Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Barry Song | 460 | 34.46% | 1 | 3.23% |
Lars-Peter Clausen | 382 | 28.61% | 7 | 22.58% |
Michael Hennerich | 240 | 17.98% | 5 | 16.13% |
Jonathan Cameron | 206 | 15.43% | 11 | 35.48% |
Axel Lin | 14 | 1.05% | 1 | 3.23% |
Sachin Kamat | 13 | 0.97% | 2 | 6.45% |
Andy Shevchenko | 13 | 0.97% | 1 | 3.23% |
Paul Gortmaker | 3 | 0.22% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.15% | 1 | 3.23% |
JM Friedt | 2 | 0.15% | 1 | 3.23% |
Total | 1335 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * AD5624R, AD5644R, AD5664R Digital to analog convertors spi driver * * Copyright 2010-2011 Analog Devices Inc. */ #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/spi/spi.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/regulator/consumer.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <asm/unaligned.h> #include "ad5624r.h" static int ad5624r_spi_write(struct spi_device *spi, u8 cmd, u8 addr, u16 val, u8 shift) { u32 data; u8 msg[3]; /* * The input shift register is 24 bits wide. The first two bits are * don't care bits. The next three are the command bits, C2 to C0, * followed by the 3-bit DAC address, A2 to A0, and then the * 16-, 14-, 12-bit data-word. The data-word comprises the 16-, * 14-, 12-bit input code followed by 0, 2, or 4 don't care bits, * for the AD5664R, AD5644R, and AD5624R, respectively. */ data = (0 << 22) | (cmd << 19) | (addr << 16) | (val << shift); put_unaligned_be24(data, &msg[0]); return spi_write(spi, msg, sizeof(msg)); } static int ad5624r_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad5624r_state *st = iio_priv(indio_dev); switch (m) { case IIO_CHAN_INFO_SCALE: *val = st->vref_mv; *val2 = chan->scan_type.realbits; return IIO_VAL_FRACTIONAL_LOG2; } return -EINVAL; } static int ad5624r_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad5624r_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: if (val >= (1 << chan->scan_type.realbits) || val < 0) return -EINVAL; return ad5624r_spi_write(st->us, AD5624R_CMD_WRITE_INPUT_N_UPDATE_N, chan->address, val, chan->scan_type.shift); default: return -EINVAL; } } static const char * const ad5624r_powerdown_modes[] = { "1kohm_to_gnd", "100kohm_to_gnd", "three_state" }; static int ad5624r_get_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ad5624r_state *st = iio_priv(indio_dev); return st->pwr_down_mode; } static int ad5624r_set_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct ad5624r_state *st = iio_priv(indio_dev); st->pwr_down_mode = mode; return 0; } static const struct iio_enum ad5624r_powerdown_mode_enum = { .items = ad5624r_powerdown_modes, .num_items = ARRAY_SIZE(ad5624r_powerdown_modes), .get = ad5624r_get_powerdown_mode, .set = ad5624r_set_powerdown_mode, }; static ssize_t ad5624r_read_dac_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct ad5624r_state *st = iio_priv(indio_dev); return sysfs_emit(buf, "%d\n", !!(st->pwr_down_mask & (1 << chan->channel))); } static ssize_t ad5624r_write_dac_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { bool pwr_down; int ret; struct ad5624r_state *st = iio_priv(indio_dev); ret = strtobool(buf, &pwr_down); if (ret) return ret; if (pwr_down) st->pwr_down_mask |= (1 << chan->channel); else st->pwr_down_mask &= ~(1 << chan->channel); ret = ad5624r_spi_write(st->us, AD5624R_CMD_POWERDOWN_DAC, 0, (st->pwr_down_mode << 4) | st->pwr_down_mask, 16); return ret ? ret : len; } static const struct iio_info ad5624r_info = { .write_raw = ad5624r_write_raw, .read_raw = ad5624r_read_raw, }; static const struct iio_chan_spec_ext_info ad5624r_ext_info[] = { { .name = "powerdown", .read = ad5624r_read_dac_powerdown, .write = ad5624r_write_dac_powerdown, .shared = IIO_SEPARATE, }, IIO_ENUM("powerdown_mode", IIO_SHARED_BY_TYPE, &ad5624r_powerdown_mode_enum), IIO_ENUM_AVAILABLE("powerdown_mode", &ad5624r_powerdown_mode_enum), { }, }; #define AD5624R_CHANNEL(_chan, _bits) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .output = 1, \ .channel = (_chan), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = (_chan), \ .scan_type = { \ .sign = 'u', \ .realbits = (_bits), \ .storagebits = 16, \ .shift = 16 - (_bits), \ }, \ .ext_info = ad5624r_ext_info, \ } #define DECLARE_AD5624R_CHANNELS(_name, _bits) \ const struct iio_chan_spec _name##_channels[] = { \ AD5624R_CHANNEL(0, _bits), \ AD5624R_CHANNEL(1, _bits), \ AD5624R_CHANNEL(2, _bits), \ AD5624R_CHANNEL(3, _bits), \ } static DECLARE_AD5624R_CHANNELS(ad5624r, 12); static DECLARE_AD5624R_CHANNELS(ad5644r, 14); static DECLARE_AD5624R_CHANNELS(ad5664r, 16); static const struct ad5624r_chip_info ad5624r_chip_info_tbl[] = { [ID_AD5624R3] = { .channels = ad5624r_channels, .int_vref_mv = 1250, }, [ID_AD5624R5] = { .channels = ad5624r_channels, .int_vref_mv = 2500, }, [ID_AD5644R3] = { .channels = ad5644r_channels, .int_vref_mv = 1250, }, [ID_AD5644R5] = { .channels = ad5644r_channels, .int_vref_mv = 2500, }, [ID_AD5664R3] = { .channels = ad5664r_channels, .int_vref_mv = 1250, }, [ID_AD5664R5] = { .channels = ad5664r_channels, .int_vref_mv = 2500, }, }; static int ad5624r_probe(struct spi_device *spi) { struct ad5624r_state *st; struct iio_dev *indio_dev; int ret, voltage_uv = 0; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->reg = devm_regulator_get_optional(&spi->dev, "vref"); if (!IS_ERR(st->reg)) { ret = regulator_enable(st->reg); if (ret) return ret; ret = regulator_get_voltage(st->reg); if (ret < 0) goto error_disable_reg; voltage_uv = ret; } else { if (PTR_ERR(st->reg) != -ENODEV) return PTR_ERR(st->reg); /* Backwards compatibility. This naming is not correct */ st->reg = devm_regulator_get_optional(&spi->dev, "vcc"); if (!IS_ERR(st->reg)) { ret = regulator_enable(st->reg); if (ret) return ret; ret = regulator_get_voltage(st->reg); if (ret < 0) goto error_disable_reg; voltage_uv = ret; } } spi_set_drvdata(spi, indio_dev); st->chip_info = &ad5624r_chip_info_tbl[spi_get_device_id(spi)->driver_data]; if (voltage_uv) st->vref_mv = voltage_uv / 1000; else st->vref_mv = st->chip_info->int_vref_mv; st->us = spi; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &ad5624r_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = AD5624R_DAC_CHANNELS; ret = ad5624r_spi_write(spi, AD5624R_CMD_INTERNAL_REFER_SETUP, 0, !!voltage_uv, 16); if (ret) goto error_disable_reg; ret = iio_device_register(indio_dev); if (ret) goto error_disable_reg; return 0; error_disable_reg: if (!IS_ERR(st->reg)) regulator_disable(st->reg); return ret; } static int ad5624r_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct ad5624r_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (!IS_ERR(st->reg)) regulator_disable(st->reg); return 0; } static const struct spi_device_id ad5624r_id[] = { {"ad5624r3", ID_AD5624R3}, {"ad5644r3", ID_AD5644R3}, {"ad5664r3", ID_AD5664R3}, {"ad5624r5", ID_AD5624R5}, {"ad5644r5", ID_AD5644R5}, {"ad5664r5", ID_AD5664R5}, {} }; MODULE_DEVICE_TABLE(spi, ad5624r_id); static struct spi_driver ad5624r_driver = { .driver = { .name = "ad5624r", }, .probe = ad5624r_probe, .remove = ad5624r_remove, .id_table = ad5624r_id, }; module_spi_driver(ad5624r_driver); MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_DESCRIPTION("Analog Devices AD5624/44/64R DAC spi driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1