Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sean Christopherson | 1157 | 99.23% | 2 | 50.00% |
Kai Huang | 8 | 0.69% | 1 | 25.00% |
Wei Yongjun | 1 | 0.09% | 1 | 25.00% |
Total | 1166 | 4 |
// SPDX-License-Identifier: GPL-2.0 /* * Device driver to expose SGX enclave memory to KVM guests. * * Copyright(c) 2021 Intel Corporation. */ #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/xarray.h> #include <asm/sgx.h> #include <uapi/asm/sgx.h> #include "encls.h" #include "sgx.h" struct sgx_vepc { struct xarray page_array; struct mutex lock; }; /* * Temporary SECS pages that cannot be EREMOVE'd due to having child in other * virtual EPC instances, and the lock to protect it. */ static struct mutex zombie_secs_pages_lock; static struct list_head zombie_secs_pages; static int __sgx_vepc_fault(struct sgx_vepc *vepc, struct vm_area_struct *vma, unsigned long addr) { struct sgx_epc_page *epc_page; unsigned long index, pfn; int ret; WARN_ON(!mutex_is_locked(&vepc->lock)); /* Calculate index of EPC page in virtual EPC's page_array */ index = vma->vm_pgoff + PFN_DOWN(addr - vma->vm_start); epc_page = xa_load(&vepc->page_array, index); if (epc_page) return 0; epc_page = sgx_alloc_epc_page(vepc, false); if (IS_ERR(epc_page)) return PTR_ERR(epc_page); ret = xa_err(xa_store(&vepc->page_array, index, epc_page, GFP_KERNEL)); if (ret) goto err_free; pfn = PFN_DOWN(sgx_get_epc_phys_addr(epc_page)); ret = vmf_insert_pfn(vma, addr, pfn); if (ret != VM_FAULT_NOPAGE) { ret = -EFAULT; goto err_delete; } return 0; err_delete: xa_erase(&vepc->page_array, index); err_free: sgx_free_epc_page(epc_page); return ret; } static vm_fault_t sgx_vepc_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct sgx_vepc *vepc = vma->vm_private_data; int ret; mutex_lock(&vepc->lock); ret = __sgx_vepc_fault(vepc, vma, vmf->address); mutex_unlock(&vepc->lock); if (!ret) return VM_FAULT_NOPAGE; if (ret == -EBUSY && (vmf->flags & FAULT_FLAG_ALLOW_RETRY)) { mmap_read_unlock(vma->vm_mm); return VM_FAULT_RETRY; } return VM_FAULT_SIGBUS; } static const struct vm_operations_struct sgx_vepc_vm_ops = { .fault = sgx_vepc_fault, }; static int sgx_vepc_mmap(struct file *file, struct vm_area_struct *vma) { struct sgx_vepc *vepc = file->private_data; if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_ops = &sgx_vepc_vm_ops; /* Don't copy VMA in fork() */ vma->vm_flags |= VM_PFNMAP | VM_IO | VM_DONTDUMP | VM_DONTCOPY; vma->vm_private_data = vepc; return 0; } static int sgx_vepc_free_page(struct sgx_epc_page *epc_page) { int ret; /* * Take a previously guest-owned EPC page and return it to the * general EPC page pool. * * Guests can not be trusted to have left this page in a good * state, so run EREMOVE on the page unconditionally. In the * case that a guest properly EREMOVE'd this page, a superfluous * EREMOVE is harmless. */ ret = __eremove(sgx_get_epc_virt_addr(epc_page)); if (ret) { /* * Only SGX_CHILD_PRESENT is expected, which is because of * EREMOVE'ing an SECS still with child, in which case it can * be handled by EREMOVE'ing the SECS again after all pages in * virtual EPC have been EREMOVE'd. See comments in below in * sgx_vepc_release(). * * The user of virtual EPC (KVM) needs to guarantee there's no * logical processor is still running in the enclave in guest, * otherwise EREMOVE will get SGX_ENCLAVE_ACT which cannot be * handled here. */ WARN_ONCE(ret != SGX_CHILD_PRESENT, EREMOVE_ERROR_MESSAGE, ret, ret); return ret; } sgx_free_epc_page(epc_page); return 0; } static int sgx_vepc_release(struct inode *inode, struct file *file) { struct sgx_vepc *vepc = file->private_data; struct sgx_epc_page *epc_page, *tmp, *entry; unsigned long index; LIST_HEAD(secs_pages); xa_for_each(&vepc->page_array, index, entry) { /* * Remove all normal, child pages. sgx_vepc_free_page() * will fail if EREMOVE fails, but this is OK and expected on * SECS pages. Those can only be EREMOVE'd *after* all their * child pages. Retries below will clean them up. */ if (sgx_vepc_free_page(entry)) continue; xa_erase(&vepc->page_array, index); } /* * Retry EREMOVE'ing pages. This will clean up any SECS pages that * only had children in this 'epc' area. */ xa_for_each(&vepc->page_array, index, entry) { epc_page = entry; /* * An EREMOVE failure here means that the SECS page still * has children. But, since all children in this 'sgx_vepc' * have been removed, the SECS page must have a child on * another instance. */ if (sgx_vepc_free_page(epc_page)) list_add_tail(&epc_page->list, &secs_pages); xa_erase(&vepc->page_array, index); } /* * SECS pages are "pinned" by child pages, and "unpinned" once all * children have been EREMOVE'd. A child page in this instance * may have pinned an SECS page encountered in an earlier release(), * creating a zombie. Since some children were EREMOVE'd above, * try to EREMOVE all