Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Looijmans | 2101 | 97.68% | 1 | 50.00% |
Jonathan Cameron | 50 | 2.32% | 1 | 50.00% |
Total | 2151 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * 3-axis accelerometer driver supporting following Bosch-Sensortec chips: * - BMI088 * * Copyright (c) 2018-2021, Topic Embedded Products */ #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/slab.h> #include <asm/unaligned.h> #include "bmi088-accel.h" #define BMI088_ACCEL_REG_CHIP_ID 0x00 #define BMI088_ACCEL_REG_ERROR 0x02 #define BMI088_ACCEL_REG_INT_STATUS 0x1D #define BMI088_ACCEL_INT_STATUS_BIT_DRDY BIT(7) #define BMI088_ACCEL_REG_RESET 0x7E #define BMI088_ACCEL_RESET_VAL 0xB6 #define BMI088_ACCEL_REG_PWR_CTRL 0x7D #define BMI088_ACCEL_REG_PWR_CONF 0x7C #define BMI088_ACCEL_REG_INT_MAP_DATA 0x58 #define BMI088_ACCEL_INT_MAP_DATA_BIT_INT1_DRDY BIT(2) #define BMI088_ACCEL_INT_MAP_DATA_BIT_INT2_FWM BIT(5) #define BMI088_ACCEL_REG_INT1_IO_CONF 0x53 #define BMI088_ACCEL_INT1_IO_CONF_BIT_ENABLE_OUT BIT(3) #define BMI088_ACCEL_INT1_IO_CONF_BIT_LVL BIT(1) #define BMI088_ACCEL_REG_INT2_IO_CONF 0x54 #define BMI088_ACCEL_INT2_IO_CONF_BIT_ENABLE_OUT BIT(3) #define BMI088_ACCEL_INT2_IO_CONF_BIT_LVL BIT(1) #define BMI088_ACCEL_REG_ACC_CONF 0x40 #define BMI088_ACCEL_MODE_ODR_MASK 0x0f #define BMI088_ACCEL_REG_ACC_RANGE 0x41 #define BMI088_ACCEL_RANGE_3G 0x00 #define BMI088_ACCEL_RANGE_6G 0x01 #define BMI088_ACCEL_RANGE_12G 0x02 #define BMI088_ACCEL_RANGE_24G 0x03 #define BMI088_ACCEL_REG_TEMP 0x22 #define BMI088_ACCEL_REG_TEMP_SHIFT 5 #define BMI088_ACCEL_TEMP_UNIT 125 #define BMI088_ACCEL_TEMP_OFFSET 23000 #define BMI088_ACCEL_REG_XOUT_L 0x12 #define BMI088_ACCEL_AXIS_TO_REG(axis) \ (BMI088_ACCEL_REG_XOUT_L + (axis * 2)) #define BMI088_ACCEL_MAX_STARTUP_TIME_US 1000 #define BMI088_AUTO_SUSPEND_DELAY_MS 2000 #define BMI088_ACCEL_REG_FIFO_STATUS 0x0E #define BMI088_ACCEL_REG_FIFO_CONFIG0 0x48 #define BMI088_ACCEL_REG_FIFO_CONFIG1 0x49 #define BMI088_ACCEL_REG_FIFO_DATA 0x3F #define BMI088_ACCEL_FIFO_LENGTH 100 #define BMI088_ACCEL_FIFO_MODE_FIFO 0x40 #define BMI088_ACCEL_FIFO_MODE_STREAM 0x80 enum bmi088_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, }; static const int bmi088_sample_freqs[] = { 12, 500000, 25, 0, 50, 0, 100, 0, 200, 0, 400, 0, 800, 0, 1600, 0, }; /* Available OSR (over sampling rate) sets the 3dB cut-off frequency */ enum bmi088_osr_modes { BMI088_ACCEL_MODE_OSR_NORMAL = 0xA, BMI088_ACCEL_MODE_OSR_2 = 0x9, BMI088_ACCEL_MODE_OSR_4 = 0x8, }; /* Available ODR (output data rates) in Hz */ enum bmi088_odr_modes { BMI088_ACCEL_MODE_ODR_12_5 = 0x5, BMI088_ACCEL_MODE_ODR_25 = 0x6, BMI088_ACCEL_MODE_ODR_50 = 0x7, BMI088_ACCEL_MODE_ODR_100 = 0x8, BMI088_ACCEL_MODE_ODR_200 = 0x9, BMI088_ACCEL_MODE_ODR_400 = 0xa, BMI088_ACCEL_MODE_ODR_800 = 0xb, BMI088_ACCEL_MODE_ODR_1600 = 0xc, }; struct bmi088_scale_info { int scale; u8 reg_range; }; struct bmi088_accel_chip_info { const char *name; u8 chip_id; const struct iio_chan_spec *channels; int num_channels; }; struct bmi088_accel_data { struct regmap *regmap; const struct bmi088_accel_chip_info *chip_info; u8 buffer[2] ____cacheline_aligned; /* shared DMA safe buffer */ }; static const struct regmap_range bmi088_volatile_ranges[] = { /* All registers below 0x40 are volatile, except the CHIP ID. */ regmap_reg_range(BMI088_ACCEL_REG_ERROR, 0x3f), /* Mark the RESET as volatile too, it is self-clearing */ regmap_reg_range(BMI088_ACCEL_REG_RESET, BMI088_ACCEL_REG_RESET), }; static const struct regmap_access_table bmi088_volatile_table = { .yes_ranges = bmi088_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(bmi088_volatile_ranges), }; const struct regmap_config bmi088_regmap_conf = { .reg_bits = 8, .val_bits = 8, .max_register = 0x7E, .volatile_table = &bmi088_volatile_table, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_GPL(bmi088_regmap_conf); static