Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hennerich | 2760 | 95.27% | 7 | 36.84% |
Javier Martinez Canillas | 47 | 1.62% | 2 | 10.53% |
Sergiu Cuciurean | 25 | 0.86% | 1 | 5.26% |
Linus Walleij | 21 | 0.72% | 1 | 5.26% |
Sachin Kamat | 17 | 0.59% | 1 | 5.26% |
Yang Yingliang | 8 | 0.28% | 1 | 5.26% |
Wei Yongjun | 8 | 0.28% | 1 | 5.26% |
Rob Herring | 5 | 0.17% | 1 | 5.26% |
Dan Carpenter | 3 | 0.10% | 2 | 10.53% |
Thomas Gleixner | 2 | 0.07% | 1 | 5.26% |
Jonathan Cameron | 1 | 0.03% | 1 | 5.26% |
Total | 2897 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADF4350/ADF4351 SPI Wideband Synthesizer driver * * Copyright 2012-2013 Analog Devices Inc. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/spi/spi.h> #include <linux/regulator/consumer.h> #include <linux/err.h> #include <linux/module.h> #include <linux/gcd.h> #include <linux/gpio/consumer.h> #include <asm/div64.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/frequency/adf4350.h> enum { ADF4350_FREQ, ADF4350_FREQ_REFIN, ADF4350_FREQ_RESOLUTION, ADF4350_PWRDOWN, }; struct adf4350_state { struct spi_device *spi; struct regulator *reg; struct gpio_desc *lock_detect_gpiod; struct adf4350_platform_data *pdata; struct clk *clk; unsigned long clkin; unsigned long chspc; /* Channel Spacing */ unsigned long fpfd; /* Phase Frequency Detector */ unsigned long min_out_freq; unsigned r0_fract; unsigned r0_int; unsigned r1_mod; unsigned r4_rf_div_sel; unsigned long regs[6]; unsigned long regs_hw[6]; unsigned long long freq_req; /* * Lock to protect the state of the device from potential concurrent * writes. The device is configured via a sequence of SPI writes, * and this lock is meant to prevent the start of another sequence * before another one has finished. */ struct mutex lock; /* * DMA (thus cache coherency maintenance) requires the * transfer buffers to live in their own cache lines. */ __be32 val ____cacheline_aligned; }; static struct adf4350_platform_data default_pdata = { .channel_spacing = 10000, .r2_user_settings = ADF4350_REG2_PD_POLARITY_POS | ADF4350_REG2_CHARGE_PUMP_CURR_uA(2500), .r3_user_settings = ADF4350_REG3_12BIT_CLKDIV_MODE(0), .r4_user_settings = ADF4350_REG4_OUTPUT_PWR(3) | ADF4350_REG4_MUTE_TILL_LOCK_EN, }; static int adf4350_sync_config(struct adf4350_state *st) { int ret, i, doublebuf = 0; for (i = ADF4350_REG5; i >= ADF4350_REG0; i--) { if ((st->regs_hw[i] != st->regs[i]) || ((i == ADF4350_REG0) && doublebuf)) { switch (i) { case ADF4350_REG1: case ADF4350_REG4: doublebuf = 1; break; } st->val = cpu_to_be32(st->regs[i] | i); ret = spi_write(st->spi, &st->val, 4); if (ret < 0) return ret; st->regs_hw[i] = st->regs[i]; dev_dbg(&st->spi->dev, "[%d] 0x%X\n", i, (u32)st->regs[i] | i); } } return 0; } static int adf4350_reg_access(struct iio_dev *indio_dev, unsigned reg, unsigned writeval, unsigned *readval) { struct adf4350_state *st = iio_priv(indio_dev); int ret; if (reg > ADF4350_REG5) return -EINVAL; mutex_lock(&st->lock); if (readval == NULL) { st->regs[reg] = writeval & ~(BIT(0) | BIT(1) | BIT(2)); ret = adf4350_sync_config(st); } else { *readval = st->regs_hw[reg]; ret = 0; } mutex_unlock(&st->lock); return ret; } static int adf4350_tune_r_cnt(struct adf4350_state *st, unsigned short r_cnt) { struct adf4350_platform_data *pdata = st->pdata; do { r_cnt++; st->fpfd = (st->clkin * (pdata->ref_doubler_en ? 