Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ricardo Koller | 739 | 98.40% | 1 | 50.00% |
Paolo Bonzini | 12 | 1.60% | 1 | 50.00% |
Total | 751 | 2 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_REVERSE_CPUID_H #define ARCH_X86_KVM_REVERSE_CPUID_H #include <uapi/asm/kvm.h> #include <asm/cpufeature.h> #include <asm/cpufeatures.h> /* * Hardware-defined CPUID leafs that are scattered in the kernel, but need to * be directly used by KVM. Note, these word values conflict with the kernel's * "bug" caps, but KVM doesn't use those. */ enum kvm_only_cpuid_leafs { CPUID_12_EAX = NCAPINTS, NR_KVM_CPU_CAPS, NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, }; #define KVM_X86_FEATURE(w, f) ((w)*32 + (f)) /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */ #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0) #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1) struct cpuid_reg { u32 function; u32 index; int reg; }; static const struct cpuid_reg reverse_cpuid[] = { [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX}, [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX}, }; /* * Reverse CPUID and its derivatives can only be used for hardware-defined * feature words, i.e. words whose bits directly correspond to a CPUID leaf. * Retrieving a feature bit or masking guest CPUID from a Linux-defined word * is nonsensical as the bit number/mask is an arbitrary software-defined value * and can't be used by KVM to query/control guest capabilities. And obviously * the leaf being queried must have an entry in the lookup table. */ static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) { BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); } /* * Translate feature bits that are scattered in the kernel's cpufeatures word * into KVM feature words that align with hardware's definitions. */ static __always_inline u32 __feature_translate(int x86_feature) { if (x86_feature == X86_FEATURE_SGX1) return KVM_X86_FEATURE_SGX1; else if (x86_feature == X86_FEATURE_SGX2) return KVM_X86_FEATURE_SGX2; return x86_feature; } static __always_inline u32 __feature_leaf(int x86_feature) { return __feature_translate(x86_feature) / 32; } /* * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain * the hardware defined bit number (stored in bits 4:0) and a software defined * "word" (stored in bits 31:5). The word is used to index into arrays of * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). */ static __always_inline u32 __feature_bit(int x86_feature) { x86_feature = __feature_translate(x86_feature); reverse_cpuid_check(x86_feature / 32); return 1 << (x86_feature & 31); } #define feature_bit(name) __feature_bit(X86_FEATURE_##name) static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); reverse_cpuid_check(x86_leaf); return reverse_cpuid[x86_leaf]; } static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, u32 reg) { switch (reg) { case CPUID_EAX: return &entry->eax; case CPUID_EBX: return &entry->ebx; case CPUID_ECX: return &entry->ecx; case CPUID_EDX: return &entry->edx; default: BUILD_BUG(); return NULL; } } static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); return __cpuid_entry_get_reg(entry, cpuid.reg); } static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); return *reg & __feature_bit(x86_feature); } static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { return cpuid_entry_get(entry, x86_feature); } static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg &= ~__feature_bit(x86_feature); } static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg |= __feature_bit(x86_feature); } static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature, bool set) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); /* * Open coded instead of using cpuid_entry_{clear,set}() to coerce the * compiler into using CMOV instead of Jcc when possible. */ if (set) *reg |= __feature_bit(x86_feature); else *reg &= ~__feature_bit(x86_feature); } #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1