 0); pdev->resource[i].end = pdev->resource[i].start + len - 1; } zpci_iov_map_resources(pdev); } static void zpci_unmap_resources(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); resource_size_t len; int i; if (zpci_use_mio(zdev)) return; for (i = 0; i < PCI_STD_NUM_BARS; i++) { len = pci_resource_len(pdev, i); if (!len) continue; pci_iounmap_fh(pdev, (void __iomem __force *) pdev->resource[i].start); } } static int zpci_alloc_iomap(struct zpci_dev *zdev) { unsigned long entry; spin_lock(&zpci_iomap_lock); entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); if (entry == ZPCI_IOMAP_ENTRIES) { spin_unlock(&zpci_iomap_lock); return -ENOSPC; } set_bit(entry, zpci_iomap_bitmap); spin_unlock(&zpci_iomap_lock); return entry; } static void zpci_free_iomap(struct zpci_dev *zdev, int entry) { spin_lock(&zpci_iomap_lock); memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); clear_bit(entry, zpci_iomap_bitmap); spin_unlock(&zpci_iomap_lock); } static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, unsigned long size, unsigned long flags) { struct resource *r; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) return NULL; r->start = start; r->end = r->start + size - 1; r->flags = flags; r->name = zdev->res_name; if (request_resource(&iomem_resource, r)) { kfree(r); return NULL; } return r; } int zpci_setup_bus_resources(struct zpci_dev *zdev, struct list_head *resources) { unsigned long addr, size, flags; struct resource *res; int i, entry; snprintf(zdev->res_name, sizeof(zdev->res_name), "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (!zdev->bars[i].size) continue; entry = zpci_alloc_iomap(zdev); if (entry < 0) return entry; zdev->bars[i].map_idx = entry; /* only MMIO is supported */ flags = IORESOURCE_MEM; if (zdev->bars[i].val & 8) flags |= IORESOURCE_PREFETCH; if (zdev->bars[i].val & 4) flags |= IORESOURCE_MEM_64; if (zpci_use_mio(zdev)) addr = (unsigned long) zdev->bars[i].mio_wt; else addr = ZPCI_ADDR(entry); size = 1UL << zdev->bars[i].size; res = __alloc_res(zdev, addr, size, flags); if (!res) { zpci_free_iomap(zdev, entry); return -ENOMEM; } zdev->bars[i].res = res; pci_add_resource(resources, res); } zdev->has_resources = 1; return 0; } static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) { int i; for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (!zdev->bars[i].size || !zdev->bars[i].res) continue; zpci_free_iomap(zdev, zdev->bars[i].map_idx); release_resource(zdev->bars[i].res); kfree(zdev->bars[i].res); } zdev->has_resources = 0; } int pcibios_add_device(struct pci_dev *pdev) { struct resource *res; int i; if (pdev->is_physfn) pdev->no_vf_scan = 1; pdev->dev.groups = zpci_attr_groups; pdev->dev.dma_ops = &s390_pci_dma_ops; zpci_map_resources(pdev); for (i = 0; i < PCI_STD_NUM_BARS; i++) { res = &pdev->resource[i]; if (res->parent || !res->flags) continue; pci_claim_resource(pdev, i); } return 0; } void pcibios_release_device(struct pci_dev *pdev) { zpci_unmap_resources(pdev); } int pcibios_enable_device(struct pci_dev *pdev, int mask) { struct zpci_dev *zdev = to_zpci(pdev); zpci_debug_init_device(zdev, dev_name(&pdev->dev)); zpci_fmb_enable_device(zdev); return pci_enable_resources(pdev, mask); } void pcibios_disable_device(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); zpci_fmb_disable_device(zdev); zpci_debug_exit_device(zdev); } static int __zpci_register_domain(int domain) { spin_lock(&zpci_domain_lock); if (test_bit(domain, zpci_domain)) { spin_unlock(&zpci_domain_lock); pr_err("Domain %04x is already assigned\n", domain); return -EEXIST; } set_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); return domain; } static