2 : 1)) / (r_cnt * (pdata->ref_div2_en ? 2 : 1)); } while (st->fpfd > ADF4350_MAX_FREQ_PFD); return r_cnt; } static int adf4350_set_freq(struct adf4350_state *st, unsigned long long freq) { struct adf4350_platform_data *pdata = st->pdata; u64 tmp; u32 div_gcd, prescaler, chspc; u16 mdiv, r_cnt = 0; u8 band_sel_div; if (freq > ADF4350_MAX_OUT_FREQ || freq < st->min_out_freq) return -EINVAL; if (freq > ADF4350_MAX_FREQ_45_PRESC) { prescaler = ADF4350_REG1_PRESCALER; mdiv = 75; } else { prescaler = 0; mdiv = 23; } st->r4_rf_div_sel = 0; while (freq < ADF4350_MIN_VCO_FREQ) { freq <<= 1; st->r4_rf_div_sel++; } /* * Allow a predefined reference division factor * if not set, compute our own */ if (pdata->ref_div_factor) r_cnt = pdata->ref_div_factor - 1; chspc = st->chspc; do { do { do { r_cnt = adf4350_tune_r_cnt(st, r_cnt); st->r1_mod = st->fpfd / chspc; if (r_cnt > ADF4350_MAX_R_CNT) { /* try higher spacing values */ chspc++; r_cnt = 0; } } while ((st->r1_mod > ADF4350_MAX_MODULUS) && r_cnt); } while (r_cnt == 0); tmp = freq * (u64)st->r1_mod + (st->fpfd >> 1); do_div(tmp, st->fpfd); /* Div round closest (n + d/2)/d */ st->r0_fract = do_div(tmp, st->r1_mod); st->r0_int = tmp; } while (mdiv > st->r0_int); band_sel_div = DIV_ROUND_UP(st->fpfd, ADF4350_MAX_BANDSEL_CLK); if (st->r0_fract && st->r1_mod) { div_gcd = gcd(st->r1_mod, st->r0_fract); st->r1_mod /= div_gcd; st->r0_fract /= div_gcd; } else { st->r0_fract = 0; st->r1_mod = 1; } dev_dbg(&st->spi->dev, "VCO: %llu Hz, PFD %lu Hz\n" "REF_DIV %d, R0_INT %d, R0_FRACT %d\n" "R1_MOD %d, RF_DIV %d\nPRESCALER %s, BAND_SEL_DIV %d\n", freq, st->fpfd, r_cnt, st->r0_int, st->r0_fract, st->r1_mod, 1 << st->r4_rf_div_sel, prescaler ? "8/9" : "4/5", band_sel_div); st->regs[ADF4350_REG0] = ADF4350_REG0_INT(st->r0_int) | ADF4350_REG0_FRACT(st->r0_fract); st->regs[ADF4350_REG1] = ADF4350_REG1_PHASE(1) | ADF4350_REG1_MOD(st->r1_mod) | prescaler; st->regs[ADF4350_REG2] = ADF4350_REG2_10BIT_R_CNT(r_cnt) | ADF4350_REG2_DOUBLE_BUFF_EN | (pdata->ref_doubler_en ? ADF4350_REG2_RMULT2_EN : 0) | (pdata->ref_div2_en ? ADF4350_REG2_RDIV2_EN : 0) | (pdata->r2_user_settings & (ADF4350_REG2_PD_POLARITY_POS | ADF4350_REG2_LDP_6ns | ADF4350_REG2_LDF_INT_N | ADF4350_REG2_CHARGE_PUMP_CURR_uA(5000) | ADF4350_REG2_MUXOUT(0x7) | ADF4350_REG2_NOISE_MODE(0x3))); st->regs[ADF4350_REG3] = pdata->r3_user_settings & (ADF4350_REG3_12BIT_CLKDIV(0xFFF) | ADF4350_REG3_12BIT_CLKDIV_MODE(0x3) | ADF4350_REG3_12BIT_CSR_EN | ADF4351_REG3_CHARGE_CANCELLATION_EN | ADF4351_REG3_ANTI_BACKLASH_3ns_EN | ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH); st->regs[ADF4350_REG4] = ADF4350_REG4_FEEDBACK_FUND | ADF4350_REG4_RF_DIV_SEL(st->r4_rf_div_sel) | ADF4350_REG4_8BIT_BAND_SEL_CLKDIV(band_sel_div) | ADF4350_REG4_RF_OUT_EN | (pdata->r4_user_settings & (ADF4350_REG4_OUTPUT_PWR(0x3) | ADF4350_REG4_AUX_OUTPUT_PWR(0x3) | ADF4350_REG4_AUX_OUTPUT_EN | ADF4350_REG4_AUX_OUTPUT_FUND | ADF4350_REG4_MUTE_TILL_LOCK_EN)); st->regs[ADF4350_REG5] = ADF4350_REG5_LD_PIN_MODE_DIGITAL; st->freq_req = freq; return adf4350_sync_config(st); } static ssize_t adf4350_write(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct adf4350_state *st = iio_priv(indio_dev); unsigned long long readin; unsigned long tmp; int ret; ret = kstrtoull(buf, 10, &readin); if (ret) return ret; mutex_lock(&st->lock); switch ((u32)private) { case ADF4350_FREQ: ret = adf4350_set_freq(st, readin); break; case ADF4350_FREQ_REFIN: if (readin > ADF4350_MAX_FREQ_REFIN) { ret = -EINVAL; break; } if (st->clk) { tmp = clk_round_rate(st->clk, readin); if (tmp != readin) { ret = -EINVAL; break; } ret = clk_set_rate(st->clk, tmp); if (ret < 0) break; } st->clkin = readin; ret = adf4350_set_freq(st, st->freq_req); break; case ADF4350_FREQ_RESOLUTION: if (readin == 0) ret = -EINVAL; else st->chspc = readin; break; case ADF4350_PWRDOWN: if (readin) st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN; else st->regs[ADF4350_REG2] &= ~ADF4350_REG2_POWER_DOWN_EN; adf4350_sync_config(st); break; default: ret = -EINVAL; } mutex_unlock(&st->lock); return ret ? ret : len; } static ssize_t adf4350_read(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct adf4350_state *st = iio_priv(indio_dev); unsigned long long val; int ret = 0; mutex_lock(&st->lock); switch ((u32)private) { case ADF4350_FREQ: val = (u64)((st->r0_int * st->r1_mod) + st->r0_fract) * (u64)st->fpfd; do_div(val, st->r1_mod * (1 << st->r4_rf_div_sel)); /* PLL unlocked? return error */ if (st->lock_detect_gpiod) if (!gpiod_get_value(st->lock_detect_gpiod)) { dev_dbg(&st->spi->dev, "PLL un-locked\n"); ret = -EBUSY; } break; case ADF4350_FREQ_REFIN: if (st->clk) st->clkin = clk_get_rate(st->clk); val = st->clkin; break; case ADF4350_FREQ_RESOLUTION: val = st->chspc; break; case ADF4350_PWRDOWN: val = !!(st->regs[ADF4350_REG2] & ADF4350_REG2_POWER_DOWN_EN); break; default: ret = -EINVAL; val = 0; } mutex_unlock(&st->lock); return ret < 0 ? ret : sprintf(buf, "%llu\n", val); } #define _ADF4350_EXT_INFO(_name, _ident) { \ .name = _name, \ .read = adf4350_read, \ .write = adf4350_write, \ .private = _ident, \ .shared = IIO_SEPARATE, \ } static const struct iio_chan_spec_ext_info adf4350_ext_info[] = { /* Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are * values > 2^32 in order to support the entire frequency range * in Hz. Using scale is a bit ugly. */ _ADF4350_EXT_INFO("frequency", ADF4350_FREQ), _ADF4350_EXT_INFO("frequency_resolution", ADF4350_FREQ_RESOLUTION), _ADF4350_EXT_INFO("refin_frequency", ADF4350_FREQ_REFIN), _ADF4350_EXT_INFO("powerdown", ADF4350_PWRDOWN), { }, }; static const struct iio_chan_spec adf4350_chan = { .type = IIO_ALTVOLTAGE, .indexed = 1, .output = 1, .ext_info = adf4350_ext_info, }; static const struct iio_info adf4350_info = { .debugfs_reg_access = &adf4350_reg_access, }; #ifdef