Contributors: 45
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Patrick Mochel |
792 |
22.07% |
1 |
1.30% |
Venkatesh Pallipadi |
628 |
17.50% |
3 |
3.90% |
Yinghai Lu |
458 |
12.76% |
8 |
10.39% |
Dave Jones |
421 |
11.73% |
2 |
2.60% |
Jan Beulich |
345 |
9.61% |
2 |
2.60% |
Toshi Kani |
261 |
7.27% |
6 |
7.79% |
Bernhard Kaindl |
159 |
4.43% |
2 |
2.60% |
Shaohua Li |
77 |
2.15% |
1 |
1.30% |
Andreas Herrmann |
76 |
2.12% |
1 |
1.30% |
Jaswinder Singh Rajput |
74 |
2.06% |
6 |
7.79% |
Andi Kleen |
51 |
1.42% |
2 |
2.60% |
Suresh B. Siddha |
36 |
1.00% |
1 |
1.30% |
Ingo Molnar |
33 |
0.92% |
4 |
5.19% |
Andrew Morton |
22 |
0.61% |
2 |
2.60% |
Ricardo Neri |
18 |
0.50% |
1 |
1.30% |
Chen Yucong |
15 |
0.42% |
1 |
1.30% |
Borislav Petkov |
12 |
0.33% |
2 |
2.60% |
Linus Torvalds |
12 |
0.33% |
1 |
1.30% |
Luis R. Rodriguez |
12 |
0.33% |
1 |
1.30% |
Paul Jimenez |
9 |
0.25% |
1 |
1.30% |
Thomas Gleixner |
9 |
0.25% |
4 |
5.19% |
Sheng Yang |
9 |
0.25% |
1 |
1.30% |
Josh Triplett |
8 |
0.22% |
1 |
1.30% |
Dave Hansen |
8 |
0.22% |
1 |
1.30% |
Alan Cox |
6 |
0.17% |
2 |
2.60% |
Prarit Bhargava |
5 |
0.14% |
1 |
1.30% |
Ying-Tsun Huang |
4 |
0.11% |
1 |
1.30% |
Andrew Lutomirski |
3 |
0.08% |
1 |
1.30% |
Ajaykumar Hotchandani |
3 |
0.08% |
1 |
1.30% |
Randy Dunlap |
2 |
0.06% |
1 |
1.30% |
H. Peter Anvin |
2 |
0.06% |
1 |
1.30% |
Brijesh Singh |
2 |
0.06% |
1 |
1.30% |
Mel Gorman |
2 |
0.06% |
1 |
1.30% |
Andreas Mohr |
2 |
0.06% |
1 |
1.30% |
Jordan Borgner |
2 |
0.06% |
1 |
1.30% |
Rusty Russell |
2 |
0.06% |
1 |
1.30% |
Sam Ravnborg |
1 |
0.03% |
1 |
1.30% |
jia zhang |
1 |
0.03% |
1 |
1.30% |
Emese Revfy |
1 |
0.03% |
1 |
1.30% |
Lucas De Marchi |
1 |
0.03% |
1 |
1.30% |
Leendert van Doorn |
1 |
0.03% |
1 |
1.30% |
Paul Gortmaker |
1 |
0.03% |
1 |
1.30% |
Adam Buchbinder |
1 |
0.03% |
1 |
1.30% |
Andries E. Brouwer |
1 |
0.03% |
1 |
1.30% |
Adrian Bunk |
1 |
0.03% |
1 |
1.30% |
Total |
3589 |
|
77 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* This only handles 32bit MTRR on 32bit hosts. This is strictly wrong
* because MTRRs can span up to 40 bits (36bits on most modern x86)
*/
#include <linux/export.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <asm/processor-flags.h>
#include <asm/cpufeature.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/msr.h>
#include <asm/memtype.h>
#include "mtrr.h"
struct fixed_range_block {
int base_msr; /* start address of an MTRR block */
int ranges; /* number of MTRRs in this block */
};
static struct fixed_range_block fixed_range_blocks[] = {
{ MSR_MTRRfix64K_00000, 1 }, /* one 64k MTRR */
{ MSR_MTRRfix16K_80000, 2 }, /* two 16k MTRRs */
{ MSR_MTRRfix4K_C0000, 8 }, /* eight 4k MTRRs */
{}
};
static unsigned long smp_changes_mask;
static int mtrr_state_set;
u64 mtrr_tom2;
struct mtrr_state_type mtrr_state;
EXPORT_SYMBOL_GPL(mtrr_state);
/*
* BIOS is expected to clear MtrrFixDramModEn bit, see for example
* "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
* Opteron Processors" (26094 Rev. 3.30 February 2006), section
* "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set
* to 1 during BIOS initialization of the fixed MTRRs, then cleared to
* 0 for operation."
