Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sören Brinkmann | 2678 | 59.17% | 1 | 3.70% |
Radu Pirea | 889 | 19.64% | 1 | 3.70% |
Anurag Kumar Vulisha | 266 | 5.88% | 1 | 3.70% |
Harini Katakam | 215 | 4.75% | 2 | 7.41% |
Shubhrajyoti Datta | 212 | 4.68% | 4 | 14.81% |
Raviteja Narayanam | 134 | 2.96% | 2 | 7.41% |
Alex Williams | 40 | 0.88% | 1 | 3.70% |
Topi Kuutela | 32 | 0.71% | 1 | 3.70% |
Sergey Shtylyov | 16 | 0.35% | 1 | 3.70% |
Masahiro Yamada | 12 | 0.27% | 2 | 7.41% |
Nicholas Mc Guire | 7 | 0.15% | 1 | 3.70% |
Krzysztof Kozlowski | 5 | 0.11% | 1 | 3.70% |
Dejin Zheng | 4 | 0.09% | 1 | 3.70% |
Vishnu Motghare | 4 | 0.09% | 1 | 3.70% |
Mike Looijmans | 3 | 0.07% | 1 | 3.70% |
Qinglang Miao | 2 | 0.04% | 1 | 3.70% |
Andy Shevchenko | 2 | 0.04% | 1 | 3.70% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.70% |
Michal Simek | 1 | 0.02% | 1 | 3.70% |
Lee Jones | 1 | 0.02% | 1 | 3.70% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 3.70% |
Total | 4526 | 27 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * I2C bus driver for the Cadence I2C controller. * * Copyright (C) 2009 - 2014 Xilinx, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/pm_runtime.h> /* Register offsets for the I2C device. */ #define CDNS_I2C_CR_OFFSET 0x00 /* Control Register, RW */ #define CDNS_I2C_SR_OFFSET 0x04 /* Status Register, RO */ #define CDNS_I2C_ADDR_OFFSET 0x08 /* I2C Address Register, RW */ #define CDNS_I2C_DATA_OFFSET 0x0C /* I2C Data Register, RW */ #define CDNS_I2C_ISR_OFFSET 0x10 /* IRQ Status Register, RW */ #define CDNS_I2C_XFER_SIZE_OFFSET 0x14 /* Transfer Size Register, RW */ #define CDNS_I2C_TIME_OUT_OFFSET 0x1C /* Time Out Register, RW */ #define CDNS_I2C_IMR_OFFSET 0x20 /* IRQ Mask Register, RO */ #define CDNS_I2C_IER_OFFSET 0x24 /* IRQ Enable Register, WO */ #define CDNS_I2C_IDR_OFFSET 0x28 /* IRQ Disable Register, WO */ /* Control Register Bit mask definitions */ #define CDNS_I2C_CR_HOLD BIT(4) /* Hold Bus bit */ #define CDNS_I2C_CR_ACK_EN BIT(3) #define CDNS_I2C_CR_NEA BIT(2) #define CDNS_I2C_CR_MS BIT(1) /* Read or Write Master transfer 0 = Transmitter, 1 = Receiver */ #define CDNS_I2C_CR_RW BIT(0) /* 1 = Auto init FIFO to zeroes */ #define CDNS_I2C_CR_CLR_FIFO BIT(6) #define CDNS_I2C_CR_DIVA_SHIFT 14 #define CDNS_I2C_CR_DIVA_MASK (3 << CDNS_I2C_CR_DIVA_SHIFT) #define CDNS_I2C_CR_DIVB_SHIFT 8 #define CDNS_I2C_CR_DIVB_MASK (0x3f << CDNS_I2C_CR_DIVB_SHIFT) #define CDNS_I2C_CR_MASTER_EN_MASK (CDNS_I2C_CR_NEA | \ CDNS_I2C_CR_ACK_EN | \ CDNS_I2C_CR_MS) #define CDNS_I2C_CR_SLAVE_EN_MASK ~CDNS_I2C_CR_MASTER_EN_MASK /* Status Register Bit mask definitions */ #define CDNS_I2C_SR_BA BIT(8) #define CDNS_I2C_SR_TXDV BIT(6) #define CDNS_I2C_SR_RXDV BIT(5) #define CDNS_I2C_SR_RXRW BIT(3) /* * I2C Address Register Bit mask definitions * Normal addressing mode uses [6:0] bits. Extended addressing mode uses [9:0] * bits. A write access to this register always initiates a transfer if the I2C * is in master mode. */ #define CDNS_I2C_ADDR_MASK 0x000003FF /* I2C Address Mask */ /* * I2C Interrupt Registers Bit mask definitions * All the four interrupt registers (Status/Mask/Enable/Disable) have the same * bit definitions. */ #define CDNS_I2C_IXR_ARB_LOST BIT(9) #define CDNS_I2C_IXR_RX_UNF BIT(7) #define CDNS_I2C_IXR_TX_OVF BIT(6) #define CDNS_I2C_IXR_RX_OVF BIT(5) #define CDNS_I2C_IXR_SLV_RDY BIT(4) #define CDNS_I2C_IXR_TO BIT(3) #define CDNS_I2C_IXR_NACK BIT(2) #define CDNS_I2C_IXR_DATA BIT(1) #define CDNS_I2C_IXR_COMP BIT(0) #define CDNS_I2C_IXR_ALL_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \ CDNS_I2C_IXR_RX_UNF | \ CDNS_I2C_IXR_TX_OVF | \ CDNS_I2C_IXR_RX_OVF | \ CDNS_I2C_IXR_SLV_RDY | \ CDNS_I2C_IXR_TO | \ CDNS_I2C_IXR_NACK | \ CDNS_I2C_IXR_DATA | \ CDNS_I2C_IXR_COMP) #define CDNS_I2C_IXR_ERR_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \ CDNS_I2C_IXR_RX_UNF | \ CDNS_I2C_IXR_TX_OVF | \ CDNS_I2C_IXR_RX_OVF | \ CDNS_I2C_IXR_NACK) #define CDNS_I2C_ENABLED_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \ CDNS_I2C_IXR_RX_UNF | \ CDNS_I2C_IXR_TX_OVF | \ CDNS_I2C_IXR_RX_OVF | \ CDNS_I2C_IXR_NACK | \ CDNS_I2C_IXR_DATA | \ CDNS_I2C_IXR_COMP) #define CDNS_I2C_IXR_SLAVE_INTR_MASK (CDNS_I2C_IXR_RX_UNF | \ CDNS_I2C_IXR_TX_OVF | \ CDNS_I2C_IXR_RX_OVF | \ CDNS_I2C_IXR_TO | \ CDNS_I2C_IXR_NACK | \ CDNS_I2C_IXR_DATA | \ CDNS_I2C_IXR_COMP) #define CDNS_I2C_TIMEOUT msecs_to_jiffies(1000) /* timeout for pm runtime autosuspend */ #define CNDS_I2C_PM_TIMEOUT 1000 /* ms */ #define CDNS_I2C_FIFO_DEPTH 16 /* FIFO depth at which the DATA interrupt occurs */ #define CDNS_I2C_DATA_INTR_DEPTH (CDNS_I2C_FIFO_DEPTH - 2) #define CDNS_I2C_MAX_TRANSFER_SIZE 255 /* Transfer size in multiples of data interrupt depth */ #define CDNS_I2C_TRANSFER_SIZE (CDNS_I2C_MAX_TRANSFER_SIZE - 3) #define DRIVER_NAME "cdns-i2c" #define CDNS_I2C_DIVA_MAX 4 #define CDNS_I2C_DIVB_MAX 64 #define CDNS_I2C_TIMEOUT_MAX 0xFF #define CDNS_I2C_BROKEN_HOLD_BIT BIT(0) #define cdns_i2c_readreg(offset) readl_relaxed(id->membase + offset) #define cdns_i2c_writereg(val, offset) writel_relaxed(val, id->membase + offset) #if IS_ENABLED(CONFIG_I2C_SLAVE) /** * enum cdns_i2c_mode - I2C Controller current operating mode * * @CDNS_I2C_MODE_SLAVE: I2C controller operating in slave mode * @CDNS_I2C_MODE_MASTER: I2C Controller operating in master mode */ enum cdns_i2c_mode { CDNS_I2C_MODE_SLAVE, CDNS_I2C_MODE_MASTER, }; /** * enum cdns_i2c_slave_state - Slave state when I2C is operating in slave mode * * @CDNS_I2C_SLAVE_STATE_IDLE: I2C slave idle * @CDNS_I2C_SLAVE_STATE_SEND: I2C slave sending data to master * @CDNS_I2C_SLAVE_STATE_RECV: I2C slave receiving data from master */ enum cdns_i2c_slave_state { CDNS_I2C_SLAVE_STATE_IDLE, CDNS_I2C_SLAVE_STATE_SEND, CDNS_I2C_SLAVE_STATE_RECV, }; #endif /** * struct cdns_i2c - I2C device private data structure * * @dev: Pointer to device structure * @membase: Base address of the I2C device * @adap: I2C adapter instance * @p_msg: Message pointer * @err_status: Error status in Interrupt Status Register * @xfer_done: Transfer complete status * @p_send_buf: Pointer to transmit buffer * @p_recv_buf: Pointer to receive buffer * @send_count: Number of bytes still expected to send * @recv_count: Number of bytes still expected to receive * @curr_recv_count: Number of bytes to be received in current transfer * @irq: IRQ number * @input_clk: Input clock to I2C controller * @i2c_clk: Maximum I2C clock speed * @bus_hold_flag: Flag used in repeated start for clearing HOLD bit * @clk: Pointer to struct clk * @clk_rate_change_nb: Notifier block for clock rate changes * @quirks: flag for broken hold bit usage in r1p10 * @ctrl_reg: Cached value of the control register. * @ctrl_reg_diva_divb: value of fields DIV_A and DIV_B from CR register * @slave: Registered slave instance. * @dev_mode: I2C operating role(master/slave). * @slave_state: I2C Slave state(idle/read/write). */ struct cdns_i2c { struct device *dev; void __iomem *membase; struct i2c_adapter adap; struct i2c_msg *p_msg; int err_status; struct completion xfer_done; unsigned char *p_send_buf; unsigned char *p_recv_buf; unsigned int send_count; unsigned int recv_count; unsigned int curr_recv_count; int irq; unsigned long input_clk; unsigned int i2c_clk; unsigned int bus_hold_flag; struct clk *clk; struct notifier_block clk_rate_change_nb; u32 quirks; u32 ctrl_reg; #if IS_ENABLED(CONFIG_I2C_SLAVE) u16 ctrl_reg_diva_divb; struct i2c_client *slave; enum cdns_i2c_mode dev_mode; enum cdns_i2c_slave_state slave_state; #endif }; struct cdns_platform_data { u32 quirks; }; #define to_cdns_i2c(_nb) container_of(_nb, struct cdns_i2c, \ clk_rate_change_nb) /** * cdns_i2c_clear_bus_hold - Clear bus hold bit * @id: Pointer to driver data struct * * Helper to clear the controller's bus hold bit. */ static void cdns_i2c_clear_bus_hold(struct cdns_i2c *id) { u32 reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); if (reg & CDNS_I2C_CR_HOLD) cdns_i2c_writereg(reg & ~CDNS_I2C_CR_HOLD, CDNS_I2C_CR_OFFSET); } static inline bool cdns_is_holdquirk(struct cdns_i2c *id, bool hold_wrkaround) { return (hold_wrkaround && (id->curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1)); } #if IS_ENABLED(CONFIG_I2C_SLAVE) static void cdns_i2c_set_mode(enum cdns_i2c_mode mode, struct cdns_i2c *id) { /* Disable all interrupts */ cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET); /* Clear FIFO and transfer size */ cdns_i2c_writereg(CDNS_I2C_CR_CLR_FIFO, CDNS_I2C_CR_OFFSET); /* Update device mode and state */ id->dev_mode = mode; id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE; switch (mode) { case CDNS_I2C_MODE_MASTER: /* Enable i2c master */ cdns_i2c_writereg(id->ctrl_reg_diva_divb | CDNS_I2C_CR_MASTER_EN_MASK, CDNS_I2C_CR_OFFSET); /* * This delay is needed to give the IP some time to switch to * the master mode. With lower values(like 110 us) i2cdetect * will not detect any slave and without this delay, the IP will * trigger a timeout interrupt. */ usleep_range(115, 125); break; case CDNS_I2C_MODE_SLAVE: /* Enable i2c slave */ cdns_i2c_writereg(id->ctrl_reg_diva_divb & CDNS_I2C_CR_SLAVE_EN_MASK, CDNS_I2C_CR_OFFSET); /* Setting slave address */ cdns_i2c_writereg(id->slave->addr & CDNS_I2C_ADDR_MASK, CDNS_I2C_ADDR_OFFSET); /* Enable slave send/receive interrupts */ cdns_i2c_writereg(CDNS_I2C_IXR_SLAVE_INTR_MASK, CDNS_I2C_IER_OFFSET); break; } } static void cdns_i2c_slave_rcv_data(struct cdns_i2c *id) { u8 bytes; unsigned char data; /* Prepare backend for data reception */ if (id->slave_state == CDNS_I2C_SLAVE_STATE_IDLE) { id->slave_state = CDNS_I2C_SLAVE_STATE_RECV; i2c_slave_event(id->slave, I2C_SLAVE_WRITE_REQUESTED, NULL); } /* Fetch number of bytes to receive */ bytes = cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET); /* Read data and send to backend */ while (bytes--) { data = cdns_i2c_readreg(CDNS_I2C_DATA_OFFSET); i2c_slave_event(id->slave, I2C_SLAVE_WRITE_RECEIVED, &data); } } static void cdns_i2c_slave_send_data(struct cdns_i2c *id) { u8 data; /* Prepare backend for data transmission */ if (id->slave_state == CDNS_I2C_SLAVE_STATE_IDLE) { id->slave_state = CDNS_I2C_SLAVE_STATE_SEND; i2c_slave_event(id->slave, I2C_SLAVE_READ_REQUESTED, &data); } else { i2c_slave_event(id->slave, I2C_SLAVE_READ_PROCESSED, &data); } /* Send data over bus */ cdns_i2c_writereg(data, CDNS_I2C_DATA_OFFSET); } /** * cdns_i2c_slave_isr - Interrupt handler for the I2C device in slave role * @ptr: Pointer to I2C device private data * * This function handles the data interrupt and transfer complete interrupt of * the I2C device in slave role. * * Return: IRQ_HANDLED always */ static irqreturn_t cdns_i2c_slave_isr(void *ptr) { struct cdns_i2c *id = ptr; unsigned int isr_status, i2c_status; /* Fetch the interrupt status */ isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET); cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET); /* Ignore masked interrupts */ isr_status &= ~cdns_i2c_readreg(CDNS_I2C_IMR_OFFSET); /* Fetch transfer mode (send/receive) */ i2c_status = cdns_i2c_readreg(CDNS_I2C_SR_OFFSET); /* Handle data send/receive */ if (i2c_status & CDNS_I2C_SR_RXRW) { /* Send data to master */ if (isr_status & CDNS_I2C_IXR_DATA) cdns_i2c_slave_send_data(id); if (isr_status & CDNS_I2C_IXR_COMP) { id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE; i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL); } } else { /* Receive data from master */ if (isr_status & CDNS_I2C_IXR_DATA) cdns_i2c_slave_rcv_data(id); if (isr_status & CDNS_I2C_IXR_COMP) { cdns_i2c_slave_rcv_data(id); id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE; i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL); } } /* Master indicated xfer stop or fifo underflow/overflow */ if (isr_status & (CDNS_I2C_IXR_NACK | CDNS_I2C_IXR_RX_OVF | CDNS_I2C_IXR_RX_UNF | CDNS_I2C_IXR_TX_OVF)) { id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE; i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL); cdns_i2c_writereg(CDNS_I2C_CR_CLR_FIFO, CDNS_I2C_CR_OFFSET); } return IRQ_HANDLED; } #endif /** * cdns_i2c_master_isr - Interrupt handler for the I2C device in master role * @ptr: Pointer to I2C device private data * * This function handles the data interrupt, transfer complete interrupt and * the error interrupts of the I2C device in master role. * * Return: IRQ_HANDLED always */ static irqreturn_t cdns_i2c_master_isr(void *ptr) { unsigned int isr_status, avail_bytes, updatetx; unsigned int bytes_to_send; bool hold_quirk; struct cdns_i2c *id = ptr; /* Signal completion only after everything is updated */ int done_flag = 0; irqreturn_t status = IRQ_NONE; isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET); cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET); id->err_status = 0; /* Handling nack and arbitration lost interrupt */ if (isr_status & (CDNS_I2C_IXR_NACK | CDNS_I2C_IXR_ARB_LOST)) { done_flag = 1; status = IRQ_HANDLED; } /* * Check if transfer size register needs to be updated again for a * large data receive operation. */ updatetx = 0; if (id->recv_count > id->curr_recv_count) updatetx = 1; hold_quirk = (id->quirks & CDNS_I2C_BROKEN_HOLD_BIT) && updatetx; /* When receiving, handle data interrupt and completion interrupt */ if (id->p_recv_buf && ((isr_status & CDNS_I2C_IXR_COMP) || (isr_status & CDNS_I2C_IXR_DATA))) { /* Read data if receive data valid is set */ while (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_RXDV) { if (id->recv_count > 0) { *(id->p_recv_buf)++ = cdns_i2c_readreg(CDNS_I2C_DATA_OFFSET); id->recv_count--; id->curr_recv_count--; /* * Clear hold bit that was set for FIFO control * if RX data left is less than or equal to * FIFO DEPTH unless repeated start is selected */ if (id->recv_count <= CDNS_I2C_FIFO_DEPTH && !id->bus_hold_flag) cdns_i2c_clear_bus_hold(id); } else { dev_err(id->adap.dev.parent, "xfer_size reg rollover. xfer aborted!