Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nico Pitre | 4238 | 99.93% | 2 | 66.67% |
Nathan Chancellor | 3 | 0.07% | 1 | 33.33% |
Total | 4241 | 3 |
// SPDX-License-Identifier: BSD-3-Clause /* * Copyright (c) 2020, MIPI Alliance, Inc. * * Author: Nicolas Pitre <npitre@baylibre.com> * * Core driver code with main interface to the I3C subsystem. */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/i3c/master.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/platform_device.h> #include "hci.h" #include "ext_caps.h" #include "cmd.h" #include "dat.h" /* * Host Controller Capabilities and Operation Registers */ #define reg_read(r) readl(hci->base_regs + (r)) #define reg_write(r, v) writel(v, hci->base_regs + (r)) #define reg_set(r, v) reg_write(r, reg_read(r) | (v)) #define reg_clear(r, v) reg_write(r, reg_read(r) & ~(v)) #define HCI_VERSION 0x00 /* HCI Version (in BCD) */ #define HC_CONTROL 0x04 #define HC_CONTROL_BUS_ENABLE BIT(31) #define HC_CONTROL_RESUME BIT(30) #define HC_CONTROL_ABORT BIT(29) #define HC_CONTROL_HALT_ON_CMD_TIMEOUT BIT(12) #define HC_CONTROL_HOT_JOIN_CTRL BIT(8) /* Hot-Join ACK/NACK Control */ #define HC_CONTROL_I2C_TARGET_PRESENT BIT(7) #define HC_CONTROL_PIO_MODE BIT(6) /* DMA/PIO Mode Selector */ #define HC_CONTROL_DATA_BIG_ENDIAN BIT(4) #define HC_CONTROL_IBA_INCLUDE BIT(0) /* Include I3C Broadcast Address */ #define MASTER_DEVICE_ADDR 0x08 /* Master Device Address */ #define MASTER_DYNAMIC_ADDR_VALID BIT(31) /* Dynamic Address is Valid */ #define MASTER_DYNAMIC_ADDR(v) FIELD_PREP(GENMASK(22, 16), v) #define HC_CAPABILITIES 0x0c #define HC_CAP_SG_DC_EN BIT(30) #define HC_CAP_SG_IBI_EN BIT(29) #define HC_CAP_SG_CR_EN BIT(28) #define HC_CAP_MAX_DATA_LENGTH GENMASK(24, 22) #define HC_CAP_CMD_SIZE GENMASK(21, 20) #define HC_CAP_DIRECT_COMMANDS_EN BIT(18) #define HC_CAP_MULTI_LANE_EN BIT(15) #define HC_CAP_CMD_CCC_DEFBYTE BIT(10) #define HC_CAP_HDR_BT_EN BIT(8) #define HC_CAP_HDR_TS_EN BIT(7) #define HC_CAP_HDR_DDR_EN BIT(6) #define HC_CAP_NON_CURRENT_MASTER_CAP BIT(5) /* master handoff capable */ #define HC_CAP_DATA_BYTE_CFG_EN BIT(4) /* endian selection possible */ #define HC_CAP_AUTO_COMMAND BIT(3) #define HC_CAP_COMBO_COMMAND BIT(2) #define RESET_CONTROL 0x10 #define BUS_RESET BIT(31) #define BUS_RESET_TYPE GENMASK(30, 29) #define IBI_QUEUE_RST BIT(5) #define RX_FIFO_RST BIT(4) #define TX_FIFO_RST BIT(3) #define RESP_QUEUE_RST BIT(2) #define CMD_QUEUE_RST BIT(1) #define SOFT_RST BIT(0) /* Core Reset */ #define PRESENT_STATE 0x14 #define STATE_CURRENT_MASTER BIT(2) #define INTR_STATUS 0x20 #define INTR_STATUS_ENABLE 0x24 #define INTR_SIGNAL_ENABLE 0x28 #define INTR_FORCE 0x2c #define INTR_HC_CMD_SEQ_UFLOW_STAT BIT(12) /* Cmd Sequence Underflow */ #define INTR_HC_RESET_CANCEL BIT(11) /* HC Cancelled Reset */ #define INTR_HC_INTERNAL_ERR BIT(10) /* HC Internal Error */ #define INTR_HC_PIO BIT(8) /* cascaded PIO interrupt */ #define INTR_HC_RINGS GENMASK(7, 0) #define DAT_SECTION 0x30 /* Device Address Table */ #define DAT_ENTRY_SIZE GENMASK(31, 28) #define DAT_TABLE_SIZE GENMASK(18, 12) #define DAT_TABLE_OFFSET GENMASK(11, 0) #define DCT_SECTION 0x34 /* Device Characteristics Table */ #define DCT_ENTRY_SIZE GENMASK(31, 28) #define DCT_TABLE_INDEX GENMASK(23, 19) #define DCT_TABLE_SIZE GENMASK(18, 12) #define