Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yu-cheng Yu | 914 | 21.43% | 17 | 12.50% |
Dave Hansen | 901 | 21.12% | 21 | 15.44% |
Ingo Molnar | 665 | 15.59% | 40 | 29.41% |
Suresh B. Siddha | 326 | 7.64% | 7 | 5.15% |
Fenghua Yu | 287 | 6.73% | 9 | 6.62% |
Al Viro | 282 | 6.61% | 2 | 1.47% |
Kan Liang | 244 | 5.72% | 3 | 2.21% |
Aubrey Li | 152 | 3.56% | 1 | 0.74% |
Rik Van Riel | 123 | 2.88% | 1 | 0.74% |
Eric Biggers | 106 | 2.48% | 7 | 5.15% |
Andi Kleen | 70 | 1.64% | 1 | 0.74% |
Borislav Petkov | 33 | 0.77% | 3 | 2.21% |
Andrew Lutomirski | 30 | 0.70% | 2 | 1.47% |
Sebastian Andrzej Siewior | 26 | 0.61% | 4 | 2.94% |
Cyrill V. Gorcunov | 21 | 0.49% | 2 | 1.47% |
Thomas Gleixner | 21 | 0.49% | 2 | 1.47% |
Robert Richter | 18 | 0.42% | 2 | 1.47% |
H. Peter Anvin | 17 | 0.40% | 1 | 0.74% |
Yejune Deng | 12 | 0.28% | 1 | 0.74% |
Paolo Bonzini | 5 | 0.12% | 1 | 0.74% |
Fengguang Wu | 3 | 0.07% | 1 | 0.74% |
Linus Torvalds | 2 | 0.05% | 1 | 0.74% |
Rasmus Villemoes | 2 | 0.05% | 1 | 0.74% |
Alexey Dobriyan | 1 | 0.02% | 1 | 0.74% |
Kevin Buettner | 1 | 0.02% | 1 | 0.74% |
Pankaj Bharadiya | 1 | 0.02% | 1 | 0.74% |
Sergey Senozhatsky | 1 | 0.02% | 1 | 0.74% |
Lucas De Marchi | 1 | 0.02% | 1 | 0.74% |
Joe Perches | 1 | 0.02% | 1 | 0.74% |
Total | 4266 | 136 |
// SPDX-License-Identifier: GPL-2.0-only /* * xsave/xrstor support. * * Author: Suresh Siddha <suresh.b.siddha@intel.com> */ #include <linux/compat.h> #include <linux/cpu.h> #include <linux/mman.h> #include <linux/pkeys.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <asm/fpu/api.h> #include <asm/fpu/internal.h> #include <asm/fpu/signal.h> #include <asm/fpu/regset.h> #include <asm/fpu/xstate.h> #include <asm/tlbflush.h> #include <asm/cpufeature.h> /* * Although we spell it out in here, the Processor Trace * xfeature is completely unused. We use other mechanisms * to save/restore PT state in Linux. */ static const char *xfeature_names[] = { "x87 floating point registers" , "SSE registers" , "AVX registers" , "MPX bounds registers" , "MPX CSR" , "AVX-512 opmask" , "AVX-512 Hi256" , "AVX-512 ZMM_Hi256" , "Processor Trace (unused)" , "Protection Keys User registers", "PASID state", "unknown xstate feature" , }; static short xsave_cpuid_features[] __initdata = { X86_FEATURE_FPU, X86_FEATURE_XMM, X86_FEATURE_AVX, X86_FEATURE_MPX, X86_FEATURE_MPX, X86_FEATURE_AVX512F, X86_FEATURE_AVX512F, X86_FEATURE_AVX512F, X86_FEATURE_INTEL_PT, X86_FEATURE_PKU, X86_FEATURE_ENQCMD, }; /* * This represents the full set of bits that should ever be set in a kernel * XSAVE buffer, both supervisor and user xstates. */ u64 xfeatures_mask_all __read_mostly; static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; /* * The XSAVE area of kernel can be in standard or compacted format; * it is always in standard format for user mode. This is the user * mode standard format size used for signal and ptrace frames. */ unsigned int fpu_user_xstate_size; /* * Return whether the system supports a given xfeature. * * Also return the name of the (most advanced) feature that the caller requested: */ int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) { u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all; if (unlikely(feature_name)) { long xfeature_idx, max_idx; u64 xfeatures_print; /* * So we use FLS here to be able to print the most advanced * feature that was requested but is missing. So if a driver * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the * missing AVX feature - this is the most informative message * to users: */ if (xfeatures_missing) xfeatures_print = xfeatures_missing; else xfeatures_print = xfeatures_needed; xfeature_idx = fls64(xfeatures_print)-1; max_idx = ARRAY_SIZE(xfeature_names)-1; xfeature_idx = min(xfeature_idx, max_idx); *feature_name = xfeature_names[xfeature_idx]; } if (xfeatures_missing) return 0; return 1; } EXPORT_SYMBOL_GPL(cpu_has_xfeatures); static bool xfeature_is_supervisor(int xfeature_nr) { /* * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1) * returns ECX[0] set to (1) for a supervisor state, and cleared (0) * for a user state. */ u32 eax, ebx, ecx, edx; cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); return ecx & 1; } /* * When executing XSAVEOPT (or other optimized XSAVE instructions), if * a processor implementation detects that an FPU state component is still * (or is again) in its initialized state, it may clear the corresponding * bit in the header.xfeatures field, and can skip the writeout of registers * to the corresponding memory layout. * * This means that when the bit is zero, the state component might still contain * some previous - non-initialized register state. * * Before writing xstate