Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Roussin-Belanger | 4359 | 99.25% | 3 | 42.86% |
Andy Shevchenko | 23 | 0.52% | 1 | 14.29% |
Jonathan Cameron | 7 | 0.16% | 1 | 14.29% |
Arnd Bergmann | 2 | 0.05% | 1 | 14.29% |
Colin Ian King | 1 | 0.02% | 1 | 14.29% |
Total | 4392 | 7 |
// SPDX-License-Identifier: GPL-2.0+ /* * si1133.c - Support for Silabs SI1133 combined ambient * light and UV index sensors * * Copyright 2018 Maxime Roussin-Belanger <maxime.roussinbelanger@gmail.com> */ #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/util_macros.h> #include <asm/unaligned.h> #define SI1133_REG_PART_ID 0x00 #define SI1133_REG_REV_ID 0x01 #define SI1133_REG_MFR_ID 0x02 #define SI1133_REG_INFO0 0x03 #define SI1133_REG_INFO1 0x04 #define SI1133_PART_ID 0x33 #define SI1133_REG_HOSTIN0 0x0A #define SI1133_REG_COMMAND 0x0B #define SI1133_REG_IRQ_ENABLE 0x0F #define SI1133_REG_RESPONSE1 0x10 #define SI1133_REG_RESPONSE0 0x11 #define SI1133_REG_IRQ_STATUS 0x12 #define SI1133_REG_MEAS_RATE 0x1A #define SI1133_IRQ_CHANNEL_ENABLE 0xF #define SI1133_CMD_RESET_CTR 0x00 #define SI1133_CMD_RESET_SW 0x01 #define SI1133_CMD_FORCE 0x11 #define SI1133_CMD_START_AUTONOMOUS 0x13 #define SI1133_CMD_PARAM_SET 0x80 #define SI1133_CMD_PARAM_QUERY 0x40 #define SI1133_CMD_PARAM_MASK 0x3F #define SI1133_CMD_ERR_MASK BIT(4) #define SI1133_CMD_SEQ_MASK 0xF #define SI1133_MAX_CMD_CTR 0xF #define SI1133_PARAM_REG_CHAN_LIST 0x01 #define SI1133_PARAM_REG_ADCCONFIG(x) ((x) * 4) + 2 #define SI1133_PARAM_REG_ADCSENS(x) ((x) * 4) + 3 #define SI1133_PARAM_REG_ADCPOST(x) ((x) * 4) + 4 #define SI1133_ADCMUX_MASK 0x1F #define SI1133_ADCCONFIG_DECIM_RATE(x) (x) << 5 #define SI1133_ADCSENS_SCALE_MASK 0x70 #define SI1133_ADCSENS_SCALE_SHIFT 4 #define SI1133_ADCSENS_HSIG_MASK BIT(7) #define SI1133_ADCSENS_HSIG_SHIFT 7 #define SI1133_ADCSENS_HW_GAIN_MASK 0xF #define SI1133_ADCSENS_NB_MEAS(x) fls(x) << SI1133_ADCSENS_SCALE_SHIFT #define SI1133_ADCPOST_24BIT_EN BIT(6) #define SI1133_ADCPOST_POSTSHIFT_BITQTY(x) (x & GENMASK(2, 0)) << 3 #define SI1133_PARAM_ADCMUX_SMALL_IR 0x0 #define SI1133_PARAM_ADCMUX_MED_IR 0x1 #define SI1133_PARAM_ADCMUX_LARGE_IR 0x2 #define SI1133_PARAM_ADCMUX_WHITE 0xB #define SI1133_PARAM_ADCMUX_LARGE_WHITE 0xD #define SI1133_PARAM_ADCMUX_UV 0x18 #define SI1133_PARAM_ADCMUX_UV_DEEP 0x19 #define SI1133_ERR_INVALID_CMD 0x0 #define SI1133_ERR_INVALID_LOCATION_CMD 0x1 #define SI1133_ERR_SATURATION_ADC_OR_OVERFLOW_ACCUMULATION 0x2 #define SI1133_ERR_OUTPUT_BUFFER_OVERFLOW 0x3 #define SI1133_COMPLETION_TIMEOUT_MS 500 #define SI1133_CMD_MINSLEEP_US_LOW 5000 #define SI1133_CMD_MINSLEEP_US_HIGH 7500 #define SI1133_CMD_TIMEOUT_MS 25 #define SI1133_CMD_LUX_TIMEOUT_MS 5000 #define SI1133_CMD_TIMEOUT_US SI1133_CMD_TIMEOUT_MS * 1000 #define SI1133_REG_HOSTOUT(x) (x) + 0x13 #define SI1133_MEASUREMENT_FREQUENCY 1250 #define SI1133_X_ORDER_MASK 0x0070 #define SI1133_Y_ORDER_MASK 0x0007 #define si1133_get_x_order(m) ((m) & SI1133_X_ORDER_MASK) >> 4 #define si1133_get_y_order(m) ((m) & SI1133_Y_ORDER_MASK) #define SI1133_LUX_ADC_MASK 0xE #define SI1133_ADC_THRESHOLD 16000 #define SI1133_INPUT_FRACTION_HIGH 7 #define SI1133_INPUT_FRACTION_LOW 15 #define SI1133_LUX_OUTPUT_FRACTION 12 #define SI1133_LUX_BUFFER_SIZE 9 #define SI1133_MEASURE_BUFFER_SIZE 3 static const int si1133_scale_available[] = { 1, 2, 4, 8, 16, 32, 64, 128}; static IIO_CONST_ATTR(scale_available, "1 2 4 8 16 32 64 128"); static IIO_CONST_ATTR_INT_TIME_AVAIL("0.0244 