int bmi088_accel_power_up(struct bmi088_accel_data *data) { int ret; /* Enable accelerometer and temperature sensor */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x4); if (ret) return ret; /* Datasheet recommends to wait at least 5ms before communication */ usleep_range(5000, 6000); /* Disable suspend mode */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x0); if (ret) return ret; /* Recommended at least 1ms before further communication */ usleep_range(1000, 1200); return 0; } static int bmi088_accel_power_down(struct bmi088_accel_data *data) { int ret; /* Enable suspend mode */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x3); if (ret) return ret; /* Recommended at least 1ms before further communication */ usleep_range(1000, 1200); /* Disable accelerometer and temperature sensor */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x0); if (ret) return ret; /* Datasheet recommends to wait at least 5ms before communication */ usleep_range(5000, 6000); return 0; } static int bmi088_accel_get_sample_freq(struct bmi088_accel_data *data, int *val, int *val2) { unsigned int value; int ret; ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_CONF, &value); if (ret) return ret; value &= BMI088_ACCEL_MODE_ODR_MASK; value -= BMI088_ACCEL_MODE_ODR_12_5; value <<= 1; if (value >= ARRAY_SIZE(bmi088_sample_freqs) - 1) return -EINVAL; *val = bmi088_sample_freqs[value]; *val2 = bmi088_sample_freqs[value + 1]; return IIO_VAL_INT_PLUS_MICRO; } static int bmi088_accel_set_sample_freq(struct bmi088_accel_data *data, int val) { unsigned int regval; int index = 0; while (index < ARRAY_SIZE(bmi088_sample_freqs) && bmi088_sample_freqs[index] != val) index += 2; if (index >= ARRAY_SIZE(bmi088_sample_freqs)) return -EINVAL; regval = (index >> 1) + BMI088_ACCEL_MODE_ODR_12_5; return regmap_update_bits(data->regmap, BMI088_ACCEL_REG_ACC_CONF, BMI088_ACCEL_MODE_ODR_MASK, regval); } static int bmi088_accel_get_temp(struct bmi088_accel_data *data, int *val) { int ret; s16 temp; ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_REG_TEMP, &data->buffer, sizeof(__be16)); if (ret) return ret; /* data->buffer is cacheline aligned */ temp = be16_to_cpu(*(__be16 *)data->buffer); *val = temp >> BMI088_ACCEL_REG_TEMP_SHIFT; return IIO_VAL_INT; } static int bmi088_accel_get_axis(struct bmi088_accel_data *data, struct iio_chan_spec const *chan, int *val) { int ret; s16 raw_val; ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_AXIS_TO_REG(chan->scan_index), data->buffer, sizeof(__le16)); if (ret) return ret; raw_val = le16_to_cpu(*(__le16 *)data->buffer); *val = raw_val; return IIO_VAL_INT; } static int bmi088_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmi088_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_get_temp(data, val); goto out_read_raw_pm_put; case IIO_ACCEL: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) goto out_read_raw_pm_put; ret = bmi088_accel_get_axis(data, chan, val); iio_device_release_direct_mode(indio_dev); if (!ret) ret = IIO_VAL_INT; goto out_read_raw_pm_put; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: /* Offset applies before scale */ *val = BMI088_ACCEL_TEMP_OFFSET/BMI088_ACCEL_TEMP_UNIT; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: /* 0.125 degrees per LSB */ *val = BMI088_ACCEL_TEMP_UNIT; return IIO_VAL_INT; case IIO_ACCEL: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_RANGE, val); if (ret) goto out_read_raw_pm_put; *val2 = 15 - (*val & 0x3); *val = 3 * 980; ret = IIO_VAL_FRACTIONAL_LOG2; goto out_read_raw_pm_put; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_get_sample_freq(data, val, val2); goto out_read_raw_pm_put; default: break; } return -EINVAL; out_read_raw_pm_put: pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int bmi088_accel_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT_PLUS_MICRO; *vals = bmi088_sample_freqs; *length = ARRAY_SIZE(bmi088_sample_freqs); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int bmi088_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmi088_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_set_sample_freq(data, val); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; default: return -EINVAL; } } #define BMI088_ACCEL_CHANNEL(_axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ } static const struct iio_chan_spec bmi088_accel_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .scan_index = -1, }, BMI088_ACCEL_CHANNEL(X), BMI088_ACCEL_CHANNEL(Y), BMI088_ACCEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct bmi088_accel_chip_info bmi088_accel_chip_info_tbl[] = { [0] = { .name = "bmi088a", .chip_id = 0x1E, .channels = bmi088_accel_channels, .num_channels = ARRAY_SIZE(bmi088_accel_channels), }, }; static const struct iio_info bmi088_accel_info = { .read_raw = bmi088_accel_read_raw, .write_raw = bmi088_accel_write_raw, .read_avail = bmi088_accel_read_avail, }; static const unsigned long bmi088_accel_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static int bmi088_accel_chip_init(struct bmi088_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret, i; unsigned int val; /* Do a dummy read to enable SPI interface, won't harm I2C */ regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val); /* * Reset chip to get it in a known good state. A delay of 1ms after * reset is required according to the data sheet */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_RESET, BMI088_ACCEL_RESET_VAL); if (ret) return ret; usleep_range(1000, 2000); /* Do a dummy read again after a reset to enable the SPI interface */ regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val); /* Read chip ID */ ret = regmap_read(data->regmap, BMI088_ACCEL_REG_CHIP_ID, &val); if (ret) { dev_err(dev, "Error: Reading chip id\n"); return ret; } /* Validate chip ID */ for (i = 0; i < ARRAY_SIZE(bmi088_accel_chip_info_tbl); i++) { if (bmi088_accel_chip_info_tbl[i].chip_id == val) { data->chip_info = &bmi088_accel_chip_info_tbl[i]; break; } } if (i == ARRAY_SIZE(bmi088_accel_chip_info_tbl)) { dev_err(dev, "Invalid chip %x\n", val); return -ENODEV; } return 0; } int bmi088_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, const char *name, bool block_supported) { struct bmi088_accel_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; ret = bmi088_accel_chip_init(data); if (ret) return ret; indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = name ? name : data->chip_info->name; indio_dev->available_scan_masks = bmi088_accel_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmi088_accel_info; /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_suspended(dev); pm_runtime_enable(dev); /* We need ~6ms to startup, so set the delay to 6 seconds */ pm_runtime_set_autosuspend_delay(dev, 6000); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); ret = iio_device_register(indio_dev); if (ret) dev_err(dev, "Unable to register iio device\n"); return ret; } EXPORT_SYMBOL_GPL(bmi088_accel_core_probe); int bmi088_accel_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); bmi088_accel_power_down(data); return 0; } EXPORT_SYMBOL_GPL(bmi088_accel_core_remove); static int __maybe_unused bmi088_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); return bmi088_accel_power_down(data); } static int __maybe_unused bmi088_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); return bmi088_accel_power_up(data); } const struct dev_pm_ops bmi088_accel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(bmi088_accel_runtime_suspend, bmi088_accel_runtime_resume, NULL) }; EXPORT_SYMBOL_GPL(bmi088_accel_pm_ops); MODULE_AUTHOR("Niek van Agt <niek.van.agt@topicproducts.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMI088 accelerometer driver (core)");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1