information to user-space we sanitize those components, * to always ensure that the memory layout of a feature will be in the init state * if the corresponding header bit is zero. This is to ensure that user-space doesn't * see some stale state in the memory layout during signal handling, debugging etc. */ void fpstate_sanitize_xstate(struct fpu *fpu) { struct fxregs_state *fx = &fpu->state.fxsave; int feature_bit; u64 xfeatures; if (!use_xsaveopt()) return; xfeatures = fpu->state.xsave.header.xfeatures; /* * None of the feature bits are in init state. So nothing else * to do for us, as the memory layout is up to date. */ if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all) return; /* * FP is in init state */ if (!(xfeatures & XFEATURE_MASK_FP)) { fx->cwd = 0x37f; fx->swd = 0; fx->twd = 0; fx->fop = 0; fx->rip = 0; fx->rdp = 0; memset(fx->st_space, 0, sizeof(fx->st_space)); } /* * SSE is in init state */ if (!(xfeatures & XFEATURE_MASK_SSE)) memset(fx->xmm_space, 0, sizeof(fx->xmm_space)); /* * First two features are FPU and SSE, which above we handled * in a special way already: */ feature_bit = 0x2; xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2; /* * Update all the remaining memory layouts according to their * standard xstate layout, if their header bit is in the init * state: */ while (xfeatures) { if (xfeatures & 0x1) { int offset = xstate_comp_offsets[feature_bit]; int size = xstate_sizes[feature_bit]; memcpy((void *)fx + offset, (void *)&init_fpstate.xsave + offset, size); } xfeatures >>= 1; feature_bit++; } } /* * Enable the extended processor state save/restore feature. * Called once per CPU onlining. */ void fpu__init_cpu_xstate(void) { u64 unsup_bits; if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all) return; /* * Unsupported supervisor xstates should not be found in * the xfeatures mask. */ unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n", unsup_bits); xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; cr4_set_bits(X86_CR4_OSXSAVE); /* * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user * states can be set here. */ xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); /* * MSR_IA32_XSS sets supervisor states managed by XSAVES. */ if (boot_cpu_has(X86_FEATURE_XSAVES)) { wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | xfeatures_mask_dynamic()); } } static bool xfeature_enabled(enum xfeature xfeature) { return xfeatures_mask_all & BIT_ULL(xfeature); } /* * Record the offsets and sizes of various xstates contained * in the XSAVE state memory layout. */ static void __init setup_xstate_features(void) { u32 eax, ebx, ecx, edx, i; /* start at the beginning of the "extended state" */ unsigned int last_good_offset = offsetof(struct xregs_state, extended_state_area); /* * The FP xstates and SSE xstates are legacy states. They are always * in the fixed offsets in the xsave area in either compacted form * or standard form. */ xstate_offsets[XFEATURE_FP] = 0; xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, xmm_space); xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, xmm_space); for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (!xfeature_enabled(i)) continue; cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); xstate_sizes[i] = eax; /* * If an xfeature is supervisor state, the offset in EBX is * invalid, leave it to -1. */ if (xfeature_is_supervisor(i)) continue; xstate_offsets[i] = ebx; /* * In our xstate size checks, we assume that the highest-numbered * xstate feature has the highest offset in the buffer. Ensure * it does. */ WARN_ONCE(last_good_offset > xstate_offsets[i], "x86/fpu: misordered xstate at %d\n", last_good_offset); last_good_offset = xstate_offsets[i]; } } static void __init print_xstate_feature(u64 xstate_mask) { const char *feature_name; if (cpu_has_xfeatures(xstate_mask, &feature_name)) pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); } /* * Print out all the supported xstate features: */ static void __init print_xstate_features(void) { print_xstate_feature(XFEATURE_MASK_FP); print_xstate_feature(XFEATURE_MASK_SSE); print_xstate_feature(XFEATURE_MASK_YMM); print_xstate_feature(XFEATURE_MASK_BNDREGS); print_xstate_feature(XFEATURE_MASK_BNDCSR); print_xstate_feature(XFEATURE_MASK_OPMASK); print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); print_xstate_feature(XFEATURE_MASK_PKRU); print_xstate_feature(XFEATURE_MASK_PASID); } /* * This check is important because it is easy to get XSTATE_* * confused with XSTATE_BIT_*. */ #define CHECK_XFEATURE(nr) do { \ WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ WARN_ON(nr >= XFEATURE_MAX); \ } while (0) /* * We could cache this like xstate_size[], but we only use * it here, so it would be a waste of space. */ static int xfeature_is_aligned(int xfeature_nr) { u32 eax, ebx, ecx, edx; CHECK_XFEATURE(xfeature_nr); if (!xfeature_enabled(xfeature_nr)) { WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n", xfeature_nr); return 0; } cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); /* * The value returned by ECX[1] indicates the alignment * of state component 'i' when the compacted format * of the extended region of an XSAVE area is used: */ return !!