0.0488 0.0975 0.195 0.390 0.780 " "1.560 3.120 6.24 12.48 25.0 50.0"); /* A.K.A. HW_GAIN in datasheet */ enum si1133_int_time { _24_4_us = 0, _48_8_us = 1, _97_5_us = 2, _195_0_us = 3, _390_0_us = 4, _780_0_us = 5, _1_560_0_us = 6, _3_120_0_us = 7, _6_240_0_us = 8, _12_480_0_us = 9, _25_ms = 10, _50_ms = 11, }; /* Integration time in milliseconds, nanoseconds */ static const int si1133_int_time_table[][2] = { [_24_4_us] = {0, 24400}, [_48_8_us] = {0, 48800}, [_97_5_us] = {0, 97500}, [_195_0_us] = {0, 195000}, [_390_0_us] = {0, 390000}, [_780_0_us] = {0, 780000}, [_1_560_0_us] = {1, 560000}, [_3_120_0_us] = {3, 120000}, [_6_240_0_us] = {6, 240000}, [_12_480_0_us] = {12, 480000}, [_25_ms] = {25, 000000}, [_50_ms] = {50, 000000}, }; static const struct regmap_range si1133_reg_ranges[] = { regmap_reg_range(0x00, 0x02), regmap_reg_range(0x0A, 0x0B), regmap_reg_range(0x0F, 0x0F), regmap_reg_range(0x10, 0x12), regmap_reg_range(0x13, 0x2C), }; static const struct regmap_range si1133_reg_ro_ranges[] = { regmap_reg_range(0x00, 0x02), regmap_reg_range(0x10, 0x2C), }; static const struct regmap_range si1133_precious_ranges[] = { regmap_reg_range(0x12, 0x12), }; static const struct regmap_access_table si1133_write_ranges_table = { .yes_ranges = si1133_reg_ranges, .n_yes_ranges = ARRAY_SIZE(si1133_reg_ranges), .no_ranges = si1133_reg_ro_ranges, .n_no_ranges = ARRAY_SIZE(si1133_reg_ro_ranges), }; static const struct regmap_access_table si1133_read_ranges_table = { .yes_ranges = si1133_reg_ranges, .n_yes_ranges = ARRAY_SIZE(si1133_reg_ranges), }; static const struct regmap_access_table si1133_precious_table = { .yes_ranges = si1133_precious_ranges, .n_yes_ranges = ARRAY_SIZE(si1133_precious_ranges), }; static const struct regmap_config si1133_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x2C, .wr_table = &si1133_write_ranges_table, .rd_table = &si1133_read_ranges_table, .precious_table = &si1133_precious_table, }; struct si1133_data { struct regmap *regmap; struct i2c_client *client; /* Lock protecting one command at a time can be processed */ struct mutex mutex; int rsp_seq; u8 scan_mask; u8 adc_sens[6]; u8 adc_config[6]; struct completion completion; }; struct si1133_coeff { s16 info; u16 mag; }; struct si1133_lux_coeff { struct si1133_coeff coeff_high[4]; struct si1133_coeff coeff_low[9]; }; static const struct si1133_lux_coeff lux_coeff = { { { 0, 209}, { 1665, 93}, { 2064, 65}, {-2671, 234} }, { { 0, 0}, { 1921, 29053}, {-1022, 36363}, { 2320, 20789}, { -367, 57909}, {-1774, 38240}, { -608, 46775}, {-1503, 51831}, {-1886, 58928} } }; static int si1133_calculate_polynomial_inner(s32 input, u8 fraction, u16 mag, s8 shift) { return ((input << fraction) / mag) << shift; } static int si1133_calculate_output(s32 x, s32 y, u8 x_order, u8 y_order, u8 input_fraction, s8 sign, const struct si1133_coeff *coeffs) { s8 shift; int x1 = 1; int x2 = 1; int y1 = 1; int y2 = 1; shift = ((u16)coeffs->info & 0xFF00) >> 8; shift ^= 0xFF; shift += 1; shift = -shift; if (x_order > 0) { x1 = si1133_calculate_polynomial_inner(x, input_fraction, coeffs->mag, shift); if (x_order > 1) x2 = x1; } if (y_order > 0) { y1 = si1133_calculate_polynomial_inner(y, input_fraction, coeffs->mag, shift); if (y_order > 1) y2 = y1; } return sign * x1 * x2 * y1 * y2; } /* * The algorithm is from: * https://siliconlabs.github.io/Gecko_SDK_Doc/efm32zg/html/si1133_8c_source.html#l00716 */ static int si1133_calc_polynomial(s32 x, s32 y, u8 input_fraction, u8 