*/
static inline void k8_check_syscfg_dram_mod_en(void)
{
u32 lo, hi;
if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) &&
(boot_cpu_data.x86 >= 0x0f)))
return;
rdmsr(MSR_AMD64_SYSCFG, lo, hi);
if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) {
pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]"
" not cleared by BIOS, clearing this bit\n",
smp_processor_id());
lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY;
mtrr_wrmsr(MSR_AMD64_SYSCFG, lo, hi);
}
}
/* Get the size of contiguous MTRR range */
static u64 get_mtrr_size(u64 mask)
{
u64 size;
mask >>= PAGE_SHIFT;
mask |= size_or_mask;
size = -mask;
size <<= PAGE_SHIFT;
return size;
}
/*
* Check and return the effective type for MTRR-MTRR type overlap.
* Returns 1 if the effective type is UNCACHEABLE, else returns 0
*/
static int check_type_overlap(u8 *prev, u8 *curr)
{
if (*prev == MTRR_TYPE_UNCACHABLE || *curr == MTRR_TYPE_UNCACHABLE) {
*prev = MTRR_TYPE_UNCACHABLE;
*curr = MTRR_TYPE_UNCACHABLE;
return 1;
}
if ((*prev == MTRR_TYPE_WRBACK && *curr == MTRR_TYPE_WRTHROUGH) ||
(*prev == MTRR_TYPE_WRTHROUGH && *curr == MTRR_TYPE_WRBACK)) {
*prev = MTRR_TYPE_WRTHROUGH;
*curr = MTRR_TYPE_WRTHROUGH;
}
if (*prev != *curr) {
*prev = MTRR_TYPE_UNCACHABLE;
*curr = MTRR_TYPE_UNCACHABLE;
return 1;
}
return 0;
}
/**
* mtrr_type_lookup_fixed - look up memory type in MTRR fixed entries
*
* Return the MTRR fixed memory type of 'start'.
*
* MTRR fixed entries are divided into the following ways:
* 0x00000 - 0x7FFFF : This range is divided into eight 64KB sub-ranges
* 0x80000 - 0xBFFFF : This range is divided into sixteen 16KB sub-ranges
* 0xC0000 - 0xFFFFF : This range is divided into sixty-four 4KB sub-ranges
*
* Return Values:
* MTRR_TYPE_(type) - Matched memory type
* MTRR_TYPE_INVALID - Unmatched
*/
static u8 mtrr_type_lookup_fixed(u64 start, u64 end)
{
int idx;
if (start >= 0x100000)
return MTRR_TYPE_INVALID;
/* 0x0 - 0x7FFFF */
if (start < 0x80000) {
idx = 0;
idx += (start >> 16);
return mtrr_state.fixed_ranges[idx];
/* 0x80000 - 0xBFFFF */
} else if (start < 0xC0000) {
idx = 1 * 8;
idx += ((start - 0x80000) >> 14);
return mtrr_state.fixed_ranges[idx];
}
/* 0xC0000 - 0xFFFFF */
idx = 3 * 8;
idx += ((start - 0xC0000) >> 12);
return mtrr_state.fixed_ranges[idx];
}
/**
* mtrr_type_lookup_variable - look up memory type in MTRR variable entries
*
* Return Value:
* MTRR_TYPE_(type) - Matched memory type or default memory type (unmatched)
*
* Output Arguments:
* repeat - Set to 1 when [start:end] spanned across MTRR range and type
* returned corresponds only to [start:*partial_end]. Caller has
* to lookup again for [*partial_end:end].