(ecx & 2); } /* * This function sets up offsets and sizes of all extended states in * xsave area. This supports both standard format and compacted format * of the xsave area. */ static void __init setup_xstate_comp_offsets(void) { unsigned int next_offset; int i; /* * The FP xstates and SSE xstates are legacy states. They are always * in the fixed offsets in the xsave area in either compacted form * or standard form. */ xstate_comp_offsets[XFEATURE_FP] = 0; xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state, xmm_space); if (!boot_cpu_has(X86_FEATURE_XSAVES)) { for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (xfeature_enabled(i)) xstate_comp_offsets[i] = xstate_offsets[i]; } return; } next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (!xfeature_enabled(i)) continue; if (xfeature_is_aligned(i)) next_offset = ALIGN(next_offset, 64); xstate_comp_offsets[i] = next_offset; next_offset += xstate_sizes[i]; } } /* * Setup offsets of a supervisor-state-only XSAVES buffer: * * The offsets stored in xstate_comp_offsets[] only work for one specific * value of the Requested Feature BitMap (RFBM). In cases where a different * RFBM value is used, a different set of offsets is required. This set of * offsets is for when RFBM=xfeatures_mask_supervisor(). */ static void __init setup_supervisor_only_offsets(void) { unsigned int next_offset; int i; next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (!xfeature_enabled(i) || !xfeature_is_supervisor(i)) continue; if (xfeature_is_aligned(i)) next_offset = ALIGN(next_offset, 64); xstate_supervisor_only_offsets[i] = next_offset; next_offset += xstate_sizes[i]; } } /* * Print out xstate component offsets and sizes */ static void __init print_xstate_offset_size(void) { int i; for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (!xfeature_enabled(i)) continue; pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", i, xstate_comp_offsets[i], i, xstate_sizes[i]); } } /* * All supported features have either init state all zeros or are * handled in setup_init_fpu() individually. This is an explicit * feature list and does not use XFEATURE_MASK*SUPPORTED to catch * newly added supported features at build time and make people * actually look at the init state for the new feature. */ #define XFEATURES_INIT_FPSTATE_HANDLED \ (XFEATURE_MASK_FP | \ XFEATURE_MASK_SSE | \ XFEATURE_MASK_YMM | \ XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM | \ XFEATURE_MASK_PKRU | \ XFEATURE_MASK_BNDREGS | \ XFEATURE_MASK_BNDCSR | \ XFEATURE_MASK_PASID) /* * setup the xstate image representing the init state */ static void __init setup_init_fpu_buf(void) { static int on_boot_cpu __initdata = 1; BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED | XFEATURE_MASK_SUPERVISOR_SUPPORTED) != XFEATURES_INIT_FPSTATE_HANDLED); WARN_ON_FPU(!on_boot_cpu); on_boot_cpu = 0; if (!boot_cpu_has(X86_FEATURE_XSAVE)) return; setup_xstate_features(); print_xstate_features(); if (boot_cpu_has(X86_FEATURE_XSAVES)) init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; /* * Init all the features state with header.xfeatures being 0x0 */ copy_kernel_to_xregs_booting(&init_fpstate.xsave); /* * All components are now in init state. Read the state back so * that init_fpstate contains all non-zero init state. This only * works with XSAVE, but not with XSAVEOPT and XSAVES because * those use the init optimization which skips writing data for * components in init state. * * XSAVE could be used, but that would require to reshuffle the * data when XSAVES is available because XSAVES uses xstate * compaction. But doing so is a pointless exercise because most * components have an all zeros init state except for the legacy * ones (FP and SSE). Those can be saved with FXSAVE into the * legacy area. Adding new features requires to ensure that init * state is all zeroes or if not to add the necessary handling * here. */ fxsave(&init_fpstate.fxsave); } static int xfeature_uncompacted_offset(int xfeature_nr) { u32 eax, ebx, ecx, edx; /* * Only XSAVES supports supervisor states and it uses compacted * format. Checking a supervisor state's uncompacted offset is * an error. */ if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) { WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr); return -1; } CHECK_XFEATURE(xfeature_nr); cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); return ebx; } int xfeature_size(int xfeature_nr) { u32 eax, ebx, ecx, edx; CHECK_XFEATURE(xfeature_nr); cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); return eax; } /* * 'XSAVES' implies two different things: * 1. saving of supervisor/system state * 2. using the compacted format * * Use this function when dealing with the compacted format so * that it is obvious which aspect of 'XSAVES' is being handled * by the calling code. */ int using_compacted_format(void) { return boot_cpu_has(X86_FEATURE_XSAVES); } /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ int validate_user_xstate_header(const struct xstate_header *hdr) { /* No unknown or supervisor features may be set */ if (hdr->xfeatures & ~xfeatures_mask_user()) return -EINVAL; /* Userspace must use the uncompacted format */ if (hdr->xcomp_bv) return -EINVAL; /* * If 'reserved' is shrunken to add a new field, make sure to validate * that new field here! */ BUILD_BUG_ON(sizeof(hdr->reserved) != 48); /* No reserved bits may be set */ if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) return -EINVAL; return 0; } static void __xstate_dump_leaves(void) { int i; u32 eax, ebx, ecx, edx; static int should_dump = 1; if (!should_dump) return; should_dump = 0; /* * Dump out a few leaves past the ones that we support * just in case there are some goodies up there */ for (i = 0; i < XFEATURE_MAX + 10; i++) { cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", XSTATE_CPUID, i, eax, ebx, ecx, edx); } } #define XSTATE_WARN_ON(x) do { \ if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \ __xstate_dump_leaves(); \ } \ } while (0) #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \ if ((nr == nr_macro) && \ WARN_ONCE(sz != sizeof(__struct), \ "%s: struct is %zu bytes, cpu state %d bytes\n", \ __stringify(nr_macro), sizeof(__struct), sz)) { \ __xstate_dump_leaves(); \ } \ } while (0) /* * We have a C struct for each 'xstate'. We need to ensure * that our software representation matches what the CPU * tells us about the state's size. */ static void check_xstate_against_struct(int nr) { /* * Ask the CPU for the size of the state. */ int sz = xfeature_size(nr); /* * Match each CPU state with the corresponding software * structure. */ XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct); XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state); XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state); XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state); XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state); XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state); XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state); XCHECK_SZ(sz, nr, XFEATURE_PASID, struct ia32_pasid_state); /* * Make *SURE* to add any feature numbers in below if * there are "holes" in the xsave state component * numbers. */ if ((nr < XFEATURE_YMM) || (nr >= XFEATURE_MAX) || (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) || ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_LBR))) { WARN_ONCE(1, "no structure for xstate: %d\n", nr); XSTATE_WARN_ON(1); } } /* * This essentially double-checks what the cpu told us about * how large the XSAVE buffer needs to be. We are recalculating * it to be safe. * * Dynamic XSAVE features allocate their own buffers and are not * covered by these checks. Only the size of the buffer for task->fpu * is checked here. */ static void do_extra_xstate_size_checks(void) { int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE; int i; for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { if (!xfeature_enabled(i)) continue; check_xstate_against_struct(i); /* * Supervisor state components can be managed only by * XSAVES, which is compacted-format only. */ if (!using_compacted_format()) XSTATE_WARN_ON(xfeature_is_supervisor(i)); /* Align from the end of the previous feature */ if (xfeature_is_aligned(i)) paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64); /* * The offset of a given state in the non-compacted * format is given to us in a CPUID leaf. We check * them for being ordered (increasing offsets) in * setup_xstate_features(). */ if (!using_compacted_format()) paranoid_xstate_size = xfeature_uncompacted_offset(i); /* * The compacted-format offset always depends on where * the previous state ended. */ paranoid_xstate_size += xfeature_size(i); } XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size); } /* * Get total size of enabled xstates in XCR0 | IA32_XSS. * * Note the SDM's wording here. "sub-function 