CONFIG_OF static struct adf4350_platform_data *adf4350_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; struct adf4350_platform_data *pdata; unsigned int tmp; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return NULL; snprintf(&pdata->name[0], SPI_NAME_SIZE - 1, "%pOFn", np); tmp = 10000; of_property_read_u32(np, "adi,channel-spacing", &tmp); pdata->channel_spacing = tmp; tmp = 0; of_property_read_u32(np, "adi,power-up-frequency", &tmp); pdata->power_up_frequency = tmp; tmp = 0; of_property_read_u32(np, "adi,reference-div-factor", &tmp); pdata->ref_div_factor = tmp; pdata->ref_doubler_en = of_property_read_bool(np, "adi,reference-doubler-enable"); pdata->ref_div2_en = of_property_read_bool(np, "adi,reference-div2-enable"); /* r2_user_settings */ pdata->r2_user_settings = of_property_read_bool(np, "adi,phase-detector-polarity-positive-enable") ? ADF4350_REG2_PD_POLARITY_POS : 0; pdata->r2_user_settings |= of_property_read_bool(np, "adi,lock-detect-precision-6ns-enable") ? ADF4350_REG2_LDP_6ns : 0; pdata->r2_user_settings |= of_property_read_bool(np, "adi,lock-detect-function-integer-n-enable") ? ADF4350_REG2_LDF_INT_N : 0; tmp = 2500; of_property_read_u32(np, "adi,charge-pump-current", &tmp); pdata->r2_user_settings |= ADF4350_REG2_CHARGE_PUMP_CURR_uA(tmp); tmp = 0; of_property_read_u32(np, "adi,muxout-select", &tmp); pdata->r2_user_settings |= ADF4350_REG2_MUXOUT(tmp); pdata->r2_user_settings |= of_property_read_bool(np, "adi,low-spur-mode-enable") ? ADF4350_REG2_NOISE_MODE(0x3) : 0; /* r3_user_settings */ pdata->r3_user_settings = of_property_read_bool(np, "adi,cycle-slip-reduction-enable") ? ADF4350_REG3_12BIT_CSR_EN : 0; pdata->r3_user_settings |= of_property_read_bool(np, "adi,charge-cancellation-enable") ? ADF4351_REG3_CHARGE_CANCELLATION_EN : 0; pdata->r3_user_settings |= of_property_read_bool(np, "adi,anti-backlash-3ns-enable") ? ADF4351_REG3_ANTI_BACKLASH_3ns_EN : 0; pdata->r3_user_settings |= of_property_read_bool(np, "adi,band-select-clock-mode-high-enable") ? ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH : 0; tmp = 0; of_property_read_u32(np, "adi,12bit-clk-divider", &tmp); pdata->r3_user_settings |= ADF4350_REG3_12BIT_CLKDIV(tmp); tmp = 0; of_property_read_u32(np, "adi,clk-divider-mode", &tmp); pdata->r3_user_settings |= ADF4350_REG3_12BIT_CLKDIV_MODE(tmp); /* r4_user_settings */ pdata->r4_user_settings = of_property_read_bool(np, "adi,aux-output-enable") ? ADF4350_REG4_AUX_OUTPUT_EN : 0; pdata->r4_user_settings |= of_property_read_bool(np, "adi,aux-output-fundamental-enable") ? ADF4350_REG4_AUX_OUTPUT_FUND : 0; pdata->r4_user_settings |= of_property_read_bool(np, "adi,mute-till-lock-enable") ? ADF4350_REG4_MUTE_TILL_LOCK_EN : 0; tmp = 0; of_property_read_u32(np, "adi,output-power", &tmp); pdata->r4_user_settings |= ADF4350_REG4_OUTPUT_PWR(tmp); tmp = 0; of_property_read_u32(np, "adi,aux-output-power", &tmp); pdata->r4_user_settings |= ADF4350_REG4_AUX_OUTPUT_PWR(tmp); return pdata; } #else static struct adf4350_platform_data *adf4350_parse_dt(struct