*
* uniform - Set to 1 when an MTRR covers the region uniformly, i.e. the
* region is fully covered by a single MTRR entry or the default
* type.
*/
static u8 mtrr_type_lookup_variable(u64 start, u64 end, u64 *partial_end,
int *repeat, u8 *uniform)
{
int i;
u64 base, mask;
u8 prev_match, curr_match;
*repeat = 0;
*uniform = 1;
prev_match = MTRR_TYPE_INVALID;
for (i = 0; i < num_var_ranges; ++i) {
unsigned short start_state, end_state, inclusive;
if (!(mtrr_state.var_ranges[i].mask_lo & (1 << 11)))
continue;
base = (((u64)mtrr_state.var_ranges[i].base_hi) << 32) +
(mtrr_state.var_ranges[i].base_lo & PAGE_MASK);
mask = (((u64)mtrr_state.var_ranges[i].mask_hi) << 32) +
(mtrr_state.var_ranges[i].mask_lo & PAGE_MASK);
start_state = ((start & mask) == (base & mask));
end_state = ((end & mask) == (base & mask));
inclusive = ((start < base) && (end > base));
if ((start_state != end_state) || inclusive) {
/*
* We have start:end spanning across an MTRR.
* We split the region into either
*
* - start_state:1
* (start:mtrr_end)(mtrr_end:end)
* - end_state:1
* (start:mtrr_start)(mtrr_start:end)
* - inclusive:1
* (start:mtrr_start)(mtrr_start:mtrr_end)(mtrr_end:end)
*
* depending on kind of overlap.
*
* Return the type of the first region and a pointer
* to the start of next region so that caller will be
* advised to lookup again after having adjusted start
* and end.
*
* Note: This way we handle overlaps with multiple
* entries and the default type properly.
*/
if (start_state)
*partial_end = base + get_mtrr_size(mask);
else
*partial_end = base;
if (unlikely(*partial_end <= start)) {
WARN_ON(1);
*partial_end = start + PAGE_SIZE;
}
end = *partial_end - 1; /* end is inclusive */
*repeat = 1;
*uniform = 0;
}
if ((start & mask) != (base & mask))
continue;
curr_match = mtrr_state.var_ranges[i].base_lo & 0xff;
if (prev_match == MTRR_TYPE_INVALID) {
prev_match = curr_match;
continue;
}
*uniform = 0;
if (check_type_overlap(&prev_match, &curr_match))
return curr_match;
}
if (prev_match != MTRR_TYPE_INVALID)
return prev_match;
return mtrr_state.def_type;
}
/**
* mtrr_type_lookup - look up memory type in MTRR
*
* Return Values:
* MTRR_TYPE_(type) - The effective MTRR type for the region
* MTRR_TYPE_INVALID - MTRR is disabled
*
* Output Argument:
* uniform - Set to 1 when an MTRR covers the region uniformly, i.e. the
* region is fully covered by a single MTRR entry or the default
* type.
*/
u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform)
{
u8 type, prev_type, is_uniform = 1, dummy;
int repeat;
u64 partial_end;
/* Make end inclusive instead of exclusive */
end--;
if (!mtrr_state_set)
return MTRR_TYPE_INVALID;
if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED))
return MTRR_TYPE_INVALID;
/*
* Look up the fixed ranges first, which take priority over
* the variable ranges.
*/
if ((start < 0x100000) &&
(mtrr_state.have_fixed) &&
(mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) {
is_uniform = 0;
type = mtrr_type_lookup_fixed(start, end);
goto out;
}
/*
* Look up the variable ranges. Look of multiple ranges matching
* this address and pick type as per MTRR precedence.
*/
type = mtrr_type_lookup_variable(start, end, &partial_end,
&repeat, &is_uniform);
/*
* Common path is with repeat = 0.
* However, we can have cases where [start:end] spans across some
* MTRR ranges and/or the default type. Do repeated lookups for
* that case here.