DCT_TABLE_OFFSET GENMASK(11, 0) #define RING_HEADERS_SECTION 0x38 #define RING_HEADERS_OFFSET GENMASK(15, 0) #define PIO_SECTION 0x3c #define PIO_REGS_OFFSET GENMASK(15, 0) /* PIO Offset */ #define EXT_CAPS_SECTION 0x40 #define EXT_CAPS_OFFSET GENMASK(15, 0) #define IBI_NOTIFY_CTRL 0x58 /* IBI Notify Control */ #define IBI_NOTIFY_SIR_REJECTED BIT(3) /* Rejected Target Interrupt Request */ #define IBI_NOTIFY_MR_REJECTED BIT(1) /* Rejected Master Request Control */ #define IBI_NOTIFY_HJ_REJECTED BIT(0) /* Rejected Hot-Join Control */ #define DEV_CTX_BASE_LO 0x60 #define DEV_CTX_BASE_HI 0x64 static inline struct i3c_hci *to_i3c_hci(struct i3c_master_controller *m) { return container_of(m, struct i3c_hci, master); } static int i3c_hci_bus_init(struct i3c_master_controller *m) { struct i3c_hci *hci = to_i3c_hci(m); struct i3c_device_info info; int ret; DBG(""); if (hci->cmd == &mipi_i3c_hci_cmd_v1) { ret = mipi_i3c_hci_dat_v1.init(hci); if (ret) return ret; } ret = i3c_master_get_free_addr(m, 0); if (ret < 0) return ret; reg_write(MASTER_DEVICE_ADDR, MASTER_DYNAMIC_ADDR(ret) | MASTER_DYNAMIC_ADDR_VALID); memset(&info, 0, sizeof(info)); info.dyn_addr = ret; ret = i3c_master_set_info(m, &info); if (ret) return ret; ret = hci->io->init(hci); if (ret) return ret; reg_set(HC_CONTROL, HC_CONTROL_BUS_ENABLE); DBG("HC_CONTROL = %#x", reg_read(HC_CONTROL)); return 0; } static void i3c_hci_bus_cleanup(struct i3c_master_controller *m) { struct i3c_hci *hci = to_i3c_hci(m); DBG(""); reg_clear(HC_CONTROL, HC_CONTROL_BUS_ENABLE); hci->io->cleanup(hci); if (hci->cmd == &mipi_i3c_hci_cmd_v1) mipi_i3c_hci_dat_v1.cleanup(hci); } void mipi_i3c_hci_resume(struct i3c_hci *hci) { /* the HC_CONTROL_RESUME bit is R/W1C so just read and write back */ reg_write(HC_CONTROL, reg_read(HC_CONTROL)); } /* located here rather than pio.c because needed bits are in core reg space */ void mipi_i3c_hci_pio_reset(struct i3c_hci *hci) { reg_write(RESET_CONTROL, RX_FIFO_RST | TX_FIFO_RST | RESP_QUEUE_RST); } /* located here rather than dct.c because needed bits are in core reg space */ void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci) { reg_write(DCT_SECTION, FIELD_PREP(DCT_TABLE_INDEX, 0)); } static int i3c_hci_send_ccc_cmd(struct i3c_master_controller *m, struct i3c_ccc_cmd *ccc) { struct i3c_hci *hci = to_i3c_hci(m); struct hci_xfer *xfer; bool raw = !!(hci->quirks & HCI_QUIRK_RAW_CCC); bool prefixed = raw && !!(ccc->id & I3C_CCC_DIRECT); unsigned int nxfers = ccc->ndests + prefixed; DECLARE_COMPLETION_ONSTACK(done); int i, last, ret = 0; DBG("cmd=%#x rnw=%d ndests=%d data[0].len=%d", ccc->id, ccc->rnw, ccc->ndests, ccc->dests[0].payload.len); xfer = hci_alloc_xfer(nxfers); if (!xfer) return -ENOMEM; if (prefixed) { xfer->data = NULL; xfer->data_len = 0; xfer->rnw = false; hci->cmd->prep_ccc(hci, xfer, I3C_BROADCAST_ADDR, ccc->id, true); xfer++; } for (i = 0; i < nxfers - prefixed; i++) { xfer[i].data = ccc->dests[i].payload.data; xfer[i].data_len = ccc->dests[i].payload.len; xfer[i].rnw = ccc->rnw; ret = hci->cmd->prep_ccc(hci, &xfer[i], ccc->dests[i].addr, ccc->id, raw); if (ret) goto out; xfer[i].cmd_desc[0] |= CMD_0_ROC; } last = i - 1; xfer[last].cmd_desc[0] |= CMD_0_TOC; xfer[last].completion = &done; if (prefixed) xfer--; ret = hci->io->queue_xfer(hci, xfer, nxfers); if (ret) goto out; if (!wait_for_completion_timeout(&done, HZ) && hci->io->dequeue_xfer(hci, xfer, nxfers)) { ret = -ETIME; goto out; } for (i = prefixed; i < nxfers; i++) { if (ccc->rnw) ccc->dests[i - prefixed].payload.len = RESP_DATA_LENGTH(xfer[i].response); if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) { ret = -EIO; goto out; } } if (ccc->rnw) DBG("got: %*ph", ccc->dests[0].payload.len, ccc->dests[0].payload.data); out: hci_free_xfer(xfer, nxfers); return ret; } static int i3c_hci_daa(struct i3c_master_controller *m) { struct i3c_hci *hci = to_i3c_hci(m); DBG(""); return hci->cmd->perform_daa(hci); } static int i3c_hci_priv_xfers(struct i3c_dev_desc *dev, struct i3c_priv_xfer *i3c_xfers, int nxfers) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct hci_xfer *xfer; DECLARE_COMPLETION_ONSTACK(done); unsigned int size_limit; int i, last, ret = 0; DBG("nxfers = %d", nxfers); xfer = hci_alloc_xfer(nxfers); if (!xfer) return -ENOMEM; size_limit = 1U << (16 + FIELD_GET(HC_CAP_MAX_DATA_LENGTH, hci->caps)); for (i = 0; i < nxfers; i++) { xfer[i].data_len = i3c_xfers[i].len; ret = -EFBIG; if (xfer[i].data_len >= size_limit) goto out; xfer[i].rnw = i3c_xfers[i].rnw; if (i3c_xfers[i].rnw) { xfer[i].data = i3c_xfers[i].data.in; } else { /* silence the const qualifier warning with a cast */ xfer[i].data = (void *) i3c_xfers[i].data.out; } hci->cmd->prep_i3c_xfer(hci, dev, &xfer[i]); xfer[i].cmd_desc[0] |= CMD_0_ROC; } last = i - 1; xfer[last].cmd_desc[0] |= CMD_0_TOC; xfer[last].completion = &done; ret = hci->io->queue_xfer(hci, xfer, nxfers); if (ret) goto out; if (!wait_for_completion_timeout(&done, HZ) && hci->io->dequeue_xfer(hci, xfer, nxfers)) { ret = -ETIME; goto out; } for (i = 0; i < nxfers; i++) { if (i3c_xfers[i].rnw) i3c_xfers[i].len = RESP_DATA_LENGTH(xfer[i].response); if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) { ret = -EIO; goto out; } } out: hci_free_xfer(xfer, nxfers); return ret; } static int i3c_hci_i2c_xfers(struct i2c_dev_desc *dev, const struct i2c_msg *i2c_xfers, int nxfers) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct hci_xfer *xfer; DECLARE_COMPLETION_ONSTACK(done); int i, last, ret = 0; DBG("nxfers = %d", nxfers); xfer = hci_alloc_xfer(nxfers); if (!xfer) return -ENOMEM; for (i = 0; i < nxfers; i++) { xfer[i].data = i2c_xfers[i].buf; xfer[i].data_len = i2c_xfers[i].len; xfer[i].rnw = i2c_xfers[i].flags & I2C_M_RD; hci->cmd->prep_i2c_xfer(hci, dev, &xfer[i]); xfer[i].cmd_desc[0] |= CMD_0_ROC; } last = i - 1; xfer[last].cmd_desc[0] |= CMD_0_TOC; xfer[last].completion = &done; ret = hci->io->queue_xfer(hci, xfer, nxfers); if (ret) goto out; if (!wait_for_completion_timeout(&done, HZ) && hci->io->dequeue_xfer(hci, xfer, nxfers)) { ret = -ETIME; goto out; } for (i = 0; i < nxfers; i++) { if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) { ret = -EIO; goto out; } } out: hci_free_xfer(xfer, nxfers); return ret; } static int i3c_hci_attach_i3c_dev(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data; int ret; DBG(""); dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); if (!dev_data) return -ENOMEM; if (hci->cmd == &mipi_i3c_hci_cmd_v1) { ret = mipi_i3c_hci_dat_v1.alloc_entry(hci); if (ret < 0) { kfree(dev_data); return ret; } mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, ret, dev->info.dyn_addr); dev_data->dat_idx = ret; } i3c_dev_set_master_data(dev, dev_data); return 0; } static int i3c_hci_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); DBG(""); if (hci->cmd == &mipi_i3c_hci_cmd_v1) mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dev_data->dat_idx, dev->info.dyn_addr); return 0; } static void i3c_hci_detach_i3c_dev(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); DBG(""); i3c_dev_set_master_data(dev, NULL); if (hci->cmd == &mipi_i3c_hci_cmd_v1) mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx); kfree(dev_data); } static int i3c_hci_attach_i2c_dev(struct i2c_dev_desc *dev) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data; int ret; DBG(""); if (hci->cmd != &mipi_i3c_hci_cmd_v1) return 0; dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); if (!dev_data) return -ENOMEM; ret = mipi_i3c_hci_dat_v1.alloc_entry(hci); if (ret < 0) { kfree(dev_data); return ret; } mipi_i3c_hci_dat_v1.set_static_addr(hci, ret, dev->addr); mipi_i3c_hci_dat_v1.set_flags(hci, ret, DAT_0_I2C_DEVICE, 0); dev_data->dat_idx = ret; i2c_dev_set_master_data(dev, dev_data); return 0; } static void i3c_hci_detach_i2c_dev(struct i2c_dev_desc *dev) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev); DBG(""); if (dev_data) { i2c_dev_set_master_data(dev, NULL); if (hci->cmd == &mipi_i3c_hci_cmd_v1) mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx); kfree(dev_data); } } static int i3c_hci_request_ibi(struct i3c_dev_desc *dev, const struct i3c_ibi_setup *req) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); unsigned int dat_idx = dev_data->dat_idx; if (req->max_payload_len != 0) mipi_i3c_hci_dat_v1.set_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0); else mipi_i3c_hci_dat_v1.clear_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0); return hci->io->request_ibi(hci, dev, req); } static void i3c_hci_free_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); hci->io->free_ibi(hci, dev); } static int i3c_hci_enable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); mipi_i3c_hci_dat_v1.clear_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0); return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); } static int i3c_hci_disable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); mipi_i3c_hci_dat_v1.set_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0); return i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); } static void i3c_hci_recycle_ibi_slot(struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct i3c_hci *hci = to_i3c_hci(m); hci->io->recycle_ibi_slot(hci, dev, slot); } static const struct i3c_master_controller_ops i3c_hci_ops = { .bus_init = i3c_hci_bus_init, .bus_cleanup = i3c_hci_bus_cleanup, .do_daa = i3c_hci_daa, .send_ccc_cmd = i3c_hci_send_ccc_cmd, .priv_xfers = i3c_hci_priv_xfers, .i2c_xfers = i3c_hci_i2c_xfers, .attach_i3c_dev = i3c_hci_attach_i3c_dev, .reattach_i3c_dev = i3c_hci_reattach_i3c_dev, .detach_i3c_dev = i3c_hci_detach_i3c_dev, .attach_i2c_dev = i3c_hci_attach_i2c_dev, .detach_i2c_dev = i3c_hci_detach_i2c_dev, .request_ibi = i3c_hci_request_ibi, .free_ibi = i3c_hci_free_ibi, .enable_ibi = i3c_hci_enable_ibi, .disable_ibi = i3c_hci_disable_ibi, .recycle_ibi_slot = i3c_hci_recycle_ibi_slot, }; static irqreturn_t i3c_hci_irq_handler(int