\n"); id->err_status |= CDNS_I2C_IXR_TO; break; } if (cdns_is_holdquirk(id, hold_quirk)) break; } /* * The controller sends NACK to the slave when transfer size * register reaches zero without considering the HOLD bit. * This workaround is implemented for large data transfers to * maintain transfer size non-zero while performing a large * receive operation. */ if (cdns_is_holdquirk(id, hold_quirk)) { /* wait while fifo is full */ while (cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET) != (id->curr_recv_count - CDNS_I2C_FIFO_DEPTH)) ; /* * Check number of bytes to be received against maximum * transfer size and update register accordingly. */ if (((int)(id->recv_count) - CDNS_I2C_FIFO_DEPTH) > CDNS_I2C_TRANSFER_SIZE) { cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE, CDNS_I2C_XFER_SIZE_OFFSET); id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE + CDNS_I2C_FIFO_DEPTH; } else { cdns_i2c_writereg(id->recv_count - CDNS_I2C_FIFO_DEPTH, CDNS_I2C_XFER_SIZE_OFFSET); id->curr_recv_count = id->recv_count; } } else if (id->recv_count && !hold_quirk && !id->curr_recv_count) { /* Set the slave address in address register*/ cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK, CDNS_I2C_ADDR_OFFSET); if (id->recv_count > CDNS_I2C_TRANSFER_SIZE) { cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE, CDNS_I2C_XFER_SIZE_OFFSET); id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE; } else { cdns_i2c_writereg(id->recv_count, CDNS_I2C_XFER_SIZE_OFFSET); id->curr_recv_count = id->recv_count; } } /* Clear hold (if not repeated start) and signal completion */ if ((isr_status & CDNS_I2C_IXR_COMP) && !id->recv_count) { if (!id->bus_hold_flag) cdns_i2c_clear_bus_hold(id); done_flag = 1; } status = IRQ_HANDLED; } /* When sending, handle transfer complete interrupt */ if ((isr_status & CDNS_I2C_IXR_COMP) && !id->p_recv_buf) { /* * If there is more data to be sent, calculate the * space available in FIFO and fill with that many bytes. */ if (id->send_count) { avail_bytes = CDNS_I2C_FIFO_DEPTH - cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET); if (id->send_count > avail_bytes) bytes_to_send = avail_bytes; else bytes_to_send = id->send_count; while (bytes_to_send--) { cdns_i2c_writereg( (*(id->p_send_buf)++), CDNS_I2C_DATA_OFFSET); id->send_count--; } } else { /* * Signal the completion of transaction and * clear the hold bus bit if there are no * further messages to be processed. */ done_flag = 1; } if (!id->send_count && !id->bus_hold_flag) cdns_i2c_clear_bus_hold(id); status = IRQ_HANDLED; } /* Update the status for errors */ id->err_status |= isr_status & CDNS_I2C_IXR_ERR_INTR_MASK; if (id->err_status) status = IRQ_HANDLED; if (done_flag) complete(&id->xfer_done); return status; } /** * cdns_i2c_isr - Interrupt handler for the I2C device * @irq: irq number for the I2C device * @ptr: void pointer to cdns_i2c structure * * This function passes the control to slave/master based on current role of * i2c controller. * * Return: IRQ_HANDLED always */ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) { #if IS_ENABLED(CONFIG_I2C_SLAVE) struct cdns_i2c *id = ptr; if (id->dev_mode == CDNS_I2C_MODE_SLAVE) return cdns_i2c_slave_isr(ptr); #endif return cdns_i2c_master_isr(ptr); } /** * cdns_i2c_mrecv - Prepare and start a master receive operation * @id: pointer to the i2c device structure */ static void cdns_i2c_mrecv(struct cdns_i2c *id) { unsigned int ctrl_reg; unsigned int isr_status; unsigned long flags; bool hold_clear = false; bool irq_save = false; u32 addr; id->p_recv_buf = id->p_msg->buf; id->recv_count = id->p_msg->len; /* Put the controller in master receive mode and clear the FIFO */ ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); ctrl_reg |= CDNS_I2C_CR_RW | CDNS_I2C_CR_CLR_FIFO; if (id->p_msg->flags & I2C_M_RECV_LEN) id->recv_count = I2C_SMBUS_BLOCK_MAX + 1; id->curr_recv_count = id->recv_count; /* * Check for the message size against FIFO depth and set the * 'hold bus' bit if it is greater than FIFO depth. */ if (id->recv_count > CDNS_I2C_FIFO_DEPTH) ctrl_reg |= CDNS_I2C_CR_HOLD; cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET); /* Clear the interrupts in interrupt status register */ isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET); cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET); /* * The no. of bytes to receive is checked against the limit of * max transfer size. Set transfer size register with no of bytes * receive if it is less than transfer size and transfer size if * it is more. Enable the interrupts. */ if (id->recv_count > CDNS_I2C_TRANSFER_SIZE) { cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE, CDNS_I2C_XFER_SIZE_OFFSET); id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE; } else { cdns_i2c_writereg(id->recv_count, CDNS_I2C_XFER_SIZE_OFFSET); } /* Determine hold_clear based on number of bytes to receive and hold flag */ if (!id->bus_hold_flag && ((id->p_msg->flags & I2C_M_RECV_LEN) != I2C_M_RECV_LEN) && (id->recv_count <= CDNS_I2C_FIFO_DEPTH)) { if (cdns_i2c_readreg(CDNS_I2C_CR_OFFSET) & CDNS_I2C_CR_HOLD) { hold_clear = true; if (id->quirks & CDNS_I2C_BROKEN_HOLD_BIT) irq_save = true; } } addr = id->p_msg->addr; addr &= CDNS_I2C_ADDR_MASK; if (hold_clear) { ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET) & ~CDNS_I2C_CR_HOLD; /* * In case of Xilinx Zynq SOC, clear the HOLD bit before transfer size * register reaches '0'. This is an IP bug which causes transfer size * register overflow to 0xFF. To satisfy this timing requirement, * disable the interrupts on current processor core between register * writes to slave address register and control register. */ if (irq_save) local_irq_save(flags); cdns_i2c_writereg(addr, CDNS_I2C_ADDR_OFFSET); cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET); /* Read it back to avoid bufferring and make sure write happens */ cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); if (irq_save) local_irq_restore(flags); } else { cdns_i2c_writereg(addr, CDNS_I2C_ADDR_OFFSET); } cdns_i2c_writereg(CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET); } /** * cdns_i2c_msend - Prepare and start a master send operation * @id: pointer to the i2c device */ static void cdns_i2c_msend(struct cdns_i2c *id) { unsigned int avail_bytes; unsigned int bytes_to_send; unsigned int ctrl_reg; unsigned int isr_status; id->p_recv_buf = NULL; id->p_send_buf = id->p_msg->buf; id->send_count = id->p_msg->len; /* Set the controller in Master transmit mode and clear the FIFO. */ ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); ctrl_reg &= ~CDNS_I2C_CR_RW; ctrl_reg |= CDNS_I2C_CR_CLR_FIFO; /* * Check for the message size against FIFO depth and set the * 'hold bus' bit if it is greater than FIFO depth. */ if (id->send_count > CDNS_I2C_FIFO_DEPTH) ctrl_reg |= CDNS_I2C_CR_HOLD; cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET); /* Clear the interrupts in interrupt status register. */ isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET); cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET); /* * Calculate the space available in FIFO. Check the message length * against the space available, and fill the FIFO accordingly. * Enable the interrupts. */ avail_bytes = CDNS_I2C_FIFO_DEPTH - cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET); if (id->send_count > avail_bytes) bytes_to_send = avail_bytes; else bytes_to_send = id->send_count; while (bytes_to_send--) { cdns_i2c_writereg((*(id->p_send_buf)++), CDNS_I2C_DATA_OFFSET); id->send_count--; } /* * Clear the bus hold flag if there is no more data * and if it is the last message. */ if (!id->bus_hold_flag && !id->send_count) cdns_i2c_clear_bus_hold(id); /* Set the slave address in address register - triggers operation. */ cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK, CDNS_I2C_ADDR_OFFSET); cdns_i2c_writereg(CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET); } /** * cdns_i2c_master_reset - Reset the interface * @adap: pointer to the i2c adapter driver instance * * This function cleanup the fifos, clear the hold bit and status * and disable the interrupts. */ static void cdns_i2c_master_reset(struct i2c_adapter *adap) { struct cdns_i2c *id = adap->algo_data; u32 regval; /* Disable the interrupts */ cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET); /* Clear the hold bit and fifos */ regval = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); regval &= ~CDNS_I2C_CR_HOLD; regval |= CDNS_I2C_CR_CLR_FIFO; cdns_i2c_writereg(regval, CDNS_I2C_CR_OFFSET); /* Update the transfercount register to zero */ cdns_i2c_writereg(0, CDNS_I2C_XFER_SIZE_OFFSET); /* Clear the interrupt status register */ regval = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET); cdns_i2c_writereg(regval, CDNS_I2C_ISR_OFFSET); /* Clear the status register */ regval = cdns_i2c_readreg(CDNS_I2C_SR_OFFSET); cdns_i2c_writereg(regval, CDNS_I2C_SR_OFFSET); } static int cdns_i2c_process_msg(struct cdns_i2c *id, struct i2c_msg *msg, struct i2c_adapter *adap) { unsigned long time_left; u32 reg; id->p_msg = msg; id->err_status = 0; reinit_completion(&id->xfer_done); /* Check for the TEN Bit mode on each msg */ reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); if (msg->flags & I2C_M_TEN) { if (reg & CDNS_I2C_CR_NEA) cdns_i2c_writereg(reg & ~CDNS_I2C_CR_NEA, CDNS_I2C_CR_OFFSET); } else { if (!