0" only enumerates * the size of the *user* states. If we use it to size a buffer * that we use 'XSAVES' on, we could potentially overflow the * buffer because 'XSAVES' saves system states too. */ static unsigned int __init get_xsaves_size(void) { unsigned int eax, ebx, ecx, edx; /* * - CPUID function 0DH, sub-function 1: * EBX enumerates the size (in bytes) required by * the XSAVES instruction for an XSAVE area * containing all the state components * corresponding to bits currently set in * XCR0 | IA32_XSS. */ cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); return ebx; } /* * Get the total size of the enabled xstates without the dynamic supervisor * features. */ static unsigned int __init get_xsaves_size_no_dynamic(void) { u64 mask = xfeatures_mask_dynamic(); unsigned int size; if (!mask) return get_xsaves_size(); /* Disable dynamic features. */ wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); /* * Ask the hardware what size is required of the buffer. * This is the size required for the task->fpu buffer. */ size = get_xsaves_size(); /* Re-enable dynamic features so XSAVES will work on them again. */ wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask); return size; } static unsigned int __init get_xsave_size(void) { unsigned int eax, ebx, ecx, edx; /* * - CPUID function 0DH, sub-function 0: * EBX enumerates the size (in bytes) required by * the XSAVE instruction for an XSAVE area * containing all the *user* state components * corresponding to bits currently set in XCR0. */ cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); return ebx; } /* * Will the runtime-enumerated 'xstate_size' fit in the init * task's statically-allocated buffer? */ static bool is_supported_xstate_size(unsigned int test_xstate_size) { if (test_xstate_size <= sizeof(union fpregs_state)) return true; pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n", sizeof(union fpregs_state), test_xstate_size); return false; } static int __init init_xstate_size(void) { /* Recompute the context size for enabled features: */ unsigned int possible_xstate_size; unsigned int xsave_size; xsave_size = get_xsave_size(); if (boot_cpu_has(X86_FEATURE_XSAVES)) possible_xstate_size = get_xsaves_size_no_dynamic(); else possible_xstate_size = xsave_size; /* Ensure we have the space to store all enabled: */ if (!is_supported_xstate_size(possible_xstate_size)) return -EINVAL; /* * The size is OK, we are definitely going to use xsave, * make it known to the world that we need more space. */ fpu_kernel_xstate_size = possible_xstate_size; do_extra_xstate_size_checks(); /* * User space is always in standard format. */ fpu_user_xstate_size = xsave_size; return 0; } /* * We enabled the XSAVE hardware, but something went wrong and * we can not use it. Disable it. */ static void fpu__init_disable_system_xstate(void) { xfeatures_mask_all = 0; cr4_clear_bits(X86_CR4_OSXSAVE); setup_clear_cpu_cap(X86_FEATURE_XSAVE); } /* * Enable and initialize the xsave feature. * Called once per system bootup. */ void __init fpu__init_system_xstate(void) { unsigned int eax, ebx, ecx, edx; static int on_boot_cpu __initdata = 1; int err; int i; WARN_ON_FPU(!on_boot_cpu); on_boot_cpu = 0; if (!boot_cpu_has(X86_FEATURE_FPU)) { pr_info("x86/fpu: No FPU detected\n"); return; } if (!boot_cpu_has(X86_FEATURE_XSAVE)) { pr_info("x86/fpu: x87 FPU will use %s\n", boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); return; } if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { WARN_ON_FPU(1); return; } /* * Find user xstates supported by the processor. */ cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); xfeatures_mask_all = eax + ((u64)edx << 32); /* * Find supervisor xstates supported by the processor. */ cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); xfeatures_mask_all |= ecx + ((u64)edx << 32); if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { /* * This indicates that something really unexpected happened * with the enumeration. Disable XSAVE and try to continue * booting without it. This is too early to BUG(). */ pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask_all); goto out_disable; } /* * Clear XSAVE features that are disabled in the normal CPUID. */ for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { if (!boot_cpu_has(xsave_cpuid_features[i])) xfeatures_mask_all &= ~BIT_ULL(i); } xfeatures_mask_all &= fpu__get_supported_xfeatures_mask(); /* Enable xstate instructions to be able to continue with initialization: */ fpu__init_cpu_xstate(); err = init_xstate_size(); if (err) goto out_disable; /* * Update info used for ptrace frames; use standard-format size and no * supervisor xstates: */ update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user()); fpu__init_prepare_fx_sw_frame(); setup_init_fpu_buf(); setup_xstate_comp_offsets(); setup_supervisor_only_offsets(); print_xstate_offset_size(); pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", xfeatures_mask_all, fpu_kernel_xstate_size, boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard"); return; out_disable: /* something went wrong, try to boot without any XSAVE support */ fpu__init_disable_system_xstate(); } /* * Restore minimal FPU state after suspend: */ void fpu__resume_cpu(void) { /* * Restore XCR0 on xsave capable CPUs: */ if (boot_cpu_has(X86_FEATURE_XSAVE)) xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); /* * Restore IA32_XSS. The same CPUID bit enumerates support * of XSAVES and MSR_IA32_XSS. */ if (boot_cpu_has(X86_FEATURE_XSAVES)) { wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | xfeatures_mask_dynamic()); } } /* * Given an xstate feature nr, calculate where in the xsave * buffer the state is. Callers should ensure that the buffer * is valid. */ static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) { if (!xfeature_enabled(xfeature_nr)) { WARN_ON_FPU(1); return NULL; } return (void *)xsave + xstate_comp_offsets[xfeature_nr]; } /* * Given the xsave area and a state inside, this function returns the * address of the state. * * This is the API that is called to get xstate address in either * standard format or compacted format of xsave area. * * Note that if there is no data for the field in the xsave buffer * this will return NULL. * * Inputs: * xstate: the thread's storage area for all FPU data * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, * XFEATURE_SSE, etc...) * Output: * address of the state in the xsave area, or NULL if the * field is not present in the xsave buffer. */ void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) { /* * Do we even *have* xsave state? */ if (!boot_cpu_has(X86_FEATURE_XSAVE)) return NULL; /* * We should not ever be requesting features that we * have not enabled. */ WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)), "get of unsupported state"); /* * This assumes the last 'xsave*' instruction to * have requested that 'xfeature_nr' be saved. * If it did not, we might be seeing and old value * of the field in the buffer. * * This can happen because the last 'xsave' did not * request that this feature be saved (unlikely) * or because the "init optimization" caused it * to not be saved. */ if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) return NULL; return __raw_xsave_addr(xsave, xfeature_nr); } EXPORT_SYMBOL_GPL(get_xsave_addr); /* * This wraps up the common operations that need to occur when retrieving * data from xsave state. It first ensures that the current task was * using the FPU and retrieves the data in to a buffer. It then calculates * the offset of the requested field in the buffer. * * This function is safe to call whether the FPU is in use or not. * * Note that this only works on the current task. * * Inputs: * @xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, * XFEATURE_SSE, etc...) * Output: * address of the state in the xsave area or NULL if the state * is not present or is in its 'init state'. */ const void *get_xsave_field_ptr(int xfeature_nr) { struct fpu *fpu = ¤t->thread.fpu; /* * fpu__save() takes the CPU's xstate registers * and saves them off to the 'fpu memory buffer. */ fpu__save(fpu); return get_xsave_addr(&fpu->state.xsave, xfeature_nr); } #ifdef CONFIG_ARCH_HAS_PKEYS /* * This will go out and modify PKRU register to set the access * rights for @pkey to @init_val. */ int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val) { u32 old_pkru; int pkey_shift = (pkey * PKRU_BITS_PER_PKEY); u32 new_pkru_bits = 0; /* * This check implies XSAVE support. OSPKE only gets * set if we enable XSAVE and we enable PKU in XCR0. */ if (!boot_cpu_has(X86_FEATURE_OSPKE)) return -EINVAL; /* * This code should only be called with valid 'pkey' * values originating from in-kernel users. Complain * if a bad value is observed. */ WARN_ON_ONCE(pkey >= arch_max_pkey()); /* Set the bits we need in PKRU: */ if (init_val & PKEY_DISABLE_ACCESS) new_pkru_bits |= PKRU_AD_BIT; if (init_val & PKEY_DISABLE_WRITE) new_pkru_bits |= PKRU_WD_BIT; /* Shift the bits in to the correct place in PKRU for pkey: */ new_pkru_bits <<= pkey_shift; /* Get old PKRU and mask off any old bits in place: */ old_pkru = read_pkru(); old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); /* Write old part along with new part: */ write_pkru(old_pkru | new_pkru_bits); return 0; } #endif /* ! CONFIG_ARCH_HAS_PKEYS */ /* * Weird legacy quirk: SSE and YMM states store information in the * MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP * area is marked as unused in the xfeatures header, we need to copy * MXCSR and MXCSR_FLAGS if either SSE or YMM are in use. */ static inline bool xfeatures_mxcsr_quirk(u64 xfeatures) { if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM))) return false; if (xfeatures & XFEATURE_MASK_FP) return false; return true; } static void fill_gap(struct membuf *to, unsigned *last, unsigned offset) { if (*last >= offset) return; membuf_write(to, (void *)&init_fpstate.xsave + *last, offset - *last); *last = offset; } static void copy_part(struct membuf *to, unsigned *last, unsigned offset, unsigned size, void *from) { fill_gap(to, last, offset); membuf_write(to, from, size); *last = offset + size; } /* * Convert from kernel XSAVES compacted format to standard format and copy * to a kernel-space ptrace buffer. * * It supports partial copy but pos always starts from zero. This is called * from xstateregs_get() and there we check the CPU has XSAVES. */ void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave) { struct xstate_header header; const unsigned off_mxcsr = offsetof(struct fxregs_state, mxcsr); unsigned size = to.left; unsigned last = 0; int i; /* * The destination is a ptrace buffer; we put in only user xstates: */ memset(&header, 0, sizeof(header)); header.xfeatures = xsave->header.xfeatures; header.xfeatures &= xfeatures_mask_user(); if (header.xfeatures & XFEATURE_MASK_FP) copy_part(&to, &last, 0, off_mxcsr, &xsave->i387); if (header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM)) copy_part(&to, &last, off_mxcsr, MXCSR_AND_FLAGS_SIZE, &xsave->i387.mxcsr); if (header.xfeatures & XFEATURE_MASK_FP) copy_part(&to, &last, offsetof(struct fxregs_state, st_space), 128, &xsave->i387.st_space); if (header.xfeatures & XFEATURE_MASK_SSE) copy_part(&to, &last, xstate_offsets[XFEATURE_SSE], 256, &xsave->i387.xmm_space); /* * Fill xsave->i387.sw_reserved value for ptrace frame: */ copy_part(&to, &last, offsetof(struct fxregs_state, sw_reserved), 48, xstate_fx_sw_bytes); /* * Copy xregs_state->header: */ copy_part(&to, &last, offsetof(struct xregs_state, header), sizeof(header), &header); for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { /* * Copy only in-use xstates: */ if ((header.xfeatures >> i) & 1) { void *src = __raw_xsave_addr(xsave, i); copy_part(&to, &last, xstate_offsets[i], xstate_sizes[i], src); } } fill_gap(&to, &last, size); } /* * Convert from a ptrace standard-format kernel buffer to kernel XSAVES format * and copy to the target thread. This is called from xstateregs_set(). */ int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf) { unsigned int offset, size; int i; struct xstate_header hdr; offset = offsetof(struct xregs_state, header); size = sizeof(hdr); memcpy(&hdr, kbuf + offset, size); if (validate_user_xstate_header(&hdr)) return -EINVAL; for (i = 0; i < XFEATURE_MAX; i++) { u64 mask = ((u64)1 << i); if (hdr.xfeatures & mask) { void *dst = __raw_xsave_addr(xsave, i); offset = xstate_offsets[i]; size = xstate_sizes[i]; memcpy(dst, kbuf + offset, size); } } if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { offset = offsetof(struct fxregs_state, mxcsr); size = MXCSR_AND_FLAGS_SIZE; memcpy(&xsave->i387.mxcsr, kbuf + offset, size); } /* * The state that came in from userspace was user-state only. * Mask all the user states out of 'xfeatures': */ xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; /* * Add back in the features that came in from userspace: */ xsave->header.xfeatures |= hdr.xfeatures; return 0; } /* * Convert from a ptrace or sigreturn standard-format user-space buffer to * kernel XSAVES format and copy to the target thread. This is called from * xstateregs_set(), as well as potentially from the sigreturn() and * rt_sigreturn() system calls. */ int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf) { unsigned int offset, size; int i; struct xstate_header hdr; offset = offsetof(struct xregs_state, header); size = sizeof(hdr); if (__copy_from_user(&hdr, ubuf + offset, size)) return -EFAULT; if (validate_user_xstate_header(&hdr)) return -EINVAL; for (i = 0; i < XFEATURE_MAX; i++) { u64 mask = ((u64)1 << i); if (hdr.xfeatures & mask) { void *dst = __raw_xsave_addr(xsave, i); offset = xstate_offsets[i]; size = xstate_sizes[i]; if (__copy_from_user(dst, ubuf + offset, size)) return -EFAULT; } } if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { offset = offsetof(struct fxregs_state, mxcsr); size = MXCSR_AND_FLAGS_SIZE; if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size)) return -EFAULT; } /* * The state that came in from userspace was user-state only. * Mask all the user states out