irq, void *dev_id) { struct i3c_hci *hci = dev_id; irqreturn_t result = IRQ_NONE; u32 val; val = reg_read(INTR_STATUS); DBG("INTR_STATUS = %#x", val); if (val) { reg_write(INTR_STATUS, val); } else { /* v1.0 does not have PIO cascaded notification bits */ val |= INTR_HC_PIO; } if (val & INTR_HC_RESET_CANCEL) { DBG("cancelled reset"); val &= ~INTR_HC_RESET_CANCEL; } if (val & INTR_HC_INTERNAL_ERR) { dev_err(&hci->master.dev, "Host Controller Internal Error\n"); val &= ~INTR_HC_INTERNAL_ERR; } if (val & INTR_HC_PIO) { hci->io->irq_handler(hci, 0); val &= ~INTR_HC_PIO; } if (val & INTR_HC_RINGS) { hci->io->irq_handler(hci, val & INTR_HC_RINGS); val &= ~INTR_HC_RINGS; } if (val) dev_err(&hci->master.dev, "unexpected INTR_STATUS %#x\n", val); else result = IRQ_HANDLED; return result; } static int i3c_hci_init(struct i3c_hci *hci) { u32 regval, offset; int ret; /* Validate HCI hardware version */ regval = reg_read(HCI_VERSION); hci->version_major = (regval >> 8) & 0xf; hci->version_minor = (regval >> 4) & 0xf; hci->revision = regval & 0xf; dev_notice(&hci->master.dev, "MIPI I3C HCI v%u.%u r%02u\n", hci->version_major, hci->version_minor, hci->revision); /* known versions */ switch (regval & ~0xf) { case 0x100: /* version 1.0 */ case 0x110: /* version 1.1 */ case 0x200: /* version 2.0 */ break; default: dev_err(&hci->master.dev, "unsupported HCI version\n"); return -EPROTONOSUPPORT; } hci->caps = reg_read(HC_CAPABILITIES); DBG("caps = %#x", hci->caps); regval = reg_read(DAT_SECTION); offset = FIELD_GET(DAT_TABLE_OFFSET, regval); hci->DAT_regs = offset ? hci->base_regs + offset : NULL; hci->DAT_entries = FIELD_GET(DAT_TABLE_SIZE, regval); hci->DAT_entry_size = FIELD_GET(DAT_ENTRY_SIZE, regval); dev_info(&hci->master.dev, "DAT: %u %u-bytes entries at offset %#x\n", hci->DAT_entries, hci->DAT_entry_size * 4, offset); regval = reg_read(DCT_SECTION); offset = FIELD_GET(DCT_TABLE_OFFSET, regval); hci->DCT_regs = offset ? hci->base_regs + offset : NULL; hci->DCT_entries = FIELD_GET(DCT_TABLE_SIZE, regval); hci->DCT_entry_size = FIELD_GET(DCT_ENTRY_SIZE, regval); dev_info(&hci->master.dev, "DCT: %u %u-bytes entries at offset %#x\n", hci->DCT_entries, hci->DCT_entry_size * 4, offset); regval = reg_read(RING_HEADERS_SECTION); offset = FIELD_GET(RING_HEADERS_OFFSET, regval); hci->RHS_regs = offset ? hci->base_regs + offset : NULL; dev_info(&hci->master.dev, "Ring Headers at offset %#x\n", offset); regval = reg_read(PIO_SECTION); offset = FIELD_GET(PIO_REGS_OFFSET, regval); hci->PIO_regs = offset ? hci->base_regs + offset : NULL; dev_info(&hci->master.dev, "PIO section at offset %#x\n", offset); regval = reg_read(EXT_CAPS_SECTION); offset = FIELD_GET(EXT_CAPS_OFFSET, regval); hci->EXTCAPS_regs = offset ? hci->base_regs + offset : NULL; dev_info(&hci->master.dev, "Extended Caps at offset %#x\n", offset); ret = i3c_hci_parse_ext_caps(hci); if (ret) return ret; /* * Now let's reset the hardware. * SOFT_RST must be clear before we write to it. * Then we must wait until it clears again. */ ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval, !(regval & SOFT_RST), 1, 10000); if (ret) return -ENXIO; reg_write(RESET_CONTROL, SOFT_RST); ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval, !