Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chen Yu | 369 | 23.61% | 1 | 2.17% |
Rafael J. Wysocki | 297 | 19.00% | 2 | 4.35% |
Tom Lendacky | 209 | 13.37% | 1 | 2.17% |
Sergio Luis | 203 | 12.99% | 4 | 8.70% |
Fenghua Yu | 147 | 9.40% | 2 | 4.35% |
Andrew Lutomirski | 120 | 7.68% | 11 | 23.91% |
Konrad Rzeszutek Wilk | 73 | 4.67% | 2 | 4.35% |
Ondrej Zary | 30 | 1.92% | 1 | 2.17% |
Sean Christopherson | 28 | 1.79% | 1 | 2.17% |
Thomas Gleixner | 21 | 1.34% | 3 | 6.52% |
Jiri Kosina | 13 | 0.83% | 1 | 2.17% |
Thomas Garnier | 8 | 0.51% | 1 | 2.17% |
Ingo Molnar | 7 | 0.45% | 3 | 6.52% |
Marcelo Tosatti | 7 | 0.45% | 2 | 4.35% |
Stéphane Eranian | 6 | 0.38% | 1 | 2.17% |
Suresh B. Siddha | 4 | 0.26% | 2 | 4.35% |
Andi Kleen | 4 | 0.26% | 1 | 2.17% |
Qais Yousef | 4 | 0.26% | 1 | 2.17% |
K.Prasad | 3 | 0.19% | 1 | 2.17% |
Magnus Damm | 3 | 0.19% | 1 | 2.17% |
Paul Gortmaker | 3 | 0.19% | 1 | 2.17% |
Steven Rostedt | 2 | 0.13% | 1 | 2.17% |
Mike Rapoport | 1 | 0.06% | 1 | 2.17% |
Christoph Hellwig | 1 | 0.06% | 1 | 2.17% |
Total | 1563 | 46 |
// SPDX-License-Identifier: GPL-2.0-only /* * Suspend support specific for i386/x86-64. * * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> */ #include <linux/suspend.h> #include <linux/export.h> #include <linux/smp.h> #include <linux/perf_event.h> #include <linux/tboot.h> #include <linux/dmi.h> #include <linux/pgtable.h> #include <asm/proto.h> #include <asm/mtrr.h> #include <asm/page.h> #include <asm/mce.h> #include <asm/suspend.h> #include <asm/fpu/internal.h> #include <asm/debugreg.h> #include <asm/cpu.h> #include <asm/mmu_context.h> #include <asm/cpu_device_id.h> #ifdef CONFIG_X86_32 __visible unsigned long saved_context_ebx; __visible unsigned long saved_context_esp, saved_context_ebp; __visible unsigned long saved_context_esi, saved_context_edi; __visible unsigned long saved_context_eflags; #endif struct saved_context saved_context; static void msr_save_context(struct saved_context *ctxt) { struct saved_msr *msr = ctxt->saved_msrs.array; struct saved_msr *end = msr + ctxt->saved_msrs.num; while (msr < end) { msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); msr++; } } static void msr_restore_context(struct saved_context *ctxt) { struct saved_msr *msr = ctxt->saved_msrs.array; struct saved_msr *end = msr + ctxt->saved_msrs.num; while (msr < end) { if (msr->valid) wrmsrl(msr->info.msr_no, msr->info.reg.q); msr++; } } /** * __save_processor_state - save CPU registers before creating a * hibernation image and before restoring the memory state from it * @ctxt - structure to store the registers contents in * * NOTE: If there is a CPU register the modification of which by the * boot kernel (ie. the kernel used for loading the hibernation image) * might affect the operations of the restored target kernel (ie. the one * saved in the hibernation image), then its contents must be saved by this * function. In other words, if kernel A is hibernated and different * kernel B is used for loading the hibernation image into memory, the * kernel A's __save_processor_state() function must save all registers * needed by kernel A, so that it can operate correctly after the resume * regardless of what kernel B does in the meantime. */ static void __save_processor_state(struct saved_context *ctxt) { #ifdef CONFIG_X86_32 mtrr_save_fixed_ranges(NULL); #endif kernel_fpu_begin(); /* * descriptor tables */ store_idt(&ctxt->idt); /* * We save it here, but restore it only in the hibernate case. * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit * mode in "secondary_startup_64". In 32-bit mode it is done via * 'pmode_gdt' in wakeup_start. */ ctxt->gdt_desc.size = GDT_SIZE - 1; ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); store_tr(ctxt->tr); /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ /* * segment registers */ savesegment(gs, ctxt->gs); #ifdef CONFIG_X86_64 savesegment(fs, ctxt->fs); savesegment(ds, ctxt->ds); savesegment(es, ctxt->es); rdmsrl(MSR_FS_BASE, ctxt->fs_base); rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); mtrr_save_fixed_ranges(NULL); rdmsrl(MSR_EFER, ctxt->efer); #endif /* * control registers */ ctxt->cr0 = read_cr0(); ctxt->cr2 = read_cr2(); ctxt->cr3 = __read_cr3(); ctxt->cr4 = __read_cr4(); ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, &ctxt->misc_enable); msr_save_context(ctxt); } /* Needed by apm.c */ void save_processor_state(void) { __save_processor_state(&saved_context); x86_platform.save_sched_clock_state(); } #ifdef CONFIG_X86_32 EXPORT_SYMBOL(save_processor_state); #endif