*/
while (repeat) {
prev_type = type;
start = partial_end;
is_uniform = 0;
type = mtrr_type_lookup_variable(start, end, &partial_end,
&repeat, &dummy);
if (check_type_overlap(&prev_type, &type))
goto out;
}
if (mtrr_tom2 && (start >= (1ULL<<32)) && (end < mtrr_tom2))
type = MTRR_TYPE_WRBACK;
out:
*uniform = is_uniform;
return type;
}
/* Get the MSR pair relating to a var range */
static void
get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr)
{
rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
}
/* Fill the MSR pair relating to a var range */
void fill_mtrr_var_range(unsigned int index,
u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi)
{
struct mtrr_var_range *vr;
vr = mtrr_state.var_ranges;
vr[index].base_lo = base_lo;
vr[index].base_hi = base_hi;
vr[index].mask_lo = mask_lo;
vr[index].mask_hi = mask_hi;
}
static void get_fixed_ranges(mtrr_type *frs)
{
unsigned int *p = (unsigned int *)frs;
int i;
k8_check_syscfg_dram_mod_en();
rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]);
for (i = 0; i < 2; i++)
rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]);
for (i = 0; i < 8; i++)
rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]);
}
void mtrr_save_fixed_ranges(void *info)
{
if (boot_cpu_has(X86_FEATURE_MTRR))
get_fixed_ranges(mtrr_state.fixed_ranges);
}
static unsigned __initdata last_fixed_start;
static unsigned __initdata last_fixed_end;
static mtrr_type __initdata last_fixed_type;
static void __init print_fixed_last(void)
{
if (!last_fixed_end)
return;
pr_debug(" %05X-%05X %s\n", last_fixed_start,
last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type));
last_fixed_end = 0;
}
static void __init update_fixed_last(unsigned base, unsigned end,
mtrr_type type)
{
last_fixed_start = base;
last_fixed_end = end;
last_fixed_type = type;
}
static void __init
print_fixed(unsigned base, unsigned step, const mtrr_type *types)
{
unsigned i;
for (i = 0; i < 8; ++i, ++types, base += step) {
if (last_fixed_end == 0) {
update_fixed_last(base, base + step, *types);
continue;
}
if (last_fixed_end == base && last_fixed_type == *types) {
last_fixed_end = base + step;
continue;
}
/* new segments: gap or different type */
print_fixed_last();
update_fixed_last(base, base + step, *types);
}
}
static void prepare_set(void);
static void post_set(void);
static void __init print_mtrr_state(void)
{
unsigned int i;
int high_width;
pr_debug("MTRR default type: %s\n",
mtrr_attrib_to_str(mtrr_state.def_type));
if (mtrr_state.have_fixed) {
pr_debug("MTRR fixed ranges %sabled:\n",
((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) &&
(mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ?
"en" : "dis");
print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0);
for (i = 0; i < 2; ++i)
print_fixed(0x80000 + i * 0x20000, 0x04000,
mtrr_state.fixed_ranges + (i + 1) * 8);
for (i = 0; i < 8; ++i)
print_fixed(0xC0000 + i * 0x08000, 0x01000,
mtrr_state.fixed_ranges + (i + 3) * 8);
/* tail */
print_fixed_last();
}
pr_debug("MTRR variable ranges %sabled:\n",
mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis");
high_width = (__ffs64(size_or_mask) - (32 - PAGE_SHIFT) + 3) / 4;
for (i = 0; i < num_var_ranges; ++i) {
if (mtrr_state.var_ranges[i].mask_lo & (1 << 11))
pr_debug(" %u base %0*X%05X000 mask %0*X%05X000 %s\n",
i,
high_width,
mtrr_state.var_ranges[i].base_hi,
mtrr_state.var_ranges[i].base_lo >> 12,
high_width,
mtrr_state.var_ranges[i].mask_hi,
mtrr_state.var_ranges[i].mask_lo >> 12,
mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo & 0xff));