(regval & SOFT_RST), 1, 10000); if (ret) return -ENXIO; /* Disable all interrupts and allow all signal updates */ reg_write(INTR_SIGNAL_ENABLE, 0x0); reg_write(INTR_STATUS_ENABLE, 0xffffffff); /* Make sure our data ordering fits the host's */ regval = reg_read(HC_CONTROL); if (IS_ENABLED(CONFIG_BIG_ENDIAN)) { if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) { regval |= HC_CONTROL_DATA_BIG_ENDIAN; reg_write(HC_CONTROL, regval); regval = reg_read(HC_CONTROL); if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) { dev_err(&hci->master.dev, "cannot set BE mode\n"); return -EOPNOTSUPP; } } } else { if (regval & HC_CONTROL_DATA_BIG_ENDIAN) { regval &= ~HC_CONTROL_DATA_BIG_ENDIAN; reg_write(HC_CONTROL, regval); regval = reg_read(HC_CONTROL); if (regval & HC_CONTROL_DATA_BIG_ENDIAN) { dev_err(&hci->master.dev, "cannot clear BE mode\n"); return -EOPNOTSUPP; } } } /* Select our command descriptor model */ switch (FIELD_GET(HC_CAP_CMD_SIZE, hci->caps)) { case 0: hci->cmd = &mipi_i3c_hci_cmd_v1; break; case 1: hci->cmd = &mipi_i3c_hci_cmd_v2; break; default: dev_err(&hci->master.dev, "wrong CMD_SIZE capability value\n"); return -EINVAL; } /* Try activating DMA operations first */ if (hci->RHS_regs) { reg_clear(HC_CONTROL, HC_CONTROL_PIO_MODE); if (reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE) { dev_err(&hci->master.dev, "PIO mode is stuck\n"); ret = -EIO; } else { hci->io = &mipi_i3c_hci_dma; dev_info(&hci->master.dev, "Using DMA\n"); } } /* If no DMA, try PIO */ if (!hci->io && hci->PIO_regs) { reg_set(HC_CONTROL, HC_CONTROL_PIO_MODE); if (!(reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) { dev_err(&hci->master.dev, "DMA mode is stuck\n"); ret = -EIO; } else { hci->io = &mipi_i3c_hci_pio; dev_info(&hci->master.dev, "Using PIO\n"); } } if (!hci->io) { dev_err(&hci->master.dev, "neither DMA nor PIO can be used\n"); if (!ret) ret = -EINVAL; return ret; } return 0; } static int i3c_hci_probe(struct platform_device *pdev) { struct i3c_hci *hci; int irq, ret; hci = devm_kzalloc(&pdev->dev, sizeof(*hci), GFP_KERNEL); if (!hci) return -ENOMEM; hci->base_regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hci->base_regs)) return PTR_ERR(hci->base_regs); platform_set_drvdata(pdev, hci); /* temporary for dev_printk's, to be replaced in i3c_master_register */ hci->master.dev.init_name = dev_name(&pdev->dev); ret = i3c_hci_init(hci); if (ret) return ret; irq = platform_get_irq(pdev, 0); ret = devm_request_irq(&pdev->dev, irq, i3c_hci_irq_handler, 0, NULL, hci); if (ret) return ret; ret = i3c_master_register(&hci->master, &pdev->dev, &i3c_hci_ops, false); if (ret) return ret; return 0; } static int i3c_hci_remove(struct platform_device *pdev) { struct i3c_hci *hci = platform_get_drvdata(pdev); int ret; ret = i3c_master_unregister(&hci->master); if (ret) return ret; return 0; } static const __maybe_unused struct of_device_id i3c_hci_of_match[] = { { .compatible = "mipi-i3c-hci", }, {}, }; MODULE_DEVICE_TABLE(of, i3c_hci_of_match); static struct platform_driver i3c_hci_driver = { .probe = i3c_hci_probe, .remove = i3c_hci_remove, .driver = { .name = "mipi-i3c-hci", .of_match_table = of_match_ptr(i3c_hci_of_match), }, }; module_platform_driver(i3c_hci_driver); MODULE_AUTHOR("Nicolas Pitre <npitre@baylibre.com>"); MODULE_DESCRIPTION("MIPI I3C HCI driver"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1