Contributors: 27
Author Tokens Token Proportion Commits Commit Proportion
David S. Miller 930 43.14% 34 39.53%
Linus Torvalds (pre-git) 847 39.29% 17 19.77%
Linus Torvalds 143 6.63% 4 4.65%
Mike Rapoport 34 1.58% 1 1.16%
Kirill V Tkhai 32 1.48% 1 1.16%
Nicholas Piggin 30 1.39% 1 1.16%
Kautuk Consul 30 1.39% 1 1.16%
Mike Kravetz 12 0.56% 2 2.33%
Nitin Gupta 11 0.51% 1 1.16%
David Ahern 10 0.46% 1 1.16%
Johannes Weiner 9 0.42% 1 1.16%
Eric W. Biedermann 9 0.42% 1 1.16%
Bob Picco 9 0.42% 1 1.16%
Michel Lespinasse 8 0.37% 3 3.49%
Peter Xu 7 0.32% 4 4.65%
Rusty Russell 5 0.23% 2 2.33%
David Hildenbrand 5 0.23% 1 1.16%
Prasanna S. Panchamukhi 5 0.23% 1 1.16%
Sam Ravnborg 3 0.14% 1 1.16%
Ingo Molnar 3 0.14% 1 1.16%
Christoph Hellwig 3 0.14% 1 1.16%
Anshuman Khandual 3 0.14% 1 1.16%
Shaohua Li 3 0.14% 1 1.16%
Souptick Joarder 2 0.09% 1 1.16%
Paul Gortmaker 1 0.05% 1 1.16%
Kees Cook 1 0.05% 1 1.16%
Greg Kroah-Hartman 1 0.05% 1 1.16%
Total 2156 86


// SPDX-License-Identifier: GPL-2.0
/*
 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
 *
 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
 */

#include <asm/head.h>

#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/extable.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/interrupt.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/percpu.h>
#include <linux/context_tracking.h>
#include <linux/uaccess.h>

#include <asm/page.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/asi.h>
#include <asm/lsu.h>
#include <asm/sections.h>
#include <asm/mmu_context.h>
#include <asm/setup.h>

int show_unhandled_signals = 1;

static void __kprobes unhandled_fault(unsigned long address,
				      struct task_struct *tsk,
				      struct pt_regs *regs)
{
	if ((unsigned long) address < PAGE_SIZE) {
		printk(KERN_ALERT "Unable to handle kernel NULL "
		       "pointer dereference\n");
	} else {
		printk(KERN_ALERT "Unable to handle kernel paging request "
		       "at virtual address %016lx\n", (unsigned long)address);
	}
	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
	       (tsk->mm ?
		CTX_HWBITS(tsk->mm->context) :
		CTX_HWBITS(tsk->active_mm->context)));
	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
		          (unsigned long) tsk->active_mm->pgd));
	die_if_kernel("Oops", regs);
}

static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
{
	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
	       regs->tpc);
	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
	dump_stack();
	unhandled_fault(regs->tpc, current, regs);
}

/*
 * We now make sure that mmap_lock is held in all paths that call
 * this. Additionally, to prevent kswapd from ripping ptes from
 * under us, raise interrupts around the time that we look at the
 * pte, kswapd will have to wait to get his smp ipi response from
 * us. vmtruncate likewise. This saves us having to get pte lock.
 */
static unsigned int get_user_insn(unsigned long tpc)
{
	pgd_t *pgdp = pgd_offset(current->mm, tpc);
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep, pte;
	unsigned long pa;
	u32 insn = 0;

	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
		goto out;
	p4dp = p4d_offset(pgdp, tpc);
	if (p4d_none(*p4dp) || unlikely(p4d_bad(*p4dp)))
		goto out;
	pudp = pud_offset(p4dp, tpc);
	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
		goto out;

	/* This disables preemption for us as well. */
	local_irq_disable();

	pmdp = pmd_offset(pudp, tpc);
	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
		goto out_irq_enable;

#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
	if (is_hugetlb_pmd(*pmdp)) {
		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
		pa += tpc & ~HPAGE_MASK;

		/* Use phys bypass so we don't pollute dtlb/dcache. */
		__asm__ __volatile__("lduwa [%1] %2, %0"
				     : "=r" (insn)
				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
	} else
#endif
	{
		ptep = pte_offset_map(pmdp, tpc);
		pte = *ptep;
		if (pte_present(pte)) {
			pa  = (pte_pfn(pte) << PAGE_SHIFT);
			pa += (tpc & ~PAGE_MASK);