else
pr_debug(" %u disabled\n", i);
}
if (mtrr_tom2)
pr_debug("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20);
}
/* PAT setup for BP. We need to go through sync steps here */
void __init mtrr_bp_pat_init(void)
{
unsigned long flags;
local_irq_save(flags);
prepare_set();
pat_init();
post_set();
local_irq_restore(flags);
}
/* Grab all of the MTRR state for this CPU into *state */
bool __init get_mtrr_state(void)
{
struct mtrr_var_range *vrs;
unsigned lo, dummy;
unsigned int i;
vrs = mtrr_state.var_ranges;
rdmsr(MSR_MTRRcap, lo, dummy);
mtrr_state.have_fixed = (lo >> 8) & 1;
for (i = 0; i < num_var_ranges; i++)
get_mtrr_var_range(i, &vrs[i]);
if (mtrr_state.have_fixed)
get_fixed_ranges(mtrr_state.fixed_ranges);
rdmsr(MSR_MTRRdefType, lo, dummy);
mtrr_state.def_type = (lo & 0xff);
mtrr_state.enabled = (lo & 0xc00) >> 10;
if (amd_special_default_mtrr()) {
unsigned low, high;
/* TOP_MEM2 */
rdmsr(MSR_K8_TOP_MEM2, low, high);
mtrr_tom2 = high;
mtrr_tom2 <<= 32;
mtrr_tom2 |= low;
mtrr_tom2 &= 0xffffff800000ULL;
}
print_mtrr_state();
mtrr_state_set = 1;
return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED);
}
/* Some BIOS's are messed up and don't set all MTRRs the same! */
void __init mtrr_state_warn(void)
{
unsigned long mask = smp_changes_mask;
if (!mask)
return;
if (mask & MTRR_CHANGE_MASK_FIXED)
pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n");
if (mask & MTRR_CHANGE_MASK_VARIABLE)
pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n");
if (mask & MTRR_CHANGE_MASK_DEFTYPE)
pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n");
pr_info("mtrr: probably your BIOS does not setup all CPUs.\n");
pr_info("mtrr: corrected configuration.\n");
}
/*
* Doesn't attempt to pass an error out to MTRR users
* because it's quite complicated in some cases and probably not
* worth it because the best error handling is to ignore it.
*/
void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b)
{
if (wrmsr_safe(msr, a, b) < 0) {
pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n",
smp_processor_id(), msr, a, b);
}
}
/**
* set_fixed_range - checks & updates a fixed-range MTRR if it
* differs from the value it should have
* @msr: MSR address of the MTTR which should be checked and updated
* @changed: pointer which indicates whether the MTRR needed to be changed
* @msrwords: pointer to the MSR values which the MSR should have
*/
static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords)
{
unsigned lo, hi;
rdmsr(msr, lo, hi);
if (lo != msrwords[0] || hi != msrwords[1]) {
mtrr_wrmsr(msr, msrwords[0], msrwords[1]);
*changed = true;
}
}
/**
* generic_get_free_region - Get a free MTRR.
* @base: The starting (base) address of the region.
* @size: The size (in bytes) of the region.
* @replace_reg: mtrr index to be replaced; set to invalid value if none.
*
* Returns: The index of the region on success, else negative on error.
*/
int
generic_get_free_region(unsigned long base, unsigned long size, int replace_reg)
{
unsigned long lbase, lsize;
mtrr_type ltype;
int i, max;
max = num_var_ranges;
if (replace_reg >= 0 && replace_reg < max)
return replace_reg;
for (i = 0; i < max; ++i) {
mtrr_if->get(i, &lbase, &lsize, <ype);
if (lsize == 0)
return i;
}
return -ENOSPC;
}
static void generic_get_mtrr(unsigned int reg, unsigned long *base,
unsigned long *size, mtrr_type *type)
{
u32 mask_lo, mask_hi, base_lo, base_hi;
unsigned int hi;
u64 tmp, mask;
/*
* get_mtrr doesn't need to update mtrr_state, also it could be called
* from any cpu, so try to print it out directly.