zombies in the hopes that one was unpinned. */ mutex_lock(&zombie_secs_pages_lock); list_for_each_entry_safe(epc_page, tmp, &zombie_secs_pages, list) { /* * Speculatively remove the page from the list of zombies, * if the page is successfully EREMOVE'd it will be added to * the list of free pages. If EREMOVE fails, throw the page * on the local list, which will be spliced on at the end. */ list_del(&epc_page->list); if (sgx_vepc_free_page(epc_page)) list_add_tail(&epc_page->list, &secs_pages); } if (!list_empty(&secs_pages)) list_splice_tail(&secs_pages, &zombie_secs_pages); mutex_unlock(&zombie_secs_pages_lock); xa_destroy(&vepc->page_array); kfree(vepc); return 0; } static int sgx_vepc_open(struct inode *inode, struct file *file) { struct sgx_vepc *vepc; vepc = kzalloc(sizeof(struct sgx_vepc), GFP_KERNEL); if (!vepc) return -ENOMEM; mutex_init(&vepc->lock); xa_init(&vepc->page_array); file->private_data = vepc; return 0; } static const struct file_operations sgx_vepc_fops = { .owner = THIS_MODULE, .open = sgx_vepc_open, .release = sgx_vepc_release, .mmap = sgx_vepc_mmap, }; static struct miscdevice sgx_vepc_dev = { .minor = MISC_DYNAMIC_MINOR, .name = "sgx_vepc", .nodename = "sgx_vepc", .fops = &sgx_vepc_fops, }; int __init sgx_vepc_init(void) { /* SGX virtualization requires KVM to work */ if (!cpu_feature_enabled(X86_FEATURE_VMX)) return -ENODEV; INIT_LIST_HEAD(&zombie_secs_pages); mutex_init(&zombie_secs_pages_lock); return misc_register(&sgx_vepc_dev); } /** * sgx_virt_ecreate() - Run ECREATE on behalf of guest * @pageinfo: Pointer to PAGEINFO structure * @secs: Userspace pointer to SECS page * @trapnr: trap number injected to guest in case of ECREATE error * * Run ECREATE on behalf of guest after KVM traps ECREATE for the purpose * of enforcing policies of guest's enclaves, and return the trap number * which should be injected to guest in case of any ECREATE error. * * Return: * - 0: ECREATE was successful. * - <0: on error. */ int sgx_virt_ecreate(struct sgx_pageinfo *pageinfo, void __user *secs, int *trapnr) { int ret; /* * @secs is an untrusted, userspace-provided address. It comes from * KVM and is assumed to be a valid pointer which points somewhere in * userspace. This can fault and call SGX or other fault handlers when * userspace mapping @secs doesn't exist. * * Add a WARN() to make sure @secs is already valid userspace pointer * from caller (KVM), who should already have handled invalid pointer * case (for instance, made by malicious guest). All other checks, * such as alignment of @secs, are deferred to ENCLS itself. */ if (WARN_ON_ONCE(!access_ok(secs, PAGE_SIZE))) return -EINVAL; __uaccess_begin(); ret = __ecreate(pageinfo, (void *)secs); __uaccess_end(); if (encls_faulted(ret)) { *trapnr = ENCLS_TRAPNR(ret); return -EFAULT; } /* ECREATE doesn't return an error code, it faults or succeeds. */ WARN_ON_ONCE(ret); return 0; } EXPORT_SYMBOL_GPL(sgx_virt_ecreate); static int __sgx_virt_einit(void __user *sigstruct, void __user *token, void __user *secs) { int ret; /* * Make sure all userspace pointers from caller (KVM) are valid. * All other checks deferred to ENCLS itself. Also see comment * for @secs in sgx_virt_ecreate(). */ #define SGX_EINITTOKEN_SIZE 304 if (WARN_ON_ONCE(!access_ok(sigstruct, sizeof(struct sgx_sigstruct)) || !access_ok(token, SGX_EINITTOKEN_SIZE) || !access_ok(secs, PAGE_SIZE))) return -EINVAL; __uaccess_begin(); ret = __einit((void *)sigstruct, (void *)token, (void *)secs); __uaccess_end(); return ret; } /** * sgx_virt_einit() - Run EINIT on behalf of guest * @sigstruct: Userspace pointer to SIGSTRUCT structure * @token: Userspace pointer to EINITTOKEN structure * @secs: Userspace pointer to SECS page * @lepubkeyhash: Pointer to guest's *virtual* SGX_LEPUBKEYHASH MSR values * @trapnr: trap number injected to guest in case of EINIT error * * Run EINIT on behalf of guest after KVM traps EINIT. If SGX_LC is available * in host, SGX driver may rewrite the hardware values at wish, therefore KVM * needs to update hardware values to guest's virtual MSR values in order to * ensure EINIT is executed with expected hardware values. * * Return: * - 0: EINIT was successful. * - <0: on error. */ int sgx_virt_einit(void __user *sigstruct, void __user *token, void __user *secs, u64 *lepubkeyhash, int *trapnr) { int ret; if (!cpu_feature_enabled(X86_FEATURE_SGX_LC)) { ret = __sgx_virt_einit(sigstruct, token, secs); } else { preempt_disable(); sgx_update_lepubkeyhash(lepubkeyhash); ret = __sgx_virt_einit(sigstruct, token, secs); preempt_enable(); } /* Propagate up the error from the WARN_ON_ONCE in __sgx_virt_einit() */ if (ret == -EINVAL) return ret; if (encls_faulted(ret)) { *trapnr = ENCLS_TRAPNR(ret); return -EFAULT; } return ret; } EXPORT_SYMBOL_GPL(sgx_virt_einit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1