Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 1199 | 84.38% | 6 | 60.00% |
Alexander Sverdlin | 217 | 15.27% | 2 | 20.00% |
Ben Dooks | 3 | 0.21% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.14% | 1 | 10.00% |
Total | 1421 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org> */ #include <linux/elf.h> #include <linux/ftrace.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/sort.h> #include <linux/moduleloader.h> #include <asm/cache.h> #include <asm/opcodes.h> #ifdef CONFIG_THUMB2_KERNEL #define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \ (PLT_ENT_STRIDE - 4)) #else #define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \ (PLT_ENT_STRIDE - 8)) #endif static const u32 fixed_plts[] = { #ifdef CONFIG_DYNAMIC_FTRACE FTRACE_ADDR, MCOUNT_ADDR, #endif }; static bool in_init(const struct module *mod, unsigned long loc) { return loc - (u32)mod->init_layout.base < mod->init_layout.size; } static void prealloc_fixed(struct mod_plt_sec *pltsec, struct plt_entries *plt) { int i; if (!ARRAY_SIZE(fixed_plts) || pltsec->plt_count) return; pltsec->plt_count = ARRAY_SIZE(fixed_plts); for (i = 0; i < ARRAY_SIZE(plt->ldr); ++i) plt->ldr[i] = PLT_ENT_LDR; BUILD_BUG_ON(sizeof(fixed_plts) > sizeof(plt->lit)); memcpy(plt->lit, fixed_plts, sizeof(fixed_plts)); } u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val) { struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core : &mod->arch.init; struct plt_entries *plt; int idx; /* cache the address, ELF header is available only during module load */ if (!pltsec->plt_ent) pltsec->plt_ent = (struct plt_entries *)pltsec->plt->sh_addr; plt = pltsec->plt_ent; prealloc_fixed(pltsec, plt); for (idx = 0; idx < ARRAY_SIZE(fixed_plts); ++idx) if (plt->lit[idx] == val) return (u32)&plt->ldr[idx]; idx = 0; /* * Look for an existing entry pointing to 'val'. Given that the * relocations are sorted, this will be the last entry we allocated. * (if one exists). */ if (pltsec->plt_count > 0) { plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT; idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT; if (plt->lit[idx] == val) return (u32)&plt->ldr[idx]; idx = (idx + 1) % PLT_ENT_COUNT; if (!idx) plt++; } pltsec->plt_count++; BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size); if (!idx) /* Populate a new set of entries */ *plt = (struct plt_entries){ { [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, }, { val, } }; else plt->lit[idx] = val; return (u32)&plt->ldr[idx]; } #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b)) static int cmp_rel(const void *a, const void *b) { const Elf32_Rel *x = a, *y = b; int i; /* sort by type and symbol index */ i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info)); if (i == 0) i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info)); return i; } static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel) { u32 *tval = (u32 *)(base + rel->r_offset); /* * Do a bitwise compare on the raw addend rather than fully decoding * the offset and doing an arithmetic comparison. * Note that a zero-addend jump/call relocation is encoded taking the * PC bias into account, i.e., -8 for ARM and -4 for Thumb2. */ switch (ELF32_R_TYPE(rel->r_info)) { u16 upper, lower; case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]); lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]); return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe; case R_ARM_CALL: case R_ARM_PC24: case R_ARM_JUMP24: return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe; } BUG(); } static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num) { const Elf32_Rel *prev; /* * Entries are sorted by type and symbol index. That means that, * if a duplicate entry exists, it must be in the preceding * slot. */ if (!num) return false; prev = rel + num - 1; return cmp_rel(rel + num, prev) == 0 && is_zero_addend_relocation(base, prev); } /* Count how many PLT entries we may need */ static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base, const Elf32_Rel *rel, int num, Elf32_Word dstidx) { unsigned int ret = 0; const Elf32_Sym *s; int i; for (i = 0; i < num; i++) { switch (ELF32_R_TYPE(rel[i].r_info)) { case R_ARM_CALL: case R_ARM_PC24: case R_ARM_JUMP24: case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: /* * We only have to consider branch targets that resolve * to symbols that are defined in a different section. * This is not simply a heuristic, it is a fundamental * limitation, since there is no guaranteed way to emit * PLT entries sufficiently close to the branch if the * section size exceeds the range of a branch * instruction. So ignore relocations against defined * symbols if they live in the same section as the * relocation target. */ s = syms + ELF32_R_SYM(rel[i].r_info); if (s->st_shndx == dstidx) break; /* * Jump relocations with non-zero addends against * undefined symbols are supported by the ELF spec, but * do not occur in practice (e.g., 'jump n bytes past * the entry point of undefined function symbol f'). * So we need to support them, but there is no need to * take them into consideration when trying to optimize * this code. So let's only check for duplicates when * the addend is zero. (Note that calls into the core * module via init PLT entries could involve section * relative symbol references with non-zero addends, for * which we may end up emitting duplicates, but the init * PLT is released along with the rest of the .init * region as soon as module loading completes.) */ if (!is_zero_addend_relocation(base, rel + i) || !duplicate_rel(base, rel, i)) ret++; } } return ret; } int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { unsigned long core_plts = ARRAY_SIZE(fixed_plts); unsigned long init_plts = ARRAY_SIZE(fixed_plts); Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum; Elf32_Sym *syms = NULL; /* * To store the PLTs, we expand the .text section for core module code * and for initialization code. */ for (s = sechdrs; s < sechdrs_end; ++s) { if (strcmp(".plt", secstrings + s->sh_name) == 0) mod->arch.core.plt = s; else if (strcmp(".init.plt", secstrings + s->sh_name) == 0) mod->arch.init.plt = s; else if (s->sh_type == SHT_SYMTAB) syms = (Elf32_Sym *)s->sh_addr; } if (!mod->arch.core.plt || !mod->arch.init.plt) { pr_err("%s: module PLT section(s) missing\n", mod->name); return -ENOEXEC; } if (!syms) { pr_err("%s: module symtab section missing\n", mod->name); return -ENOEXEC; } for (s = sechdrs + 1; s < sechdrs_end; ++s) { Elf32_Rel *rels = (void *)ehdr + s->sh_offset; int numrels = s->sh_size / sizeof(Elf32_Rel); Elf32_Shdr *dstsec = sechdrs + s->sh_info; if (s->sh_type != SHT_REL) continue; /* ignore relocations that operate on non-exec sections */ if (!(dstsec->sh_flags & SHF_EXECINSTR)) continue; /* sort by type and symbol index */ sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL); if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0) core_plts += count_plts(syms, dstsec->sh_addr, rels, numrels, s->sh_info); else init_plts += count_plts(syms, dstsec->sh_addr, rels, numrels, s->sh_info); } mod->arch.core.plt->sh_type = SHT_NOBITS; mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES; mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE, sizeof(struct plt_entries)); mod->arch.core.plt_count = 0; mod->arch.core.plt_ent = NULL; mod->arch.init.plt->sh_type = SHT_NOBITS; mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES; mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE, sizeof(struct plt_entries)); mod->arch.init.plt_count = 0; mod->arch.init.plt_ent = NULL; pr_debug("%s: plt=%x, init.plt=%x\n", __func__, mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1