(reg & CDNS_I2C_CR_NEA)) cdns_i2c_writereg(reg | CDNS_I2C_CR_NEA, CDNS_I2C_CR_OFFSET); } /* Check for the R/W flag on each msg */ if (msg->flags & I2C_M_RD) cdns_i2c_mrecv(id); else cdns_i2c_msend(id); /* Wait for the signal of completion */ time_left = wait_for_completion_timeout(&id->xfer_done, adap->timeout); if (time_left == 0) { cdns_i2c_master_reset(adap); dev_err(id->adap.dev.parent, "timeout waiting on completion\n"); return -ETIMEDOUT; } cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET); /* If it is bus arbitration error, try again */ if (id->err_status & CDNS_I2C_IXR_ARB_LOST) return -EAGAIN; return 0; } /** * cdns_i2c_master_xfer - The main i2c transfer function * @adap: pointer to the i2c adapter driver instance * @msgs: pointer to the i2c message structure * @num: the number of messages to transfer * * Initiates the send/recv activity based on the transfer message received. * * Return: number of msgs processed on success, negative error otherwise */ static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { int ret, count; u32 reg; struct cdns_i2c *id = adap->algo_data; bool hold_quirk; #if IS_ENABLED(CONFIG_I2C_SLAVE) bool change_role = false; #endif ret = pm_runtime_resume_and_get(id->dev); if (ret < 0) return ret; #if IS_ENABLED(CONFIG_I2C_SLAVE) /* Check i2c operating mode and switch if possible */ if (id->dev_mode == CDNS_I2C_MODE_SLAVE) { if (id->slave_state != CDNS_I2C_SLAVE_STATE_IDLE) return -EAGAIN; /* Set mode to master */ cdns_i2c_set_mode(CDNS_I2C_MODE_MASTER, id); /* Mark flag to change role once xfer is completed */ change_role = true; } #endif /* Check if the bus is free */ if (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_BA) { ret = -EAGAIN; goto out; } hold_quirk = !!(id->quirks & CDNS_I2C_BROKEN_HOLD_BIT); /* * Set the flag to one when multiple messages are to be * processed with a repeated start. */ if (num > 1) { /* * This controller does not give completion interrupt after a * master receive message if HOLD bit is set (repeated start), * resulting in SW timeout. Hence, if a receive message is * followed by any other message, an error is returned * indicating that this sequence is not supported. */ for (count = 0; (count < num - 1 && hold_quirk); count++) { if (msgs[count].flags & I2C_M_RD) { dev_warn(adap->dev.parent, "Can't do repeated start after a receive message\n"); ret = -EOPNOTSUPP; goto out; } } id->bus_hold_flag = 1; reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET); reg |= CDNS_I2C_CR_HOLD; cdns_i2c_writereg(reg, CDNS_I2C_CR_OFFSET); } else { id->bus_hold_flag = 0; } /* Process the msg one by one */ for (count = 0; count < num; count++, msgs++) { if (count == (num - 1)) id->bus_hold_flag = 0; ret = cdns_i2c_process_msg(id, msgs, adap); if (ret) goto out; /* Report the other error interrupts to application */ if (id->err_status) { cdns_i2c_master_reset(adap); if (id->err_status & CDNS_I2C_IXR_NACK) { ret = -ENXIO; goto out; } ret = -EIO; goto out; } } ret = num; out: #if IS_ENABLED(CONFIG_I2C_SLAVE) /* Switch i2c mode to slave */ if (change_role) cdns_i2c_set_mode(CDNS_I2C_MODE_SLAVE, id); #endif pm_runtime_mark_last_busy(id->dev); pm_runtime_put_autosuspend(id->dev); return ret; } /** * cdns_i2c_func - Returns the supported features of the I2C driver * @adap: pointer to the i2c adapter structure * * Return: 32 bit value, each bit corresponding to a feature */ static u32 cdns_i2c_func(struct i2c_adapter *adap) { u32 func = I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) | I2C_FUNC_SMBUS_BLOCK_DATA; #if IS_ENABLED(CONFIG_I2C_SLAVE) func |= I2C_FUNC_SLAVE; #endif return func; } #if IS_ENABLED(CONFIG_I2C_SLAVE) static int cdns_reg_slave(struct i2c_client *slave) { int ret; struct cdns_i2c *id = container_of(slave->adapter, struct cdns_i2c, adap); if (id->slave) return -EBUSY; if (slave->flags & I2C_CLIENT_TEN) return -EAFNOSUPPORT; ret = pm_runtime_resume_and_get(id->dev); if (ret < 0) return ret; /* Store slave information */ id->slave = slave; /* Enable I2C slave */ cdns_i2c_set_mode(CDNS_I2C_MODE_SLAVE, id); return 0; } static int cdns_unreg_slave(struct i2c_client *slave) { struct cdns_i2c *id = container_of(slave->adapter, struct cdns_i2c, adap); pm_runtime_put(id->dev); /* Remove slave information */ id->slave = NULL; /* Enable I2C master */ cdns_i2c_set_mode(CDNS_I2C_MODE_MASTER, id); return 0; } #endif static const struct i2c_algorithm cdns_i2c_algo = { .master_xfer = cdns_i2c_master_xfer, .functionality = cdns_i2c_func, #if IS_ENABLED(CONFIG_I2C_SLAVE) .reg_slave = cdns_reg_slave, .unreg_slave = cdns_unreg_slave, #endif }; /** * cdns_i2c_calc_divs - Calculate clock dividers * @f: I2C clock frequency * @input_clk: Input clock frequency * @a: First divider (return value) * @b: Second divider (return value) * * f is used as input and output variable. As input it is used as target I2C * frequency. On function exit f holds the actually resulting I2C frequency. * * Return: 0 on success, negative errno otherwise. */ static int cdns_i2c_calc_divs(unsigned long *f, unsigned long input_clk, unsigned int *a, unsigned int *b) { unsigned long fscl = *f, best_fscl = *f, actual_fscl, temp; unsigned int div_a, div_b, calc_div_a = 0, calc_div_b = 0; unsigned int last_error, current_error; /* calculate (divisor_a+1) x (divisor_b+1) */ temp = input_clk / (22 * fscl); /* * If the calculated value is negative or 0, the fscl input is out of * range. Return error. */ if (!temp || (temp > (CDNS_I2C_DIVA_MAX * CDNS_I2C_DIVB_MAX))) return -EINVAL; last_error = -1; for (div_a = 0; div_a < CDNS_I2C_DIVA_MAX; div_a++) { div_b = DIV_ROUND_UP(input_clk, 22 * fscl * (div_a + 1)); if ((div_b < 1) || (div_b > CDNS_I2C_DIVB_MAX)) continue; div_b--; actual_fscl = input_clk / (22 * (div_a + 1) * (div_b + 1)); if (actual_fscl > fscl) continue; current_error = ((actual_fscl > fscl) ? (actual_fscl - fscl) : (fscl - actual_fscl)); if (last_error > current_error) { calc_div_a = div_a; calc_div_b = div_b; best_fscl = actual_fscl; last_error = current_error; } } *a = calc_div_a; *b = calc_div_b; *f = best_fscl; return 0; } /** * cdns_i2c_setclk - This function sets the serial clock rate for the I2C device * @clk_in: I2C clock input frequency in Hz * @id: Pointer to the I2C device structure * * The device must be idle rather than busy transferring data before setting * these device options. * The data rate is set by values in the control register. * The formula for determining the correct register values is * Fscl = Fpclk/(22 x (divisor_a+1) x (divisor_b+1)) * See the hardware data sheet for a full explanation of setting the serial * clock rate. The clock can not be faster than the input clock divide by 22. * The two most common clock rates are 100KHz and 400KHz. * * Return: 0 on success, negative error otherwise */ static int cdns_i2c_setclk(unsigned long clk_in, struct cdns_i2c *id) { unsigned int div_a, div_b; unsigned int ctrl_reg; int ret = 0; unsigned long fscl = id->i2c_clk; ret = cdns_i2c_calc_divs(&fscl, clk_in, &div_a, &div_b); if (ret) return ret; ctrl_reg = id->ctrl_reg; ctrl_reg &= ~(CDNS_I2C_CR_DIVA_MASK | CDNS_I2C_CR_DIVB_MASK); ctrl_reg |= ((div_a << CDNS_I2C_CR_DIVA_SHIFT) | (div_b << CDNS_I2C_CR_DIVB_SHIFT)); id->ctrl_reg = ctrl_reg; cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET); #if IS_ENABLED(CONFIG_I2C_SLAVE) id->ctrl_reg_diva_divb = ctrl_reg & (CDNS_I2C_CR_DIVA_MASK | CDNS_I2C_CR_DIVB_MASK); #endif return 0; } /** * cdns_i2c_clk_notifier_cb - Clock rate change callback * @nb: Pointer to notifier block * @event: Notification reason * @data: Pointer to notification data object * * This function is called when the cdns_i2c input clock frequency changes. * The callback checks whether a valid bus frequency can be generated after the * change. If so, the change is acknowledged, otherwise the change is aborted. * New dividers are written to the HW in the pre- or post change notification * depending on the scaling direction. * * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK * to acknowledge the change, NOTIFY_DONE if the notification is * considered irrelevant. */ static int cdns_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct cdns_i2c *id = to_cdns_i2c(nb); if (pm_runtime_suspended(id->dev)) return NOTIFY_OK; switch (event) { case PRE_RATE_CHANGE: { unsigned long input_clk = ndata->new_rate; unsigned long fscl = id->i2c_clk; unsigned int div_a, div_b; int ret; ret = cdns_i2c_calc_divs(&fscl, input_clk, &div_a, &div_b); if (ret) { dev_warn(id->adap.dev.parent, "clock rate change rejected\n"); return NOTIFY_STOP; } /* scale up */ if (ndata->new_rate > ndata->old_rate) cdns_i2c_setclk(ndata->new_rate, id); return NOTIFY_OK; } case POST_RATE_CHANGE: id->input_clk = ndata->new_rate; /* scale down */ if (ndata->new_rate < ndata->old_rate) cdns_i2c_setclk(ndata->new_rate, id); return NOTIFY_OK; case ABORT_RATE_CHANGE: /* scale up */ if (ndata->new_rate > ndata->old_rate) cdns_i2c_setclk(ndata->old_rate, id); return NOTIFY_OK; default: return NOTIFY_DONE; } } /** * cdns_i2c_runtime_suspend - Runtime suspend method for the driver * @dev: Address of the platform_device structure * * Put the driver into low power mode. * * Return: 0 always */ static int __maybe_unused cdns_i2c_runtime_suspend(struct device *dev) { struct cdns_i2c *xi2c = dev_get_drvdata(dev); clk_disable(xi2c->clk); return 0; } /** * cdns_i2c_init - Controller initialisation * @id: Device private data structure * * Initialise the i2c controller. * */ static void cdns_i2c_init(struct cdns_i2c *id) { cdns_i2c_writereg(id->ctrl_reg, CDNS_I2C_CR_OFFSET); /* * Cadence I2C controller has a bug wherein it generates * invalid read transaction after HW timeout in master receiver mode. * HW timeout is not used by this driver and the interrupt is disabled. * But the feature itself cannot be disabled. Hence maximum value * is written to this register to reduce the chances of error. */ cdns_i2c_writereg(CDNS_I2C_TIMEOUT_MAX, CDNS_I2C_TIME_OUT_OFFSET); } /** * cdns_i2c_runtime_resume - Runtime resume * @dev: Address of the platform_device structure * * Runtime resume callback. * * Return: 0 on success and error value on error */ static int __maybe_unused cdns_i2c_runtime_resume(struct device *dev) { struct cdns_i2c *xi2c = dev_get_drvdata(dev); int ret; ret = clk_enable(xi2c->clk); if (ret) { dev_err(dev, "Cannot enable clock.