			/* Use phys bypass so we don't pollute dtlb/dcache. */
			__asm__ __volatile__("lduwa [%1] %2, %0"
					     : "=r" (insn)
					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
		}
		pte_unmap(ptep);
	}
out_irq_enable:
	local_irq_enable();
out:
	return insn;
}

static inline void
show_signal_msg(struct pt_regs *regs, int sig, int code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, sig))
		return;

	if (!printk_ratelimit())
		return;

	printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
	       tsk->comm, task_pid_nr(tsk), address,
	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
	       (void *)regs->u_regs[UREG_FP], code);

	print_vma_addr(KERN_CONT " in ", regs->tpc);

	printk(KERN_CONT "\n");
}

static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
			     unsigned long fault_addr, unsigned int insn,
			     int fault_code)
{
	unsigned long addr;

	if (fault_code & FAULT_CODE_ITLB) {
		addr = regs->tpc;
	} else {
		/* If we were able to probe the faulting instruction, use it
		 * to compute a precise fault address.  Otherwise use the fault
		 * time provided address which may only have page granularity.
		 */
		if (insn)
			addr = compute_effective_address(regs, insn, 0);
		else
			addr = fault_addr;
	}

	if (unlikely(show_unhandled_signals))
		show_signal_msg(regs, sig, code, addr, current);

	force_sig_fault(sig, code, (void __user *) addr);
}

static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
{
	if (!insn) {
		if (!regs->tpc || (regs->tpc & 0x3))
			return 0;
		if (regs->tstate & TSTATE_PRIV) {
			insn = *(unsigned int *) regs->tpc;
		} else {
			insn = get_user_insn(regs->tpc);
		}
	}
	return insn;
}

static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
				      int fault_code, unsigned int insn,
				      unsigned long address)
{
	unsigned char asi = ASI_P;
 
	if ((!insn) && (regs->tstate & TSTATE_PRIV))
		goto cannot_handle;

	/* If user insn could be read (thus insn is zero), that
	 * is fine.  We will just gun down the process with a signal
	 * in that case.
	 */

	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
	    (insn & 0xc0800000) == 0xc0800000) {
		if (insn & 0x2000)
			asi = (regs->tstate >> 24);
		else
			asi = (insn >> 5);
		if ((asi & 0xf2) == 0x82) {
			if (insn & 0x1000000) {
				handle_ldf_stq(insn, regs);
			} else {
				/* This was a non-faulting load. Just clear the
				 * destination register(s) and continue with the next
				 * instruction. -jj
				 */
				handle_ld_nf(insn, regs);
			}
			return;
		}
	}
		
	/* Is this in ex_table? */
	if (regs->tstate & TSTATE_PRIV) {
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
	} else {
		/* The si_code was set to make clear whether
		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
		 */
		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
		return;
	}

cannot_handle:
	unhandled_fault (address, current, regs);
}

static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
{
	static int times;

	if (times++ < 10)
		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
		       "64-bit TPC [%lx]\n",
		       current->comm, current->pid,
		       regs->tpc);
	show_regs(regs);
}

asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	unsigned int insn = 0;
	int si_code, fault_code;
	vm_fault_t fault;
	unsigned long address, mm_rss;
	unsigned int flags = FAULT_FLAG_DEFAULT;

	fault_code = get_thread_fault_code();

	if (kprobe_page_fault(regs, 0))
		goto exit_exception;

	si_code = SEGV_MAPERR;
	address = current_thread_info()->fault_address;

	if ((fault_code & FAULT_CODE_ITLB) &&
	    (fault_code & FAULT_CODE_DTLB))
		BUG();

	if (test_thread_flag(TIF_32BIT)) {
		if (!(regs->tstate & TSTATE_PRIV)) {
			if (unlikely((regs->tpc >> 32) != 0)) {
				bogus_32bit_fault_tpc(regs);
				goto intr_or_no_mm;
			}
		}
		if (unlikely((address >> 32) != 0))
			goto intr_or_no_mm;
	}

	if (regs->tstate & TSTATE_PRIV) {
		unsigned long tpc = regs->tpc;

		/* Sanity check the PC. */
		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
			/* Valid, no problems... */
		} else {
			bad_kernel_pc(regs, address);
			goto exit_exception;
		}
	} else
		flags |= FAULT_FLAG_USER;

	/*
	 * If we're in an interrupt or have no user
	 * context, we must not take the fault..
	 */
	if (faulthandler_disabled() || !mm)
		goto intr_or_no_mm;

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

	if (!mmap_read_trylock(mm)) {
		if ((regs->tstate & TSTATE_PRIV) &&
		    !search_exception_tables(regs->tpc)) {
			insn = get_fault_insn(regs, insn);
			goto handle_kernel_fault;
		}

retry:
		mmap_read_lock(mm);
	}

	if (fault_code & FAULT_CODE_BAD_RA)
		goto do_sigbus;

