Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wang YanQing | 11441 | 89.62% | 4 | 23.53% |
Martin KaFai Lau | 694 | 5.44% | 1 | 5.88% |
Jiong Wang | 459 | 3.60% | 2 | 11.76% |
Luke Nelson | 155 | 1.21% | 5 | 29.41% |
Piotr Krysiuk | 10 | 0.08% | 1 | 5.88% |
Jason Yan | 2 | 0.02% | 1 | 5.88% |
Kees Cook | 2 | 0.02% | 1 | 5.88% |
Brendan Jackman | 2 | 0.02% | 1 | 5.88% |
Daniel Borkmann | 1 | 0.01% | 1 | 5.88% |
Total | 12766 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * Just-In-Time compiler for eBPF filters on IA32 (32bit x86) * * Author: Wang YanQing (udknight@gmail.com) * The code based on code and ideas from: * Eric Dumazet (eric.dumazet@gmail.com) * and from: * Shubham Bansal <illusionist.neo@gmail.com> */ #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <asm/cacheflush.h> #include <asm/set_memory.h> #include <asm/nospec-branch.h> #include <linux/bpf.h> /* * eBPF prog stack layout: * * high * original ESP => +-----+ * | | callee saved registers * +-----+ * | ... | eBPF JIT scratch space * BPF_FP,IA32_EBP => +-----+ * | ... | eBPF prog stack * +-----+ * |RSVD | JIT scratchpad * current ESP => +-----+ * | | * | ... | Function call stack * | | * +-----+ * low * * The callee saved registers: * * high * original ESP => +------------------+ \ * | ebp | | * current EBP => +------------------+ } callee saved registers * | ebx,esi,edi | | * +------------------+ / * low */ static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) { if (len == 1) *ptr = bytes; else if (len == 2) *(u16 *)ptr = bytes; else { *(u32 *)ptr = bytes; barrier(); } return ptr + len; } #define EMIT(bytes, len) \ do { prog = emit_code(prog, bytes, len); cnt += len; } while (0) #define EMIT1(b1) EMIT(b1, 1) #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) #define EMIT4(b1, b2, b3, b4) \ EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) #define EMIT1_off32(b1, off) \ do { EMIT1(b1); EMIT(off, 4); } while (0) #define EMIT2_off32(b1, b2, off) \ do { EMIT2(b1, b2); EMIT(off, 4); } while (0) #define EMIT3_off32(b1, b2, b3, off) \ do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) #define EMIT4_off32(b1, b2, b3, b4, off) \ do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len) static bool is_imm8(int value) { return value <= 127 && value >= -128; } static bool is_simm32(s64 value) { return value == (s64) (s32) value; } #define STACK_OFFSET(k) (k) #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */ #define IA32_EAX (0x0) #define IA32_EBX (0x3) #define IA32_ECX (0x1) #define IA32_EDX (0x2) #define IA32_ESI (0x6) #define IA32_EDI (0x7) #define IA32_EBP (0x5) #define IA32_ESP (0x4) /* * List of x86 cond jumps opcodes (. + s8) * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) */ #define IA32_JB 0x72 #define IA32_JAE 0x73 #define IA32_JE 0x74 #define IA32_JNE 0x75 #define IA32_JBE 0x76 #define IA32_JA 0x77 #define IA32_JL 0x7C #define IA32_JGE 0x7D #define IA32_JLE 0x7E #define IA32_JG 0x7F #define COND_JMP_OPCODE_INVALID (0xFF) /* * Map eBPF registers to IA32 32bit registers or stack scratch space. * * 1. All the registers, R0-R10, are mapped to scratch space on stack. * 2. We need two 64 bit temp registers to do complex operations on eBPF * registers. * 3. For performance reason, the BPF_REG_AX for blinding constant, is * mapped to real hardware register pair, IA32_ESI and IA32_EDI. * * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit * registers, we have to map each eBPF registers with two IA32 32 bit regs * or scratch memory space and we have to build eBPF 64 bit register from those. * * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers. */ static const u8 bpf2ia32[][2] = { /* Return value from in-kernel function, and exit value from eBPF */ [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)}, /* The arguments from eBPF program to in-kernel function */ /* Stored on stack scratch space */ [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)}, [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)}, [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)}, [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)}, [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)}, /* Callee saved registers that in-kernel function will preserve */ /* Stored on stack scratch space */ [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)}, [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)}, [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)}, [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)}, /* Read only Frame Pointer to access Stack */ [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)}, /* Temporary register for blinding constants. */ [BPF_REG_AX] = {IA32_ESI, IA32_EDI}, /* Tail call count. Stored on stack scratch space. */ [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)}, }; #define dst_lo dst[0] #define dst_hi dst[1] #define src_lo src[0] #define src_hi src[1] #define STACK_ALIGNMENT 8 /* * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9, * BPF_REG_FP, BPF_REG_AX and Tail call counts. */ #define SCRATCH_SIZE 96 /* Total stack size used in JITed code */ #define _STACK_SIZE (stack_depth + SCRATCH_SIZE) #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) /* Get the offset of eBPF REGISTERs stored on scratch space. */ #define STACK_VAR(off) (off) /* Encode 'dst_reg' register into IA32 opcode 'byte' */ static u8 add_1reg(u8 byte, u32 dst_reg) { return byte + dst_reg; } /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */ static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) { return byte + dst_reg + (src_reg << 3); } static void jit_fill_hole(void *area, unsigned int size) { /* Fill whole space with int3 instructions */ memset(area, 0xcc, size); } static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; if (dstk) { if (val == 0) { /* xor eax,eax */ EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX)); /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); } else { EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP), STACK_VAR(dst), val); } } else { if (val == 0) EMIT2(0x33, add_2reg(0xC0, dst, dst)); else EMIT2_off32(0xC7, add_1reg(0xC0, dst), val); } *pprog = prog; } /* dst = imm (4 bytes)*/ static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 sreg = sstk ? IA32_EAX : src; if (sstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src)); if (dstk) /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst)); else /* mov dst,sreg */ EMIT2(0x89, add_2reg(0xC0, dst, sreg)); *pprog = prog; } /* dst = src */ static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog, const struct bpf_prog_aux *aux) { emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog); if (is64) /* complete 8 byte move */ emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog); else if (!aux->verifier_zext) /* zero out high 4 bytes */ emit_ia32_mov_i(dst_hi, 0, dstk, pprog); } /* Sign extended move */ static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[], const u32 val, bool dstk, u8 **pprog) { u32 hi = 0; if (is64 && (val & (1<<31))) hi = (u32)~0; emit_ia32_mov_i(dst_lo, val, dstk, pprog); emit_ia32_mov_i(dst_hi, hi, dstk, pprog); } /* * ALU operation (32 bit) * dst = dst * src */ static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 sreg = sstk ? IA32_ECX : src; if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src)); if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); else /* mov eax,dst */ EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX)); EMIT2(0xF7, add_1reg(0xE0, sreg)); if (dstk) /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); else /* mov dst,eax */ EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX)); *pprog = prog; } static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val, bool dstk, u8 **pprog, const struct bpf_prog_aux *aux) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk && val != 64) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } switch (val) { case 16: /* * Emit 'movzwl eax,ax' to zero extend 16-bit * into 64 bit */ EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo)); if (!aux->verifier_zext) /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); break; case 32: if (!aux->verifier_zext) /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); break; case 64: /* nop */ break; } if (dstk && val != 64) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val, bool dstk, u8 **pprog, const struct bpf_prog_aux *aux) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } switch (val) { case 16: /* Emit 'ror %ax, 8' to swap lower 2 bytes */ EMIT1(0x66); EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8); EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo)); if (!aux->verifier_zext) /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); break; case 32: /* Emit 'bswap eax' to swap lower 4 bytes */ EMIT1(0x0F); EMIT1(add_1reg(0xC8, dreg_lo)); if (!aux->verifier_zext) /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); break; case 64: /* Emit 'bswap eax' to swap lower 4 bytes */ EMIT1(0x0F); EMIT1(add_1reg(0xC8, dreg_lo)); /* Emit 'bswap edx' to swap lower 4 bytes */ EMIT1(0x0F); EMIT1(add_1reg(0xC8, dreg_hi)); /* mov ecx,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi)); /* mov dreg_hi,dreg_lo */ EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); /* mov dreg_lo,ecx */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX)); break; } if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } /* * ALU operation (32 bit) * dst = dst (div|mod) src */ static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src, bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src)); else if (src != IA32_ECX) /* mov ecx,src */ EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX)); if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); else /* mov eax,dst */ EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX)); /* xor edx,edx */ EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX)); /* div ecx */ EMIT2(0xF7, add_1reg(0xF0, IA32_ECX)); if (op == BPF_MOD) { if (dstk) EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst)); else EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX)); } else { if (dstk) EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); else EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX)); } *pprog = prog; } /* * ALU operation (32 bit) * dst = dst (shift) src */ static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src, bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg = dstk ? IA32_EAX : dst; u8 b2; if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src)); else if (src != IA32_ECX) /* mov ecx,src */ EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX)); switch (op) { case BPF_LSH: b2 = 0xE0; break; case BPF_RSH: b2 = 0xE8; break; case BPF_ARSH: b2 = 0xF8; break; default: return; } EMIT2(0xD3, add_1reg(b2, dreg)); if (dstk) /* mov dword ptr [ebp+off],dreg */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst)); *pprog = prog; } /* * ALU operation (32 bit) * dst = dst (op) src */ static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op, const u8 dst, const u8 src, bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 sreg = sstk ? IA32_EAX : src; u8 dreg = dstk ? IA32_EDX : dst; if (sstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src)); if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst)); switch (BPF_OP(op)) { /* dst = dst + src */ case BPF_ADD: if (hi && is64) EMIT2(0x11, add_2reg(0xC0, dreg, sreg)); else EMIT2(0x01, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst - src */ case BPF_SUB: if (hi && is64) EMIT2(0x19, add_2reg(0xC0, dreg, sreg)); else EMIT2(0x29, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst | src */ case BPF_OR: EMIT2(0x09, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst & src */ case BPF_AND: EMIT2(0x21, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst ^ src */ case BPF_XOR: EMIT2(0x31, add_2reg(0xC0, dreg, sreg)); break; } if (dstk) /* mov dword ptr [ebp+off],dreg */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst)); *pprog = prog; } /* ALU operation (64 bit) */ static inline void emit_ia32_alu_r64(const bool is64, const u8 op, const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog, const struct bpf_prog_aux *aux) { u8 *prog = *pprog; emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog); if (is64) emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk, &prog); else if (!aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); *pprog = prog; } /* * ALU operation (32 bit) * dst = dst (op) val */ static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op, const u8 dst, const s32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg = dstk ? IA32_EAX : dst; u8 sreg = IA32_EDX; if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); if (!is_imm8(val)) /* mov edx,imm32*/ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val); switch (op) { /* dst = dst + val */ case BPF_ADD: if (hi && is64) { if (is_imm8(val)) EMIT3(0x83, add_1reg(0xD0, dreg), val); else EMIT2(0x11, add_2reg(0xC0, dreg, sreg)); } else { if (is_imm8(val)) EMIT3(0x83, add_1reg(0xC0, dreg), val); else EMIT2(0x01, add_2reg(0xC0, dreg, sreg)); } break; /* dst = dst - val */ case BPF_SUB: if (hi && is64) { if (is_imm8(val)) EMIT3(0x83, add_1reg(0xD8, dreg), val); else EMIT2(0x19, add_2reg(0xC0, dreg, sreg)); } else { if (is_imm8(val)) EMIT3(0x83, add_1reg(0xE8, dreg), val); else EMIT2(0x29, add_2reg(0xC0, dreg, sreg)); } break; /* dst = dst | val */ case BPF_OR: if (is_imm8(val)) EMIT3(0x83, add_1reg(0xC8, dreg), val); else EMIT2(0x09, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst & val */ case BPF_AND: if (is_imm8(val)) EMIT3(0x83, add_1reg(0xE0, dreg), val); else EMIT2(0x21, add_2reg(0xC0, dreg, sreg)); break; /* dst = dst ^ val */ case BPF_XOR: if (is_imm8(val)) EMIT3(0x83, add_1reg(0xF0, dreg), val); else EMIT2(0x31, add_2reg(0xC0, dreg, sreg)); break; case BPF_NEG: EMIT2(0xF7, add_1reg(0xD8, dreg)); break; } if (dstk) /* mov dword ptr [ebp+off],dreg */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst)); *pprog = prog; } /* ALU operation (64 bit) */ static inline void emit_ia32_alu_i64(const bool is64, const u8 op, const u8 dst[], const u32 val, bool dstk, u8 **pprog, const struct bpf_prog_aux *aux) { u8 *prog = *pprog; u32 hi = 0; if (is64 && (val & (1<<31))) hi = (u32)~0; emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog); if (is64) emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog); else if (!aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); *pprog = prog; } /* dst = ~dst (64 bit) */ static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* neg dreg_lo */ EMIT2(0xF7, add_1reg(0xD8, dreg_lo)); /* adc dreg_hi,0x0 */ EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00); /* neg dreg_hi */ EMIT2(0xF7, add_1reg(0xD8, dreg_hi)); if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } /* dst = dst << src */ static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); else /* mov ecx,src_lo */ EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); /* shld dreg_hi,dreg_lo,cl */ EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo)); /* shl dreg_lo,cl */ EMIT2(0xD3, add_1reg(0xE0, dreg_lo)); /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */ /* cmp ecx,32 */ EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); /* skip the next two instructions (4 bytes) when < 32 */ EMIT2(IA32_JB, 4); /* mov dreg_hi,dreg_lo */ EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); /* xor dreg_lo,dreg_lo */ EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } /* out: */ *pprog = prog; } /* dst = dst >> src (signed)*/ static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); else /* mov ecx,src_lo */ EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); /* shrd dreg_lo,dreg_hi,cl */ EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi)); /* sar dreg_hi,cl */ EMIT2(0xD3, add_1reg(0xF8, dreg_hi)); /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */ /* cmp ecx,32 */ EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); /* skip the next two instructions (5 bytes) when < 32 */ EMIT2(IA32_JB, 5); /* mov dreg_lo,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); /* sar dreg_hi,31 */ EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } /* out: */ *pprog = prog; } /* dst = dst >> src */ static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } if (sstk) /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); else /* mov ecx,src_lo */ EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); /* shrd dreg_lo,dreg_hi,cl */ EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi)); /* shr dreg_hi,cl */ EMIT2(0xD3, add_1reg(0xE8, dreg_hi)); /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */ /* cmp ecx,32 */ EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); /* skip the next two instructions (4 bytes) when < 32 */ EMIT2(IA32_JB, 4); /* mov dreg_lo,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } /* out: */ *pprog = prog; } /* dst = dst << val */ static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* Do LSH operation */ if (val < 32) { /* shld dreg_hi,dreg_lo,imm8 */ EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val); /* shl dreg_lo,imm8 */ EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val); } else if (val >= 32 && val < 64) { u32 value = val - 32; /* shl dreg_lo,imm8 */ EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value); /* mov dreg_hi,dreg_lo */ EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); /* xor dreg_lo,dreg_lo */ EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); } else { /* xor dreg_lo,dreg_lo */ EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); } if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } /* dst = dst >> val */ static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* Do RSH operation */ if (val < 32) { /* shrd dreg_lo,dreg_hi,imm8 */ EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val); /* shr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val); } else if (val >= 32 && val < 64) { u32 value = val - 32; /* shr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value); /* mov dreg_lo,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); } else { /* xor dreg_lo,dreg_lo */ EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); /* xor dreg_hi,dreg_hi */ EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); } if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } /* dst = dst >> val (signed) */ static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* Do RSH operation */ if (val < 32) { /* shrd dreg_lo,dreg_hi,imm8 */ EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val); /* ashr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val); } else if (val >= 32 && val < 64) { u32 value = val - 32; /* ashr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value); /* mov dreg_lo,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); /* ashr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); } else { /* ashr dreg_hi,imm8 */ EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); /* mov dreg_lo,dreg_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); } if (dstk) { /* mov dword ptr [ebp+off],dreg_lo */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],dreg_hi */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), STACK_VAR(dst_hi)); } *pprog = prog; } static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk, bool sstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_hi)); else /* mov eax,dst_hi */ EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX)); if (sstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo)); else /* mul src_lo */ EMIT2(0xF7, add_1reg(0xE0, src_lo)); /* mov ecx,eax */ EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX)); if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); else /* mov eax,dst_lo */ EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); if (sstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi)); else /* mul src_hi */ EMIT2(0xF7, add_1reg(0xE0, src_hi)); /* add eax,eax */ EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX)); if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); else /* mov eax,dst_lo */ EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); if (sstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo)); else /* mul src_lo */ EMIT2(0xF7, add_1reg(0xE0, src_lo)); /* add ecx,edx */ EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX)); if (dstk) { /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],ecx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(dst_hi)); } else { /* mov dst_lo,eax */ EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX)); /* mov dst_hi,ecx */ EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX)); } *pprog = prog; } static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val, bool dstk, u8 **pprog) { u8 *prog = *pprog; int cnt = 0; u32 hi; hi = val & (1<<31) ? (u32)~0 : 0; /* movl eax,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val); if (dstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi)); else /* mul dst_hi */ EMIT2(0xF7, add_1reg(0xE0, dst_hi)); /* mov ecx,eax */ EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX)); /* movl eax,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi); if (dstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo)); else /* mul dst_lo */ EMIT2(0xF7, add_1reg(0xE0, dst_lo)); /* add ecx,eax */ EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX)); /* movl eax,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val); if (dstk) /* mul dword ptr [ebp+off] */ EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo)); else /* mul dst_lo */ EMIT2(0xF7, add_1reg(0xE0, dst_lo)); /* add ecx,edx */ EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX)); if (dstk) { /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); /* mov dword ptr [ebp+off],ecx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(dst_hi)); } else { /* mov dword ptr [ebp+off],eax */ EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX)); /* mov dword ptr [ebp+off],ecx */ EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX)); } *pprog = prog; } static int bpf_size_to_x86_bytes(int bpf_size) { if (bpf_size == BPF_W) return 4; else if (bpf_size == BPF_H) return 2; else if (bpf_size == BPF_B) return 1; else if (bpf_size == BPF_DW) return 4; /* imm32 */ else return 0; } struct jit_context { int cleanup_addr; /* Epilogue code offset */ }; /* Maximum number of bytes emitted while JITing one eBPF insn */ #define BPF_MAX_INSN_SIZE 128 #define BPF_INSN_SAFETY 64 #define PROLOGUE_SIZE 35 /* * Emit prologue code for BPF program and check it's size. * bpf_tail_call helper will skip it while jumping into another program. */ static void emit_prologue(u8 **pprog, u32 stack_depth) { u8 *prog = *pprog; int cnt = 0; const u8 *r1 = bpf2ia32[BPF_REG_1]; const u8 fplo = bpf2ia32[BPF_REG_FP][0]; const u8 fphi = bpf2ia32[BPF_REG_FP][1]; const u8 *tcc = bpf2ia32[TCALL_CNT]; /* push ebp */ EMIT1(0x55); /* mov ebp,esp */ EMIT2(0x89, 0xE5); /* push edi */ EMIT1(0x57); /* push esi */ EMIT1(0x56); /* push ebx */ EMIT1(0x53); /* sub esp,STACK_SIZE */ EMIT2_off32(0x81, 0xEC, STACK_SIZE); /* sub ebp,SCRATCH_SIZE+12*/ EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12); /* xor ebx,ebx */ EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX)); /* Set up BPF prog stack base register */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo)); EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi)); /* Move BPF_CTX (EAX) to BPF_REG_R1 */ /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0])); EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1])); /* Initialize Tail Count */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0])); EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); BUILD_BUG_ON(cnt != PROLOGUE_SIZE); *pprog = prog; } /* Emit epilogue code for BPF program */ static void emit_epilogue(u8 **pprog, u32 stack_depth) { u8 *prog = *pprog; const u8 *r0 = bpf2ia32[BPF_REG_0]; int cnt = 0; /* mov eax,dword ptr [ebp+off]*/ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0])); /* mov edx,dword ptr [ebp+off]*/ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1])); /* add ebp,SCRATCH_SIZE+12*/ EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12); /* mov ebx,dword ptr [ebp-12]*/ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12); /* mov esi,dword ptr [ebp-8]*/ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8); /* mov edi,dword ptr [ebp-4]*/ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4); EMIT1(0xC9); /* leave */ EMIT1(0xC3); /* ret */ *pprog = prog; } /* * Generate the following code: * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... * if (index >= array->map.max_entries) * goto out; * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) * goto out; * prog = array->ptrs[index]; * if (prog == NULL) * goto out; * goto *(prog->bpf_func + prologue_size); * out: */ static void emit_bpf_tail_call(u8 **pprog) { u8 *prog = *pprog; int cnt = 0; const u8 *r1 = bpf2ia32[BPF_REG_1]; const u8 *r2 = bpf2ia32[BPF_REG_2]; const u8 *r3 = bpf2ia32[BPF_REG_3]; const u8 *tcc = bpf2ia32[TCALL_CNT]; u32 lo, hi; static int jmp_label1 = -1; /* * if (index >= array->map.max_entries) * goto out; */ /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0])); /* mov edx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0])); /* cmp dword ptr [eax+off],edx */ EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX), offsetof(struct bpf_array, map.max_entries)); /* jbe out */ EMIT2(IA32_JBE, jmp_label(jmp_label1, 2)); /* * if (tail_call_cnt > MAX_TAIL_CALL_CNT) * goto out; */ lo = (u32)MAX_TAIL_CALL_CNT; hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0])); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); /* cmp edx,hi */ EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi); EMIT2(IA32_JNE, 3); /* cmp ecx,lo */ EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo); /* ja out */ EMIT2(IA32_JAE, jmp_label(jmp_label1, 2)); /* add eax,0x1 */ EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01); /* adc ebx,0x0 */ EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00); /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0])); /* mov dword ptr [ebp+off],edx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); /* prog = array->ptrs[index]; */ /* mov edx, [eax + edx * 4 + offsetof(...)] */ EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs)); /* * if (prog == NULL) * goto out; */ /* test edx,edx */ EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX)); /* je out */ EMIT2(IA32_JE, jmp_label(jmp_label1, 2)); /* goto *(prog->bpf_func + prologue_size); */ /* mov edx, dword ptr [edx + 32] */ EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX), offsetof(struct bpf_prog, bpf_func)); /* add edx,prologue_size */ EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE); /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0])); /* * Now we're ready to jump into next BPF program: * eax == ctx (1st arg) * edx == prog->bpf_func + prologue_size */ RETPOLINE_EDX_BPF_JIT(); if (jmp_label1 == -1) jmp_label1 = cnt; /* out: */ *pprog = prog; } /* Push the scratch stack register on top of the stack. */ static inline void emit_push_r64(const u8 src[], u8 **pprog) { u8 *prog = *pprog; int cnt = 0; /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi)); /* push ecx */ EMIT1(0x51); /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); /* push ecx */ EMIT1(0x51); *pprog = prog; } static void emit_push_r32(const u8 src[], u8 **pprog) { u8 *prog = *pprog; int cnt = 0; /* mov ecx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); /* push ecx */ EMIT1(0x51); *pprog = prog; } static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo) { u8 jmp_cond; /* Convert BPF opcode to x86 */ switch (op) { case BPF_JEQ: jmp_cond = IA32_JE; break; case BPF_JSET: case BPF_JNE: jmp_cond = IA32_JNE; break; case BPF_JGT: /* GT is unsigned '>', JA in x86 */ jmp_cond = IA32_JA; break; case BPF_JLT: /* LT is unsigned '<', JB in x86 */ jmp_cond = IA32_JB; break; case BPF_JGE: /* GE is unsigned '>=', JAE in x86 */ jmp_cond = IA32_JAE; break; case BPF_JLE: /* LE is unsigned '<=', JBE in x86 */ jmp_cond = IA32_JBE; break; case BPF_JSGT: if (!is_cmp_lo) /* Signed '>', GT in x86 */ jmp_cond = IA32_JG; else /* GT is unsigned '>', JA in x86 */ jmp_cond = IA32_JA; break; case BPF_JSLT: if (!is_cmp_lo) /* Signed '<', LT in x86 */ jmp_cond = IA32_JL; else /* LT is unsigned '<', JB in x86 */ jmp_cond = IA32_JB; break; case BPF_JSGE: if (!is_cmp_lo) /* Signed '>=', GE in x86 */ jmp_cond = IA32_JGE; else /* GE is unsigned '>=', JAE in x86 */ jmp_cond = IA32_JAE; break; case BPF_JSLE: if (!is_cmp_lo) /* Signed '<=', LE in x86 */ jmp_cond = IA32_JLE; else /* LE is unsigned '<=', JBE in x86 */ jmp_cond = IA32_JBE; break; default: /* to silence GCC warning */ jmp_cond = COND_JMP_OPCODE_INVALID; break; } return jmp_cond; } /* i386 kernel compiles with "-mregparm=3". From gcc document: * * ==== snippet ==== * regparm (number) * On x86-32 targets, the regparm attribute causes the compiler * to pass arguments number one to (number) if they are of integral * type in registers EAX, EDX, and ECX instead of on the stack. * Functions that take a variable number of arguments continue * to be passed all of their arguments on the stack. * ==== snippet ==== * * The first three args of a function will be considered for * putting into the 32bit register EAX, EDX, and ECX. * * Two 32bit registers are used to pass a 64bit arg. * * For example, * void foo(u32 a, u32 b, u32 c, u32 d): * u32 a: EAX * u32 b: EDX * u32 c: ECX * u32 d: stack * * void foo(u64 a, u32 b, u32 c): * u64 a: EAX (lo32) EDX (hi32) * u32 b: ECX * u32 c: stack * * void foo(u32 a, u64 b, u32 c): * u32 a: EAX * u64 b: EDX (lo32) ECX (hi32) * u32 c: stack * * void foo(u32 a, u32 b, u64 c): * u32 a: EAX * u32 b: EDX * u64 c: stack * * The return value will be stored in the EAX (and EDX for 64bit value). * * For example, * u32 foo(u32 a, u32 b, u32 c): * return value: EAX * * u64 foo(u32 a, u32 b, u32 c): * return value: EAX (lo32) EDX (hi32) * * Notes: * The verifier only accepts function having integer and pointers * as its args and return value, so it does not have * struct-by-value. * * emit_kfunc_call() finds out the btf_func_model by calling * bpf_jit_find_kfunc_model(). A btf_func_model * has the details about the number of args, size of each arg, * and the size of the return value. * * It first decides how many args can be passed by EAX, EDX, and ECX. * That will decide what args should be pushed to the stack: * [first_stack_regno, last_stack_regno] are the bpf regnos * that should be pushed to the stack. * * It will first push all args to the stack because the push * will need to use ECX. Then, it moves * [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX. * * When emitting a call (0xE8), it needs to figure out * the jmp_offset relative to the jit-insn address immediately * following the call (0xE8) instruction. At this point, it knows * the end of the jit-insn address after completely translated the * current (BPF_JMP | BPF_CALL) bpf-insn. It is passed as "end_addr" * to the emit_kfunc_call(). Thus, it can learn the "immediate-follow-call" * address by figuring out how many jit-insn is generated between * the call (0xE8) and the end_addr: * - 0-1 jit-insn (3 bytes each) to restore the esp pointer if there * is arg pushed to the stack. * - 0-2 jit-insns (3 bytes each) to handle the return value. */ static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr, const struct bpf_insn *insn, u8 **pprog) { const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX }; int i, cnt = 0, first_stack_regno, last_stack_regno; int free_arg_regs = ARRAY_SIZE(arg_regs); const struct btf_func_model *fm; int bytes_in_stack = 0; const u8 *cur_arg_reg; u8 *prog = *pprog; s64 jmp_offset; fm = bpf_jit_find_kfunc_model(bpf_prog, insn); if (!fm) return -EINVAL; first_stack_regno = BPF_REG_1; for (i = 0; i < fm->nr_args; i++) { int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1; if (regs_needed > free_arg_regs) break; free_arg_regs -= regs_needed; first_stack_regno++; } /* Push the args to the stack */ last_stack_regno = BPF_REG_0 + fm->nr_args; for (i = last_stack_regno; i >= first_stack_regno; i--) { if (fm->arg_size[i - 1] > sizeof(u32)) { emit_push_r64(bpf2ia32[i], &prog); bytes_in_stack += 8; } else { emit_push_r32(bpf2ia32[i], &prog); bytes_in_stack += 4; } } cur_arg_reg = &arg_regs[0]; for (i = BPF_REG_1; i < first_stack_regno; i++) { /* mov e[adc]x,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++), STACK_VAR(bpf2ia32[i][0])); if (fm->arg_size[i - 1] > sizeof(u32)) /* mov e[adc]x,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++), STACK_VAR(bpf2ia32[i][1])); } if (bytes_in_stack) /* add esp,"bytes_in_stack" */ end_addr -= 3; /* mov dword ptr [ebp+off],edx */ if (fm->ret_size > sizeof(u32)) end_addr -= 3; /* mov dword ptr [ebp+off],eax */ if (fm->ret_size) end_addr -= 3; jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr; if (!is_simm32(jmp_offset)) { pr_err("unsupported BPF kernel function jmp_offset:%lld\n", jmp_offset); return -EINVAL; } EMIT1_off32(0xE8, jmp_offset); if (fm->ret_size) /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(bpf2ia32[BPF_REG_0][0])); if (fm->ret_size > sizeof(u32)) /* mov dword ptr [ebp+off],edx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(bpf2ia32[BPF_REG_0][1])); if (bytes_in_stack) /* add esp,"bytes_in_stack" */ EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack); *pprog = prog; return 0; } static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, int oldproglen, struct jit_context *ctx) { struct bpf_insn *insn = bpf_prog->insnsi; int insn_cnt = bpf_prog->len; bool seen_exit = false; u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; int i, cnt = 0; int proglen = 0; u8 *prog = temp; emit_prologue(&prog, bpf_prog->aux->stack_depth); for (i = 0; i < insn_cnt; i++, insn++) { const s32 imm32 = insn->imm; const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; const bool dstk = insn->dst_reg != BPF_REG_AX; const bool sstk = insn->src_reg != BPF_REG_AX; const u8 code = insn->code; const u8 *dst = bpf2ia32[insn->dst_reg]; const u8 *src = bpf2ia32[insn->src_reg]; const u8 *r0 = bpf2ia32[BPF_REG_0]; s64 jmp_offset; u8 jmp_cond; int ilen; u8 *func; switch (code) { /* ALU operations */ /* dst = src */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_X: switch (BPF_SRC(code)) { case BPF_X: if (imm32 == 1) { /* Special mov32 for zext. */ emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; } emit_ia32_mov_r64(is64, dst, src, dstk, sstk, &prog, bpf_prog->aux); break; case BPF_K: /* Sign-extend immediate value to dst reg */ emit_ia32_mov_i64(is64, dst, imm32, dstk, &prog); break; } break; /* dst = dst + src/imm */ /* dst = dst - src/imm */ /* dst = dst | src/imm */ /* dst = dst & src/imm */ /* dst = dst ^ src/imm */ /* dst = dst * src/imm */ /* dst = dst << src */ /* dst = dst >> src */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_X: switch (BPF_SRC(code)) { case BPF_X: emit_ia32_alu_r64(is64, BPF_OP(code), dst, src, dstk, sstk, &prog, bpf_prog->aux); break; case BPF_K: emit_ia32_alu_i64(is64, BPF_OP(code), dst, imm32, dstk, &prog, bpf_prog->aux); break; } break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: switch (BPF_SRC(code)) { case BPF_X: emit_ia32_mul_r(dst_lo, src_lo, dstk, sstk, &prog); break; case BPF_K: /* mov ecx,imm32*/ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); emit_ia32_mul_r(dst_lo, IA32_ECX, dstk, false, &prog); break; } if (!bpf_prog->aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_X: switch (BPF_SRC(code)) { case BPF_X: emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo, dstk, sstk, &prog); break; case BPF_K: /* mov ecx,imm32*/ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk, false, &prog); break; } if (!bpf_prog->aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; /* dst = dst / src(imm) */ /* dst = dst % src(imm) */ case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: switch (BPF_SRC(code)) { case BPF_X: emit_ia32_div_mod_r(BPF_OP(code), dst_lo, src_lo, dstk, sstk, &prog); break; case BPF_K: /* mov ecx,imm32*/ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); emit_ia32_div_mod_r(BPF_OP(code), dst_lo, IA32_ECX, dstk, false, &prog); break; } if (!bpf_prog->aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: goto notyet; /* dst = dst >> imm */ /* dst = dst << imm */ case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_LSH | BPF_K: if (unlikely(imm32 > 31)) return -EINVAL; /* mov ecx,imm32*/ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk, false, &prog); if (!bpf_prog->aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; /* dst = dst << imm */ case BPF_ALU64 | BPF_LSH | BPF_K: if (unlikely(imm32 > 63)) return -EINVAL; emit_ia32_lsh_i64(dst, imm32, dstk, &prog); break; /* dst = dst >> imm */ case BPF_ALU64 | BPF_RSH | BPF_K: if (unlikely(imm32 > 63)) return -EINVAL; emit_ia32_rsh_i64(dst, imm32, dstk, &prog); break; /* dst = dst << src */ case BPF_ALU64 | BPF_LSH | BPF_X: emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog); break; /* dst = dst >> src */ case BPF_ALU64 | BPF_RSH | BPF_X: emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog); break; /* dst = dst >> src (signed) */ case BPF_ALU64 | BPF_ARSH | BPF_X: emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog); break; /* dst = dst >> imm (signed) */ case BPF_ALU64 | BPF_ARSH | BPF_K: if (unlikely(imm32 > 63)) return -EINVAL; emit_ia32_arsh_i64(dst, imm32, dstk, &prog); break; /* dst = ~dst */ case BPF_ALU | BPF_NEG: emit_ia32_alu_i(is64, false, BPF_OP(code), dst_lo, 0, dstk, &prog); if (!bpf_prog->aux->verifier_zext) emit_ia32_mov_i(dst_hi, 0, dstk, &prog); break; /* dst = ~dst (64 bit) */ case BPF_ALU64 | BPF_NEG: emit_ia32_neg64(dst, dstk, &prog); break; /* dst = dst * src/imm */ case BPF_ALU64 | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_K: switch (BPF_SRC(code)) { case BPF_X: emit_ia32_mul_r64(dst, src, dstk, sstk, &prog); break; case BPF_K: emit_ia32_mul_i64(dst, imm32, dstk, &prog); break; } break; /* dst = htole(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: emit_ia32_to_le_r64(dst, imm32, dstk, &prog, bpf_prog->aux); break; /* dst = htobe(dst) */ case BPF_ALU | BPF_END | BPF_FROM_BE: emit_ia32_to_be_r64(dst, imm32, dstk, &prog, bpf_prog->aux); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { s32 hi, lo = imm32; hi = insn[1].imm; emit_ia32_mov_i(dst_lo, lo, dstk, &prog); emit_ia32_mov_i(dst_hi, hi, dstk, &prog); insn++; i++; break; } /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_DW: if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); else /* mov eax,dst_lo */ EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); switch (BPF_SIZE(code)) { case BPF_B: EMIT(0xC6, 1); break; case BPF_H: EMIT2(0x66, 0xC7); break; case BPF_W: case BPF_DW: EMIT(0xC7, 1); break; } if (is_imm8(insn->off)) EMIT2(add_1reg(0x40, IA32_EAX), insn->off); else EMIT1_off32(add_1reg(0x80, IA32_EAX), insn->off); EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code))); if (BPF_SIZE(code) == BPF_DW) { u32 hi; hi = imm32 & (1<<31) ? (u32)~0 : 0; EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX), insn->off + 4); EMIT(hi, 4); } break; /* STX: *(u8*)(dst_reg + off) = src_reg */ case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: if (dstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); else /* mov eax,dst_lo */ EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); if (sstk) /* mov edx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(src_lo)); else /* mov edx,src_lo */ EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX)); switch (BPF_SIZE(code)) { case BPF_B: EMIT(0x88, 1); break; case BPF_H: EMIT2(0x66, 0x89); break; case BPF_W: case BPF_DW: EMIT(0x89, 1); break; } if (is_imm8(insn->off)) EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX), insn->off); else EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX), insn->off); if (BPF_SIZE(code) == BPF_DW) { if (sstk) /* mov edi,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(src_hi)); else /* mov edi,src_hi */ EMIT2(0x8B, add_2reg(0xC0, src_hi, IA32_EDX)); EMIT1(0x89); if (is_imm8(insn->off + 4)) { EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX), insn->off + 4); } else { EMIT1(add_2reg(0x80, IA32_EAX, IA32_EDX)); EMIT(insn->off + 4, 4); } } break; /* LDX: dst_reg = *(u8*)(src_reg + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: if (sstk) /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src_lo)); else /* mov eax,dword ptr [ebp+off] */ EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX)); switch (BPF_SIZE(code)) { case BPF_B: EMIT2(0x0F, 0xB6); break; case BPF_H: EMIT2(0x0F, 0xB7); break; case BPF_W: case BPF_DW: EMIT(0x8B, 1); break; } if (is_imm8(insn->off)) EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX), insn->off); else EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX), insn->off); if (dstk) /* mov dword ptr [ebp+off],edx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_lo)); else /* mov dst_lo,edx */ EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX)); switch (BPF_SIZE(code)) { case BPF_B: case BPF_H: case BPF_W: if (bpf_prog->aux->verifier_zext) break; if (dstk) { EMIT3(0xC7, add_1reg(0x40, IA32_EBP), STACK_VAR(dst_hi)); EMIT(0x0, 4); } else { /* xor dst_hi,dst_hi */ EMIT2(0x33, add_2reg(0xC0, dst_hi, dst_hi)); } break; case BPF_DW: EMIT2_off32(0x8B, add_2reg(0x80, IA32_EAX, IA32_EDX), insn->off + 4); if (dstk) EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); else EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_EDX)); break; default: break; } break; /* call */ case BPF_JMP | BPF_CALL: { const u8 *r1 = bpf2ia32[BPF_REG_1]; const u8 *r2 = bpf2ia32[BPF_REG_2]; const u8 *r3 = bpf2ia32[BPF_REG_3]; const u8 *r4 = bpf2ia32[BPF_REG_4]; const u8 *r5 = bpf2ia32[BPF_REG_5]; if (insn->src_reg == BPF_PSEUDO_CALL) goto notyet; if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { int err; err = emit_kfunc_call(bpf_prog, image + addrs[i], insn, &prog); if (err) return err; break; } func = (u8 *) __bpf_call_base + imm32; jmp_offset = func - (image + addrs[i]); if (!imm32 || !is_simm32(jmp_offset)) { pr_err("unsupported BPF func %d addr %p image %p\n", imm32, func, image); return -EINVAL; } /* mov eax,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0])); /* mov edx,dword ptr [ebp+off] */ EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r1[1])); emit_push_r64(r5, &prog); emit_push_r64(r4, &prog); emit_push_r64(r3, &prog); emit_push_r64(r2, &prog); EMIT1_off32(0xE8, jmp_offset + 9); /* mov dword ptr [ebp+off],eax */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0])); /* mov dword ptr [ebp+off],edx */ EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1])); /* add esp,32 */ EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32); break; } case BPF_JMP | BPF_TAIL_CALL: emit_bpf_tail_call(&prog); break; /* cond jump */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: { bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; u8 sreg_lo = sstk ? IA32_ECX : src_lo; u8 sreg_hi = sstk ? IA32_EBX : src_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } if (sstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(src_hi)); } if (is_jmp64) { /* cmp dreg_hi,sreg_hi */ EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); EMIT2(IA32_JNE, 2); } /* cmp dreg_lo,sreg_lo */ EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); goto emit_cond_jmp; } case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: { u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; u8 sreg_lo = sstk ? IA32_ECX : src_lo; u8 sreg_hi = sstk ? IA32_EBX : src_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } if (sstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(src_hi)); } /* cmp dreg_hi,sreg_hi */ EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); EMIT2(IA32_JNE, 10); /* cmp dreg_lo,sreg_lo */ EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); goto emit_cond_jmp_signed; } case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: { bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; u8 dreg_lo = IA32_EAX; u8 dreg_hi = IA32_EDX; u8 sreg_lo = sstk ? IA32_ECX : src_lo; u8 sreg_hi = sstk ? IA32_EBX : src_hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } else { /* mov dreg_lo,dst_lo */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo)); if (is_jmp64) /* mov dreg_hi,dst_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_hi, dst_hi)); } if (sstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(src_hi)); } /* and dreg_lo,sreg_lo */ EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo)); if (is_jmp64) { /* and dreg_hi,sreg_hi */ EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi)); /* or dreg_lo,dreg_hi */ EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi)); } goto emit_cond_jmp; } case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: { bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; u8 dreg_lo = IA32_EAX; u8 dreg_hi = IA32_EDX; u8 sreg_lo = IA32_ECX; u8 sreg_hi = IA32_EBX; u32 hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } else { /* mov dreg_lo,dst_lo */ EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo)); if (is_jmp64) /* mov dreg_hi,dst_hi */ EMIT2(0x89, add_2reg(0xC0, dreg_hi, dst_hi)); } /* mov ecx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32); /* and dreg_lo,sreg_lo */ EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo)); if (is_jmp64) { hi = imm32 & (1 << 31) ? (u32)~0 : 0; /* mov ebx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi); /* and dreg_hi,sreg_hi */ EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi)); /* or dreg_lo,dreg_hi */ EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi)); } goto emit_cond_jmp; } case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: { bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; u8 sreg_lo = IA32_ECX; u8 sreg_hi = IA32_EBX; u32 hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); if (is_jmp64) EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* mov ecx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); if (is_jmp64) { hi = imm32 & (1 << 31) ? (u32)~0 : 0; /* mov ebx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi); /* cmp dreg_hi,sreg_hi */ EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); EMIT2(IA32_JNE, 2); } /* cmp dreg_lo,sreg_lo */ EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false); if (jmp_cond == COND_JMP_OPCODE_INVALID) return -EFAULT; jmp_offset = addrs[i + insn->off] - addrs[i]; if (is_imm8(jmp_offset)) { EMIT2(jmp_cond, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; } case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: { u8 dreg_lo = dstk ? IA32_EAX : dst_lo; u8 dreg_hi = dstk ? IA32_EDX : dst_hi; u8 sreg_lo = IA32_ECX; u8 sreg_hi = IA32_EBX; u32 hi; if (dstk) { EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst_lo)); EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst_hi)); } /* mov ecx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); hi = imm32 & (1 << 31) ? (u32)~0 : 0; /* mov ebx,imm32 */ EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi); /* cmp dreg_hi,sreg_hi */ EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); EMIT2(IA32_JNE, 10); /* cmp dreg_lo,sreg_lo */ EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); /* * For simplicity of branch offset computation, * let's use fixed jump coding here. */ emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */ jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true); if (jmp_cond == COND_JMP_OPCODE_INVALID) return -EFAULT; jmp_offset = addrs[i + insn->off] - addrs[i] + 8; if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } EMIT2(0xEB, 6); /* Check the condition for high 32-bit comparison */ jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false); if (jmp_cond == COND_JMP_OPCODE_INVALID) return -EFAULT; jmp_offset = addrs[i + insn->off] - addrs[i]; if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; } case BPF_JMP | BPF_JA: if (insn->off == -1) /* -1 jmp instructions will always jump * backwards two bytes. Explicitly handling * this case avoids wasting too many passes * when there are long sequences of replaced * dead code. */ jmp_offset = -2; else jmp_offset = addrs[i + insn->off] - addrs[i]; if (!jmp_offset) /* Optimize out nop jumps */ break; emit_jmp: if (is_imm8(jmp_offset)) { EMIT2(0xEB, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT1_off32(0xE9, jmp_offset); } else { pr_err("jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: goto notyet; case BPF_JMP | BPF_EXIT: if (seen_exit) { jmp_offset = ctx->cleanup_addr - addrs[i]; goto emit_jmp; } seen_exit = true; /* Update cleanup_addr */ ctx->cleanup_addr = proglen; emit_epilogue(&prog, bpf_prog->aux->stack_depth); break; notyet: pr_info_once("*** NOT YET: opcode %02x ***\n", code); return -EFAULT; default: /* * This error will be seen if new instruction was added * to interpreter, but not to JIT or if there is junk in * bpf_prog */ pr_err("bpf_jit: unknown opcode %02x\n", code); return -EINVAL; } ilen = prog - temp; if (ilen > BPF_MAX_INSN_SIZE) { pr_err("bpf_jit: fatal insn size error\n"); return -EFAULT; } if (image) { /* * When populating the image, assert that: * * i) We do not write beyond the allocated space, and * ii) addrs[i] did not change from the prior run, in order * to validate assumptions made for computing branch * displacements. */ if (unlikely(proglen + ilen > oldproglen || proglen + ilen != addrs[i])) { pr_err("bpf_jit: fatal error\n"); return -EFAULT; } memcpy(image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } return proglen; } bool bpf_jit_needs_zext(void) { return true; } struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_binary_header *header = NULL; struct bpf_prog *tmp, *orig_prog = prog; int proglen, oldproglen = 0; struct jit_context ctx = {}; bool tmp_blinded = false; u8 *image = NULL; int *addrs; int pass; int i; if (!prog->jit_requested) return orig_prog; tmp = bpf_jit_blind_constants(prog); /* * If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL); if (!addrs) { prog = orig_prog; goto out; } /* * Before first pass, make a rough estimation of addrs[] * each BPF instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i < prog->len; i++) { proglen += 64; addrs[i] = proglen; } ctx.cleanup_addr = proglen; /* * JITed image shrinks with every pass and the loop iterates * until the image stops shrinking. Very large BPF programs * may converge on the last pass. In such case do one more * pass to emit the final image. */ for (pass = 0; pass < 20 || image; pass++) { proglen = do_jit(prog, addrs, image, oldproglen, &ctx); if (proglen <= 0) { out_image: image = NULL; if (header) bpf_jit_binary_free(header); prog = orig_prog; goto out_addrs; } if (image) { if (proglen != oldproglen) { pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", proglen, oldproglen); goto out_image; } break; } if (proglen == oldproglen) { header = bpf_jit_binary_alloc(proglen, &image, 1, jit_fill_hole); if (!header) { prog = orig_prog; goto out_addrs; } } oldproglen = proglen; cond_resched(); } if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, proglen, pass + 1, image); if (image) { bpf_jit_binary_lock_ro(header); prog->bpf_func = (void *)image; prog->jited = 1; prog->jited_len = proglen; } else { prog = orig_prog; } out_addrs: kfree(addrs); out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; } bool bpf_jit_supports_kfunc_call(void) { return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1