device *dev) { return NULL; } #endif static int adf4350_probe(struct spi_device *spi) { struct adf4350_platform_data *pdata; struct iio_dev *indio_dev; struct adf4350_state *st; struct clk *clk = NULL; int ret; if (spi->dev.of_node) { pdata = adf4350_parse_dt(&spi->dev); if (pdata == NULL) return -EINVAL; } else { pdata = spi->dev.platform_data; } if (!pdata) { dev_warn(&spi->dev, "no platform data? using default\n"); pdata = &default_pdata; } if (!pdata->clkin) { clk = devm_clk_get(&spi->dev, "clkin"); if (IS_ERR(clk)) return -EPROBE_DEFER; ret = clk_prepare_enable(clk); if (ret < 0) return ret; } indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (indio_dev == NULL) { ret = -ENOMEM; goto error_disable_clk; } st = iio_priv(indio_dev); st->reg = devm_regulator_get(&spi->dev, "vcc"); if (!IS_ERR(st->reg)) { ret = regulator_enable(st->reg); if (ret) goto error_disable_clk; } spi_set_drvdata(spi, indio_dev); st->spi = spi; st->pdata = pdata; indio_dev->name = (pdata->name[0] != 0) ? pdata->name : spi_get_device_id(spi)->name; indio_dev->info = &adf4350_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = &adf4350_chan; indio_dev->num_channels = 1; mutex_init(&st->lock); st->chspc = pdata->channel_spacing; if (clk) { st->clk = clk; st->clkin = clk_get_rate(clk); } else { st->clkin = pdata->clkin; } st->min_out_freq = spi_get_device_id(spi)->driver_data == 4351 ? ADF4351_MIN_OUT_FREQ : ADF4350_MIN_OUT_FREQ; memset(st->regs_hw, 0xFF, sizeof(st->regs_hw)); st->lock_detect_gpiod = devm_gpiod_get_optional(&spi->dev, NULL, GPIOD_IN); if (IS_ERR(st->lock_detect_gpiod)) { ret = PTR_ERR(st->lock_detect_gpiod); goto error_disable_reg; } if (pdata->power_up_frequency) { ret = adf4350_set_freq(st, pdata->power_up_frequency); if (ret) goto error_disable_reg; } ret = iio_device_register(indio_dev); if (ret) goto error_disable_reg; return 0; error_disable_reg: if (!IS_ERR(st->reg)) regulator_disable(st->reg); error_disable_clk: clk_disable_unprepare(clk); return ret; } static int adf4350_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct adf4350_state *st = iio_priv(indio_dev); struct regulator *reg = st->reg; st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN; adf4350_sync_config(st); iio_device_unregister(indio_dev); clk_disable_unprepare(st->clk); if (!IS_ERR(reg)) regulator_disable(reg); return 0; } static const struct of_device_id adf4350_of_match[] = { { .compatible = "adi,adf4350", }, { .compatible = "adi,adf4351", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, adf4350_of_match); static const struct spi_device_id adf4350_id[] = { {"adf4350", 4350}, {"adf4351", 4351}, {} }; MODULE_DEVICE_TABLE(spi, adf4350_id); static struct spi_driver adf4350_driver = { .driver = { .name = "adf4350", .of_match_table = of_match_ptr(adf4350_of_match), }, .probe = adf4350_probe, .remove = adf4350_remove, .id_table = adf4350_id, }; module_spi_driver(adf4350_driver); MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("Analog Devices ADF4350/ADF4351 PLL"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1