of 'xfeatures': */ xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; /* * Add back in the features that came in from userspace: */ xsave->header.xfeatures |= hdr.xfeatures; return 0; } /* * Save only supervisor states to the kernel buffer. This blows away all * old states, and is intended to be used only in __fpu__restore_sig(), where * user states are restored from the user buffer. */ void copy_supervisor_to_kernel(struct xregs_state *xstate) { struct xstate_header *header; u64 max_bit, min_bit; u32 lmask, hmask; int err, i; if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES))) return; if (!xfeatures_mask_supervisor()) return; max_bit = __fls(xfeatures_mask_supervisor()); min_bit = __ffs(xfeatures_mask_supervisor()); lmask = xfeatures_mask_supervisor(); hmask = xfeatures_mask_supervisor() >> 32; XSTATE_OP(XSAVES, xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ if (WARN_ON_FPU(err)) return; /* * At this point, the buffer has only supervisor states and must be * converted back to normal kernel format. */ header = &xstate->header; header->xcomp_bv |= xfeatures_mask_all; /* * This only moves states up in the buffer. Start with * the last state and move backwards so that states are * not overwritten until after they are moved. Note: * memmove() allows overlapping src/dst buffers. */ for (i = max_bit; i >= min_bit; i--) { u8 *xbuf = (u8 *)xstate; if (!((header->xfeatures >> i) & 1)) continue; /* Move xfeature 'i' into its normal location */ memmove(xbuf + xstate_comp_offsets[i], xbuf + xstate_supervisor_only_offsets[i], xstate_sizes[i]); } } /** * copy_dynamic_supervisor_to_kernel() - Save dynamic supervisor states to * an xsave area * @xstate: A pointer to an xsave area * @mask: Represent the dynamic supervisor features saved into the xsave area * * Only the dynamic supervisor states sets in the mask are saved into the xsave * area (See the comment in XFEATURE_MASK_DYNAMIC for the details of dynamic * supervisor feature). Besides the dynamic supervisor states, the legacy * region and XSAVE header are also saved into the xsave area. The supervisor * features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not saved. * * The xsave area must be 64-bytes aligned. */ void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask) { u64 dynamic_mask = xfeatures_mask_dynamic() & mask; u32 lmask, hmask; int err; if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES))) return; if (WARN_ON_FPU(!dynamic_mask)) return; lmask = dynamic_mask; hmask = dynamic_mask >> 32; XSTATE_OP(XSAVES, xstate, lmask, hmask, err); /* Should never fault when copying to a kernel buffer */ WARN_ON_FPU(err); } /** * copy_kernel_to_dynamic_supervisor() - Restore dynamic supervisor states from * an xsave area * @xstate: A pointer to an xsave area * @mask: Represent the dynamic supervisor features restored from the xsave area * * Only the dynamic supervisor states sets in the mask are restored from the * xsave area (See the comment in XFEATURE_MASK_DYNAMIC for the details of * dynamic supervisor feature). Besides the dynamic supervisor states, the * legacy region and XSAVE header are also restored from the xsave area. The * supervisor features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not restored. * * The xsave area must be 64-bytes aligned. */ void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask) { u64 dynamic_mask = xfeatures_mask_dynamic() & mask; u32 lmask, hmask; int err; if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES))) return; if (WARN_ON_FPU(!dynamic_mask)) return; lmask = dynamic_mask; hmask = dynamic_mask >> 32; XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); /* Should never fault when copying from a kernel buffer */ WARN_ON_FPU(err); } #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * Report the amount of time elapsed in millisecond since last AVX512 * use in the task. */ static void avx512_status(struct seq_file *m, struct task_struct *task) { unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); long delta; if (!timestamp) { /* * Report -1 if no AVX512 usage */ delta = -1; } else { delta = (long)(jiffies - timestamp); /* * Cap to LONG_MAX if time difference > LONG_MAX */ if (delta < 0) delta = LONG_MAX; delta = jiffies_to_msecs(delta); } seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); seq_putc(m, '\n'); } /* * Report architecture specific information */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { /* * Report AVX512 state if the processor and build option supported. */ if (cpu_feature_enabled(X86_FEATURE_AVX512F)) avx512_status(m, task); return 0; } #endif /* CONFIG_PROC_PID_ARCH_STATUS */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1