static void do_fpu_end(void) { /* * Restore FPU regs if necessary. */ kernel_fpu_end(); } static void fix_processor_context(void) { int cpu = smp_processor_id(); #ifdef CONFIG_X86_64 struct desc_struct *desc = get_cpu_gdt_rw(cpu); tss_desc tss; #endif /* * We need to reload TR, which requires that we change the * GDT entry to indicate "available" first. * * XXX: This could probably all be replaced by a call to * force_reload_TR(). */ set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); #ifdef CONFIG_X86_64 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); syscall_init(); /* This sets MSR_*STAR and related */ #else if (boot_cpu_has(X86_FEATURE_SEP)) enable_sep_cpu(); #endif load_TR_desc(); /* This does ltr */ load_mm_ldt(current->active_mm); /* This does lldt */ initialize_tlbstate_and_flush(); fpu__resume_cpu(); /* The processor is back on the direct GDT, load back the fixmap */ load_fixmap_gdt(cpu); } /** * __restore_processor_state - restore the contents of CPU registers saved * by __save_processor_state() * @ctxt - structure to load the registers contents from * * The asm code that gets us here will have restored a usable GDT, although * it will be pointing to the wrong alias. */ static void notrace __restore_processor_state(struct saved_context *ctxt) { struct cpuinfo_x86 *c; if (ctxt->misc_enable_saved) wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); /* * control registers */ /* cr4 was introduced in the Pentium CPU */ #ifdef CONFIG_X86_32 if (ctxt->cr4) __write_cr4(ctxt->cr4); #else /* CONFIG X86_64 */ wrmsrl(MSR_EFER, ctxt->efer); __write_cr4(ctxt->cr4); #endif write_cr3(ctxt->cr3); write_cr2(ctxt->cr2); write_cr0(ctxt->cr0); /* Restore the IDT. */ load_idt(&ctxt->idt); /* * Just in case the asm code got us here with the SS, DS, or ES * out of sync with the GDT, update them. */ loadsegment(ss, __KERNEL_DS); loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); /* * Restore percpu access. Percpu access can happen in exception * handlers or in complicated helpers like load_gs_index(). */ #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); #else loadsegment(fs, __KERNEL_PERCPU); #endif /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ fix_processor_context(); /* * Now that we have descriptor tables fully restored and working * exception handling, restore the usermode segments. */ #ifdef CONFIG_X86_64 loadsegment(ds, ctxt->es); loadsegment(es, ctxt->es); loadsegment(fs, ctxt->fs); load_gs_index(ctxt->gs); /* * Restore FSBASE and GSBASE after restoring the selectors, since * restoring the selectors clobbers the bases. Keep in mind * that MSR_KERNEL_GS_BASE is horribly misnamed. */ wrmsrl(MSR_FS_BASE, ctxt->fs_base); wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); #else loadsegment(gs, ctxt->gs); #endif do_fpu_end(); tsc_verify_tsc_adjust(true); x86_platform.restore_sched_clock_state(); mtrr_bp_restore(); perf_restore_debug_store(); msr_restore_context(ctxt); c = &cpu_data(smp_processor_id()); if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) init_ia32_feat_ctl(c); } /* Needed by apm.c */ void notrace restore_processor_state(void) { __restore_processor_state(&saved_context); } #ifdef CONFIG_X86_32 EXPORT_SYMBOL(restore_processor_state); #endif #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) static void resume_play_dead(void) { play_dead_common(); tboot_shutdown(TB_SHUTDOWN_WFS); hlt_play_dead(); } int hibernate_resume_nonboot_cpu_disable(void) { void (*play_dead)(void) = smp_ops.play_dead; int ret; /* * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop * during hibernate image restoration, because it is likely that the * monitored address will be actually written to at that time and then * the "dead" CPU will attempt to execute instructions again, but the * address in its instruction pointer may not be possible to resolve * any more at that point (the page tables used by it previously may * have been overwritten by hibernate image data). * * First, make sure that we wake up all the potentially disabled SMT * threads which have been initially brought up and then put into * mwait/cpuidle sleep. * Those will be put to proper (not interfering with hibernation * resume) sleep afterwards, and the resumed kernel will decide itself * what to do with them. */ ret = cpuhp_smt_enable(); if (ret) return ret; smp_ops.play_dead = resume_play_dead; ret = freeze_secondary_cpus(0); smp_ops.play_dead = play_dead; return ret; } #endif /* * When bsp_check() is called in hibernate and suspend, cpu hotplug * is disabled already. So it's unnecessary to handle race condition between * cpumask query and cpu hotplug. */ static int bsp_check(void) { if (cpumask_first(cpu_online_mask) != 0) { pr_warn("CPU0 is offline.