*/
get_cpu();
rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi);
if ((mask_lo & 0x800) == 0) {
/* Invalid (i.e. free) range */
*base = 0;
*size = 0;
*type = 0;
goto out_put_cpu;
}
rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi);
/* Work out the shifted address mask: */
tmp = (u64)mask_hi << (32 - PAGE_SHIFT) | mask_lo >> PAGE_SHIFT;
mask = size_or_mask | tmp;
/* Expand tmp with high bits to all 1s: */
hi = fls64(tmp);
if (hi > 0) {
tmp |= ~((1ULL<<(hi - 1)) - 1);
if (tmp != mask) {
pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n");
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
mask = tmp;
}
}
/*
* This works correctly if size is a power of two, i.e. a
* contiguous range:
*/
*size = -mask;
*base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT;
*type = base_lo & 0xff;
out_put_cpu:
put_cpu();
}
/**
* set_fixed_ranges - checks & updates the fixed-range MTRRs if they
* differ from the saved set
* @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges()
*/
static int set_fixed_ranges(mtrr_type *frs)
{
unsigned long long *saved = (unsigned long long *)frs;
bool changed = false;
int block = -1, range;
k8_check_syscfg_dram_mod_en();
while (fixed_range_blocks[++block].ranges) {
for (range = 0; range < fixed_range_blocks[block].ranges; range++)
set_fixed_range(fixed_range_blocks[block].base_msr + range,
&changed, (unsigned int *)saved++);
}
return changed;
}
/*
* Set the MSR pair relating to a var range.
* Returns true if changes are made.
*/
static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr)
{
unsigned int lo, hi;
bool changed = false;
rdmsr(MTRRphysBase_MSR(index), lo, hi);
if ((vr->base_lo & 0xfffff0ffUL) != (lo & 0xfffff0ffUL)
|| (vr->base_hi & (size_and_mask >> (32 - PAGE_SHIFT))) !=
(hi & (size_and_mask >> (32 - PAGE_SHIFT)))) {
mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
changed = true;
}
rdmsr(MTRRphysMask_MSR(index), lo, hi);
if ((vr->mask_lo & 0xfffff800UL) != (lo & 0xfffff800UL)
|| (vr->mask_hi & (size_and_mask >> (32 - PAGE_SHIFT))) !=
(hi & (size_and_mask >> (32 - PAGE_SHIFT)))) {
mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
changed = true;
}
return changed;
}
static u32 deftype_lo, deftype_hi;
/**
* set_mtrr_state - Set the MTRR state for this CPU.
*
* NOTE: The CPU must already be in a safe state for MTRR changes.
* RETURNS: 0 if no changes made, else a mask indicating what was changed.
*/
static unsigned long set_mtrr_state(void)
{
unsigned long change_mask = 0;
unsigned int i;
for (i = 0; i < num_var_ranges; i++) {
if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i]))
change_mask |= MTRR_CHANGE_MASK_VARIABLE;
}
if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges))
change_mask |= MTRR_CHANGE_MASK_FIXED;
/*
* Set_mtrr_restore restores the old value of MTRRdefType,
* so to set it we fiddle with the saved value:
*/
if ((deftype_lo & 0xff) != mtrr_state.def_type
|| ((deftype_lo & 0xc00) >> 10) != mtrr_state.enabled) {
deftype_lo = (deftype_lo & ~0xcff) | mtrr_state.def_type |
(mtrr_state.enabled << 10);
change_mask |= MTRR_CHANGE_MASK_DEFTYPE;
}
return change_mask;
}
static unsigned long cr4;
static DEFINE_RAW_SPINLOCK(set_atomicity_lock);
/*
* Since we are disabling the cache don't allow any interrupts,
* they would run extremely slow and would only increase the pain.
*
* The caller must ensure that local interrupts are disabled and
* are reenabled after post_set() has been called.
*/
static void prepare_set(void) __acquires(set_atomicity_lock)
{
unsigned long cr0;
/*
* Note that this is not ideal
* since the cache is only flushed/disabled for this CPU while the
* MTRRs are changed, but changing this requires more invasive
* changes to the way the kernel boots
*/
raw_spin_lock(&set_atomicity_lock);
/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
cr0 = read_cr0() | X86_CR0_CD;
write_cr0(cr0);
/*
* Cache flushing is the most time-consuming step when programming
* the MTRRs. Fortunately, as per the Intel Software Development
* Manual, we can skip it if the processor supports cache self-
* snooping.