int __zpci_alloc_domain(void) { int domain; spin_lock(&zpci_domain_lock); /* * We can always auto allocate domains below ZPCI_NR_DEVICES. * There is either a free domain or we have reached the maximum in * which case we would have bailed earlier. */ domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); set_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); return domain; } int zpci_alloc_domain(int domain) { if (zpci_unique_uid) { if (domain) return __zpci_register_domain(domain); pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); update_uid_checking(false); } return __zpci_alloc_domain(); } void zpci_free_domain(int domain) { spin_lock(&zpci_domain_lock); clear_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); } int zpci_enable_device(struct zpci_dev *zdev) { int rc; rc = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES); if (rc) goto out; rc = zpci_dma_init_device(zdev); if (rc) goto out_dma; return 0; out_dma: clp_disable_fh(zdev); out: return rc; } int zpci_disable_device(struct zpci_dev *zdev) { zpci_dma_exit_device(zdev); /* * The zPCI function may already be disabled by the platform, this is * detected in clp_disable_fh() which becomes a no-op. */ return clp_disable_fh(zdev); } /** * zpci_create_device() - Create a new zpci_dev and add it to the zbus * @fid: Function ID of the device to be created * @fh: Current Function Handle of the device to be created * @state: Initial state after creation either Standby or Configured * * Creates a new zpci device and adds it to its, possibly newly created, zbus * as well as zpci_list. * * Returns: the zdev on success or an error pointer otherwise */ struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) { struct zpci_dev *zdev; int rc; zpci_dbg(3, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); if (!zdev) return ERR_PTR(-ENOMEM); /* FID and Function Handle are the static/dynamic identifiers */ zdev->fid = fid; zdev->fh = fh; /* Query function properties and update zdev */ rc = clp_query_pci_fn(zdev); if (rc) goto error; zdev->state = state; kref_init(&zdev->kref); mutex_init(&zdev->lock); rc = zpci_init_iommu(zdev); if (rc) goto error; rc = zpci_bus_device_register(zdev, &pci_root_ops); if (rc) goto error_destroy_iommu; spin_lock(&zpci_list_lock); list_add_tail(&zdev->entry, &zpci_list); spin_unlock(&zpci_list_lock); return zdev; error_destroy_iommu: zpci_destroy_iommu(zdev); error: zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); kfree(zdev); return ERR_PTR(rc); } /** * zpci_scan_configured_device() - Scan a freshly configured zpci_dev * @zdev: The zpci_dev to be configured * @fh: The general function handle supplied by the platform * * Given a device in the configuration state Configured, enables, scans and * adds it to the common code PCI subsystem if possible. If the PCI device is * parked because we can not yet create a PCI bus because we have not seen * function 0, it is ignored but will be scanned once function 0 appears. * If any failure occurs, the zpci_dev is left disabled. * * Return: 0 on success, or an error code otherwise */ int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) { int rc; zdev->fh = fh; /* the PCI function will be scanned once function 0 appears */ if (!zdev->zbus->bus) return 0; /* For function 0 on a multi-function bus scan whole bus as we might * have to pick up existing functions waiting for it to allow creating * the PCI bus */ if (zdev->devfn == 0 && zdev->zbus->multifunction) rc = zpci_bus_scan_bus(zdev->zbus); else rc = zpci_bus_scan_device(zdev); return rc; } /** * zpci_deconfigure_device() - Deconfigure a zpci_dev * @zdev: The zpci_dev to configure * * Deconfigure a zPCI function that is currently configured and possibly known * to the common code PCI subsystem. * If any failure occurs the device is left as is. * * Return: 0 on success, or an error code otherwise */ int zpci_deconfigure_device(struct zpci_dev *zdev) { int rc; if (zdev->zbus->bus) zpci_bus_remove_device(zdev, false); if (zdev_enabled(zdev)) { rc = zpci_disable_device(zdev); if (rc) return rc; } rc = sclp_pci_deconfigure(zdev->fid); zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); if (rc) return rc; zdev->state = ZPCI_FN_STATE_STANDBY; return 0; } void zpci_release_device(struct kref *kref) { struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); int ret; if (zdev->zbus->bus) zpci_bus_remove_device(zdev, false); if (zdev_enabled(zdev)) zpci_disable_device(zdev); switch (zdev->state) { case ZPCI_FN_STATE_CONFIGURED: ret = sclp_pci_deconfigure(zdev->fid); zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); fallthrough; case ZPCI_FN_STATE_STANDBY: if (zdev->has_hp_slot) zpci_exit_slot(zdev); zpci_cleanup_bus_resources(zdev); zpci_bus_device_unregister(zdev); zpci_destroy_iommu(zdev); fallthrough; default: break; } spin_lock(&zpci_list_lock); list_del(&zdev->entry); spin_unlock(&zpci_list_lock); zpci_dbg(3, "rem fid:%x\n", zdev->fid); kfree(zdev); } int zpci_report_error(struct pci_dev *pdev, struct zpci_report_error_header *report) { struct zpci_dev *zdev = to_zpci(pdev); return sclp_pci_report(report, zdev->fh, zdev->fid); } EXPORT_SYMBOL(zpci_report_error); static int zpci_mem_init(void) { BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), __alignof__(struct zpci_fmb), 0, NULL); if (!zdev_fmb_cache) goto error_fmb; zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, sizeof(*zpci_iomap_start), GFP_KERNEL); if (!zpci_iomap_start) goto error_iomap; zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), sizeof(*zpci_iomap_bitmap), GFP_KERNEL); if (!zpci_iomap_bitmap) goto error_iomap_bitmap; if (static_branch_likely(&have_mio)) clp_setup_writeback_mio(); return 0; error_iomap_bitmap: kfree(zpci_iomap_start); error_iomap: kmem_cache_destroy(zdev_fmb_cache); error_fmb: return -ENOMEM; } static void zpci_mem_exit(void) { kfree(zpci_iomap_bitmap); kfree(zpci_iomap_start); kmem_cache_destroy(zdev_fmb_cache); } static unsigned int s390_pci_probe __initdata = 1; static unsigned int s390_pci_no_mio __initdata; unsigned int s390_pci_force_floating __initdata; static unsigned int s390_pci_initialized; char * __init pcibios_setup(char *str) { if (!strcmp(str, "off")) { s390_pci_probe = 0; return NULL; } if (!strcmp(str, "nomio")) { s390_pci_no_mio = 1; return NULL; } if (!strcmp(str, "force_floating")) { s390_pci_force_floating = 1; return NULL; } if (!strcmp(str, "norid")) { s390_pci_no_rid = 1; return NULL; } return str; } bool zpci_is_enabled(void) { return s390_pci_initialized; } static int __init pci_base_init(void) { int rc; if (!s390_pci_probe) return 0; if (!test_facility(69) || !test_facility(71)) { pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); return 0; } if (test_facility(153) && !s390_pci_no_mio) { static_branch_enable(&have_mio); ctl_set_bit(2, 5); } rc = zpci_debug_init(); if (rc) goto out; rc = zpci_mem_init(); if (rc) goto out_mem; rc = zpci_irq_init(); if (rc) goto out_irq; rc = zpci_dma_init(); if (rc) goto out_dma; rc = clp_scan_pci_devices(); if (rc) goto out_find; zpci_bus_scan_busses(); s390_pci_initialized = 1; return 0; out_find: zpci_dma_exit(); out_dma: zpci_irq_exit(); out_irq: zpci_mem_exit(); out_mem: zpci_debug_exit(); out: return rc; } subsys_initcall_sync(pci_base_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1