\n"); return ret; } cdns_i2c_init(xi2c); return 0; } static const struct dev_pm_ops cdns_i2c_dev_pm_ops = { SET_RUNTIME_PM_OPS(cdns_i2c_runtime_suspend, cdns_i2c_runtime_resume, NULL) }; static const struct cdns_platform_data r1p10_i2c_def = { .quirks = CDNS_I2C_BROKEN_HOLD_BIT, }; static const struct of_device_id cdns_i2c_of_match[] = { { .compatible = "cdns,i2c-r1p10", .data = &r1p10_i2c_def }, { .compatible = "cdns,i2c-r1p14",}, { /* end of table */ } }; MODULE_DEVICE_TABLE(of, cdns_i2c_of_match); /** * cdns_i2c_probe - Platform registration call * @pdev: Handle to the platform device structure * * This function does all the memory allocation and registration for the i2c * device. User can modify the address mode to 10 bit address mode using the * ioctl call with option I2C_TENBIT. * * Return: 0 on success, negative error otherwise */ static int cdns_i2c_probe(struct platform_device *pdev) { struct resource *r_mem; struct cdns_i2c *id; int ret; const struct of_device_id *match; id = devm_kzalloc(&pdev->dev, sizeof(*id), GFP_KERNEL); if (!id) return -ENOMEM; id->dev = &pdev->dev; platform_set_drvdata(pdev, id); match = of_match_node(cdns_i2c_of_match, pdev->dev.of_node); if (match && match->data) { const struct cdns_platform_data *data = match->data; id->quirks = data->quirks; } id->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &r_mem); if (IS_ERR(id->membase)) return PTR_ERR(id->membase); ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; id->irq = ret; id->adap.owner = THIS_MODULE; id->adap.dev.of_node = pdev->dev.of_node; id->adap.algo = &cdns_i2c_algo; id->adap.timeout = CDNS_I2C_TIMEOUT; id->adap.retries = 3; /* Default retry value. */ id->adap.algo_data = id; id->adap.dev.parent = &pdev->dev; init_completion(&id->xfer_done); snprintf(id->adap.name, sizeof(id->adap.name), "Cadence I2C at %08lx", (unsigned long)r_mem->start); id->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(id->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(id->clk), "input clock not found.\n"); ret = clk_prepare_enable(id->clk); if (ret) dev_err(&pdev->dev, "Unable to enable clock.\n"); pm_runtime_set_autosuspend_delay(id->dev, CNDS_I2C_PM_TIMEOUT); pm_runtime_use_autosuspend(id->dev); pm_runtime_set_active(id->dev); pm_runtime_enable(id->dev); id->clk_rate_change_nb.notifier_call = cdns_i2c_clk_notifier_cb; if (clk_notifier_register(id->clk, &id->clk_rate_change_nb)) dev_warn(&pdev->dev, "Unable to register clock notifier.\n"); id->input_clk = clk_get_rate(id->clk); ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency", &id->i2c_clk); if (ret || (id->i2c_clk > I2C_MAX_FAST_MODE_FREQ)) id->i2c_clk = I2C_MAX_STANDARD_MODE_FREQ; #if IS_ENABLED(CONFIG_I2C_SLAVE) /* Set initial mode to master */ id->dev_mode = CDNS_I2C_MODE_MASTER; id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE; #endif id->ctrl_reg = CDNS_I2C_CR_ACK_EN | CDNS_I2C_CR_NEA | CDNS_I2C_CR_MS; ret = cdns_i2c_setclk(id->input_clk, id); if (ret) { dev_err(&pdev->dev, "invalid SCL clock: %u Hz\n", id->i2c_clk); ret = -EINVAL; goto err_clk_dis; } ret = devm_request_irq(&pdev->dev, id->irq, cdns_i2c_isr, 0, DRIVER_NAME, id); if (ret) { dev_err(&pdev->dev, "cannot get irq %d\n", id->irq); goto err_clk_dis; } cdns_i2c_init(id); ret = i2c_add_adapter(&id->adap); if (ret < 0) goto err_clk_dis; dev_info(&pdev->dev, "%u kHz mmio %08lx irq %d\n", id->i2c_clk / 1000, (unsigned long)r_mem->start, id->irq); return 0; err_clk_dis: clk_disable_unprepare(id->clk); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); return ret; } /** * cdns_i2c_remove - Unregister the device after releasing the resources * @pdev: Handle to the platform device structure * * This function frees all the resources allocated to the device. * * Return: 0 always */ static int cdns_i2c_remove(struct platform_device *pdev) { struct cdns_i2c *id = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); i2c_del_adapter(&id->adap); clk_notifier_unregister(id->clk, &id->clk_rate_change_nb); clk_disable_unprepare(id->clk); return 0; } static struct platform_driver cdns_i2c_drv = { .driver = { .name = DRIVER_NAME, .of_match_table = cdns_i2c_of_match, .pm = &cdns_i2c_dev_pm_ops, }, .probe = cdns_i2c_probe, .remove = cdns_i2c_remove, }; module_platform_driver(cdns_i2c_drv); MODULE_AUTHOR("Xilinx Inc."); MODULE_DESCRIPTION("Cadence I2C bus driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1