*/
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
wbinvd();
/* Save value of CR4 and clear Page Global Enable (bit 7) */
if (boot_cpu_has(X86_FEATURE_PGE)) {
cr4 = __read_cr4();
__write_cr4(cr4 & ~X86_CR4_PGE);
}
/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
/* Save MTRR state */
rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
/* Disable MTRRs, and set the default type to uncached */
mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & ~0xcff, deftype_hi);
/* Again, only flush caches if we have to. */
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
wbinvd();
}
static void post_set(void) __releases(set_atomicity_lock)
{
/* Flush TLBs (no need to flush caches - they are disabled) */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
/* Intel (P6) standard MTRRs */
mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
/* Enable caches */
write_cr0(read_cr0() & ~X86_CR0_CD);
/* Restore value of CR4 */
if (boot_cpu_has(X86_FEATURE_PGE))
__write_cr4(cr4);
raw_spin_unlock(&set_atomicity_lock);
}
static void generic_set_all(void)
{
unsigned long mask, count;
unsigned long flags;
local_irq_save(flags);
prepare_set();
/* Actually set the state */
mask = set_mtrr_state();
/* also set PAT */
pat_init();
post_set();
local_irq_restore(flags);
/* Use the atomic bitops to update the global mask */
for (count = 0; count < sizeof(mask) * 8; ++count) {
if (mask & 0x01)
set_bit(count, &smp_changes_mask);
mask >>= 1;
}
}
/**
* generic_set_mtrr - set variable MTRR register on the local CPU.
*
* @reg: The register to set.
* @base: The base address of the region.
* @size: The size of the region. If this is 0 the region is disabled.
* @type: The type of the region.
*
* Returns nothing.
*/
static void generic_set_mtrr(unsigned int reg, unsigned long base,
unsigned long size, mtrr_type type)
{
unsigned long flags;
struct mtrr_var_range *vr;
vr = &mtrr_state.var_ranges[reg];
local_irq_save(flags);
prepare_set();
if (size == 0) {
/*
* The invalid bit is kept in the mask, so we simply
* clear the relevant mask register to disable a range.
*/
mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0);
memset(vr, 0, sizeof(struct mtrr_var_range));
} else {
vr->base_lo = base << PAGE_SHIFT | type;
vr->base_hi = (base & size_and_mask) >> (32 - PAGE_SHIFT);
vr->mask_lo = -size << PAGE_SHIFT | 0x800;
vr->mask_hi = (-size & size_and_mask) >> (32 - PAGE_SHIFT);
mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi);
mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi);
}
post_set();
local_irq_restore(flags);
}
int generic_validate_add_page(unsigned long base, unsigned long size,
unsigned int type)
{
unsigned long lbase, last;
/*
* For Intel PPro stepping <= 7
* must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF
*/
if (is_cpu(INTEL) && boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model == 1 &&
boot_cpu_data.x86_stepping <= 7) {
if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) {
pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base);
return -EINVAL;
}
if (!(base + size < 0x70000 || base > 0x7003F) &&
(type == MTRR_TYPE_WRCOMB
|| type == MTRR_TYPE_WRBACK)) {
pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n");
return -EINVAL;
}
}
/*
* Check upper bits of base and last are equal and lower bits are 0
* for base and 1 for last
*/
last = base + size - 1;
for (lbase = base; !(lbase & 1) && (last & 1);
lbase = lbase >> 1, last = last >> 1)
;
if (lbase != last) {
pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size);
return -EINVAL;
}
return 0;
}
static int generic_have_wrcomb(void)
{
unsigned long config, dummy;
rdmsr(MSR_MTRRcap, config, dummy);
return config & (1 << 10);
}
int positive_have_wrcomb(void)
{
return 1;
}
/*
* Generic structure...
*/
const struct mtrr_ops generic_mtrr_ops = {
.use_intel_if = 1,
.set_all = generic_set_all,
.get = generic_get_mtrr,
.get_free_region = generic_get_free_region,
.set = generic_set_mtrr,
.validate_add_page = generic_validate_add_page,
.have_wrcomb = generic_have_wrcomb,
};