\n"); return -ENODEV; } return 0; } static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr) { int ret = 0; switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: ret = bsp_check(); break; #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 case PM_RESTORE_PREPARE: /* * When system resumes from hibernation, online CPU0 because * 1. it's required for resume and * 2. the CPU was online before hibernation */ if (!cpu_online(0)) _debug_hotplug_cpu(0, 1); break; case PM_POST_RESTORE: /* * When a resume really happens, this code won't be called. * * This code is called only when user space hibernation software * prepares for snapshot device during boot time. So we just * call _debug_hotplug_cpu() to restore to CPU0's state prior to * preparing the snapshot device. * * This works for normal boot case in our CPU0 hotplug debug * mode, i.e. CPU0 is offline and user mode hibernation * software initializes during boot time. * * If CPU0 is online and user application accesses snapshot * device after boot time, this will offline CPU0 and user may * see different CPU0 state before and after accessing * the snapshot device. But hopefully this is not a case when * user debugging CPU0 hotplug. Even if users hit this case, * they can easily online CPU0 back. * * To simplify this debug code, we only consider normal boot * case. Otherwise we need to remember CPU0's state and restore * to that state and resolve racy conditions etc. */ _debug_hotplug_cpu(0, 0); break; #endif default: break; } return notifier_from_errno(ret); } static int __init bsp_pm_check_init(void) { /* * Set this bsp_pm_callback as lower priority than * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called * earlier to disable cpu hotplug before bsp online check. */ pm_notifier(bsp_pm_callback, -INT_MAX); return 0; } core_initcall(bsp_pm_check_init); static int msr_build_context(const u32 *msr_id, const int num) { struct saved_msrs *saved_msrs = &saved_context.saved_msrs; struct saved_msr *msr_array; int total_num; int i, j; total_num = saved_msrs->num + num; msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); if (!msr_array) { pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); return -ENOMEM; } if (saved_msrs->array) { /* * Multiple callbacks can invoke this function, so copy any * MSR save requests from previous invocations. */ memcpy(msr_array, saved_msrs->array, sizeof(struct saved_msr) * saved_msrs->num); kfree(saved_msrs->array); } for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { msr_array[i].info.msr_no = msr_id[j]; msr_array[i].valid = false; msr_array[i].info.reg.q = 0; } saved_msrs->num = total_num; saved_msrs->array = msr_array; return 0; } /* * The following sections are a quirk framework for problematic BIOSen: * Sometimes MSRs are modified by the BIOSen after suspended to * RAM, this might cause unexpected behavior after wakeup. * Thus we save/restore these specified MSRs across suspend/resume * in order to work around it. * * For any further problematic BIOSen/platforms, * please add your own function similar to msr_initialize_bdw. */ static int msr_initialize_bdw(const struct dmi_system_id *d) { /* Add any extra MSR ids into this array. */ u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); } static const struct dmi_system_id msr_save_dmi_table[] = { { .callback = msr_initialize_bdw, .ident = "BROADWELL BDX_EP", .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), }, }, {} }; static int msr_save_cpuid_features(const struct x86_cpu_id *c) { u32 cpuid_msr_id[] = { MSR_AMD64_CPUID_FN_1, }; pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", c->family); return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); } static const struct x86_cpu_id msr_save_cpu_table[] = { X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), {} }; typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); static int pm_cpu_check(const struct x86_cpu_id *c) { const struct x86_cpu_id *m; int ret = 0; m = x86_match_cpu(msr_save_cpu_table); if (m) { pm_cpu_match_t fn; fn = (pm_cpu_match_t)m->driver_data; ret = fn(m); } return ret; } static int pm_check_save_msr(void) { dmi_check_system(msr_save_dmi_table); pm_cpu_check(msr_save_cpu_table); return 0; } device_initcall(pm_check_save_msr);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1