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;

	/* Pure DTLB misses do not tell us whether the fault causing
	 * load/store/atomic was a write or not, it only says that there
	 * was no match.  So in such a case we (carefully) read the
	 * instruction to try and figure this out.  It's an optimization
	 * so it's ok if we can't do this.
	 *
	 * Special hack, window spill/fill knows the exact fault type.
	 */
	if (((fault_code &
	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
	    (vma->vm_flags & VM_WRITE) != 0) {
		insn = get_fault_insn(regs, 0);
		if (!insn)
			goto continue_fault;
		/* All loads, stores and atomics have bits 30 and 31 both set
		 * in the instruction.  Bit 21 is set in all stores, but we
		 * have to avoid prefetches which also have bit 21 set.
		 */
		if ((insn & 0xc0200000) == 0xc0200000 &&
		    (insn & 0x01780000) != 0x01680000) {
			/* Don't bother updating thread struct value,
			 * because update_mmu_cache only cares which tlb
			 * the access came from.
			 */
			fault_code |= FAULT_CODE_WRITE;
		}
	}
continue_fault:

	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
	if (!(fault_code & FAULT_CODE_WRITE)) {
		/* Non-faulting loads shouldn't expand stack. */
		insn = get_fault_insn(regs, insn);
		if ((insn & 0xc0800000) == 0xc0800000) {
			unsigned char asi;

			if (insn & 0x2000)
				asi = (regs->tstate >> 24);
			else
				asi = (insn >> 5);
			if ((asi & 0xf2) == 0x82)
				goto bad_area;
		}
	}
	if (expand_stack(vma, address))
		goto bad_area;
	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
good_area:
	si_code = SEGV_ACCERR;

	/* If we took a ITLB miss on a non-executable page, catch
	 * that here.
	 */
	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
		WARN(address != regs->tpc,
		     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
		WARN_ON(regs->tstate & TSTATE_PRIV);
		goto bad_area;
	}

	if (fault_code & FAULT_CODE_WRITE) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;

		/* Spitfire has an icache which does not snoop
		 * processor stores.  Later processors do...
		 */
		if (tlb_type == spitfire &&
		    (vma->vm_flags & VM_EXEC) != 0 &&
		    vma->vm_file != NULL)
			set_thread_fault_code(fault_code |
					      FAULT_CODE_BLKCOMMIT);

		flags |= FAULT_FLAG_WRITE;
	} else {
		/* Allow reads even for write-only mappings */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
			goto bad_area;
	}

	fault = handle_mm_fault(vma, address, flags, regs);

	if (fault_signal_pending(fault, regs))
		goto exit_exception;

	if (unlikely(fault & VM_FAULT_ERROR)) {
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGSEGV)
			goto bad_area;
		else if (fault & VM_FAULT_SIGBUS)
			goto do_sigbus;
		BUG();
	}

	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_RETRY) {
			flags |= FAULT_FLAG_TRIED;

			/* No need to mmap_read_unlock(mm) as we would
			 * have already released it in __lock_page_or_retry
			 * in mm/filemap.c.
			 */

			goto retry;
		}
	}
	mmap_read_unlock(mm);

	mm_rss = get_mm_rss(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
	mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
#endif
	if (unlikely(mm_rss >
		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
		tsb_grow(mm, MM_TSB_BASE, mm_rss);
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
	mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
	mm_rss *= REAL_HPAGE_PER_HPAGE;
	if (unlikely(mm_rss >
		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
		else
			hugetlb_setup(regs);

	}
#endif
exit_exception:
	exception_exit(prev_state);
	return;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
bad_area:
	insn = get_fault_insn(regs, insn);
	mmap_read_unlock(mm);

handle_kernel_fault:
	do_kernel_fault(regs, si_code, fault_code, insn, address);
	goto exit_exception;

/*
 * We ran out of memory, or some other thing happened to us that made
 * us unable to handle the page fault gracefully.
 */
out_of_memory:
	insn = get_fault_insn(regs, insn);
	mmap_read_unlock(mm);
	if (!(regs->tstate & TSTATE_PRIV)) {
		pagefault_out_of_memory();
		goto exit_exception;
	}
	goto handle_kernel_fault;

intr_or_no_mm:
	insn = get_fault_insn(regs, 0);
	goto handle_kernel_fault;

do_sigbus:
	insn = get_fault_insn(regs, insn);
	mmap_read_unlock(mm);

	/*
	 * Send a sigbus, regardless of whether we were in kernel
	 * or user mode.
	 */
	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);

	/* Kernel mode? Handle exceptions or die */
	if (regs->tstate & TSTATE_PRIV)
		goto handle_kernel_fault;
}