num_coeff, const struct si1133_coeff *coeffs) { u8 x_order, y_order; u8 counter; s8 sign; int output = 0; for (counter = 0; counter < num_coeff; counter++) { if (coeffs->info < 0) sign = -1; else sign = 1; x_order = si1133_get_x_order(coeffs->info); y_order = si1133_get_y_order(coeffs->info); if ((x_order == 0) && (y_order == 0)) output += sign * coeffs->mag << SI1133_LUX_OUTPUT_FRACTION; else output += si1133_calculate_output(x, y, x_order, y_order, input_fraction, sign, coeffs); coeffs++; } return abs(output); } static int si1133_cmd_reset_sw(struct si1133_data *data) { struct device *dev = &data->client->dev; unsigned int resp; unsigned long timeout; int err; err = regmap_write(data->regmap, SI1133_REG_COMMAND, SI1133_CMD_RESET_SW); if (err) return err; timeout = jiffies + msecs_to_jiffies(SI1133_CMD_TIMEOUT_MS); while (true) { err = regmap_read(data->regmap, SI1133_REG_RESPONSE0, &resp); if (err == -ENXIO) { usleep_range(SI1133_CMD_MINSLEEP_US_LOW, SI1133_CMD_MINSLEEP_US_HIGH); continue; } if ((resp & SI1133_MAX_CMD_CTR) == SI1133_MAX_CMD_CTR) break; if (time_after(jiffies, timeout)) { dev_warn(dev, "Timeout on reset ctr resp: %d\n", resp); return -ETIMEDOUT; } } if (!err) data->rsp_seq = SI1133_MAX_CMD_CTR; return err; } static int si1133_parse_response_err(struct device *dev, u32 resp, u8 cmd) { resp &= 0xF; switch (resp) { case SI1133_ERR_OUTPUT_BUFFER_OVERFLOW: dev_warn(dev, "Output buffer overflow: 0x%02x\n", cmd); return -EOVERFLOW; case SI1133_ERR_SATURATION_ADC_OR_OVERFLOW_ACCUMULATION: dev_warn(dev, "Saturation of the ADC or overflow of accumulation: 0x%02x\n", cmd); return -EOVERFLOW; case SI1133_ERR_INVALID_LOCATION_CMD: dev_warn(dev, "Parameter access to an invalid location: 0x%02x\n", cmd); return -EINVAL; case SI1133_ERR_INVALID_CMD: dev_warn(dev, "Invalid command 0x%02x\n", cmd); return -EINVAL; default: dev_warn(dev, "Unknown error 0x%02x\n", cmd); return -EINVAL; } } static int si1133_cmd_reset_counter(struct si1133_data *data) { int err = regmap_write(data->regmap, SI1133_REG_COMMAND, SI1133_CMD_RESET_CTR); if (err) return err; data->rsp_seq = 0; return 0; } static int si1133_command(struct si1133_data *data, u8 cmd) { struct device *dev = &data->client->dev; u32 resp; int err; int expected_seq; mutex_lock(&data->mutex); expected_seq = (data->rsp_seq + 1) & SI1133_MAX_CMD_CTR; if (cmd == SI1133_CMD_FORCE) reinit_completion(&data->completion); err = regmap_write(data->regmap, SI1133_REG_COMMAND, cmd); if (err) { dev_warn(dev, "Failed to write command 0x%02x, ret=%d\n", cmd, err); goto out; } if (cmd == SI1133_CMD_FORCE) { /* wait for irq */ if (!wait_for_completion_timeout(&data->completion, msecs_to_jiffies(SI1133_COMPLETION_TIMEOUT_MS))) { err = -ETIMEDOUT; goto out; } err = regmap_read(data->regmap, SI1133_REG_RESPONSE0, &resp); if (err) goto out; } else { err = regmap_read_poll_timeout(data->regmap, SI1133_REG_RESPONSE0, resp, (resp & SI1133_CMD_SEQ_MASK) == expected_seq || (resp & SI1133_CMD_ERR_MASK), SI1133_CMD_MINSLEEP_US_LOW, SI1133_CMD_TIMEOUT_MS * 1000); if (err) { dev_warn(dev, "Failed to read command 0x%02x, ret=%d\n", cmd, err); goto out; } } if (resp & SI1133_CMD_ERR_MASK) { err = si1133_parse_response_err(dev, resp, cmd); si1133_cmd_reset_counter(data); } else { data->rsp_seq = expected_seq; } out: mutex_unlock(&data->mutex); return err; } static int si1133_param_set(struct si1133_data *data, u8 param, u32 value) { int err = regmap_write(data->regmap, SI1133_REG_HOSTIN0, value); if (err) return err; return si1133_command(data, SI1133_CMD_PARAM_SET | (param & SI1133_CMD_PARAM_MASK)); } static int si1133_param_query(struct si1133_data *data, u8 param, u32 *result) { int err = si1133_command(data, SI1133_CMD_PARAM_QUERY | (param & SI1133_CMD_PARAM_MASK)); if (err) return err; return regmap_read(data->regmap, SI1133_REG_RESPONSE1, result); } #define SI1133_CHANNEL(_ch, _type) \ .type = _type, \ .channel = _ch, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_HARDWAREGAIN), \ static const struct iio_chan_spec si1133_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .channel = 0, }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_WHITE, IIO_INTENSITY) .channel2 = IIO_MOD_LIGHT_BOTH, }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_LARGE_WHITE, IIO_INTENSITY) .channel2 = IIO_MOD_LIGHT_BOTH, .extend_name = "large", }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_SMALL_IR, IIO_INTENSITY) .extend_name = "small", .modified = 1, .channel2 = IIO_MOD_LIGHT_IR, }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_MED_IR, IIO_INTENSITY) .modified = 1, .channel2 = IIO_MOD_LIGHT_IR, }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_LARGE_IR, IIO_INTENSITY) .extend_name = "large", .modified = 1, .channel2 = IIO_MOD_LIGHT_IR, }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_UV, IIO_UVINDEX) }, { SI1133_CHANNEL(SI1133_PARAM_ADCMUX_UV_DEEP, IIO_UVINDEX) .modified = 1, .channel2 = IIO_MOD_LIGHT_DUV, } }; static int si1133_get_int_time_index(int milliseconds, int nanoseconds) { int i; for (i = 0; i < ARRAY_SIZE(si1133_int_time_table); i++) { if (milliseconds == si1133_int_time_table[i][0] && nanoseconds == si1133_int_time_table[i][1]) return i; } return -EINVAL; } static int si1133_set_integration_time(struct si1133_data *data, u8 adc, int milliseconds, int nanoseconds) { int index; index = si1133_get_int_time_index(milliseconds, nanoseconds); if (index < 0) return index; data->adc_sens[adc] &= 0xF0; data->adc_sens[adc] |= index; return si1133_param_set(data, SI1133_PARAM_REG_ADCSENS(0), data->adc_sens[adc]); } static int si1133_set_chlist(struct si1133_data *data, u8 scan_mask) { /* channel list already set, no need to reprogram */ if (data->scan_mask == scan_mask) return 0; data->scan_mask = scan_mask; return si1133_param_set(data, SI1133_PARAM_REG_CHAN_LIST, scan_mask); } static int si1133_chan_set_adcconfig(struct si1133_data *data, u8 adc, u8 adc_config) { int err; err = si1133_param_set(data, SI1133_PARAM_REG_ADCCONFIG(adc), adc_config); if (err) return err; data->adc_config[adc] = adc_config; return 0; } static int si1133_update_adcconfig(struct si1133_data *data, uint8_t adc, u8 mask, u8 shift, u8 value) { u32 adc_config; int err; err = si1133_param_query(data, SI1133_PARAM_REG_ADCCONFIG(adc), &adc_config); if (err) return err; adc_config &= ~mask; adc_config |= (value << shift); return si1133_chan_set_adcconfig(data, adc, adc_config); } static int si1133_set_adcmux(struct si1133_data *data, u8 adc, u8 mux) { if ((mux & data->adc_config[adc]) == mux) return 0; /* mux already set to correct value */ return si1133_update_adcconfig(data, adc, SI1133_ADCMUX_MASK, 0, mux); } static int si1133_force_measurement(struct si1133_data *data) { return si1133_command(data, SI1133_CMD_FORCE); } static int si1133_bulk_read(struct si1133_data *data, u8 start_reg, u8 length, u8 *buffer) { int err; err = si1133_force_measurement(data); if (err) return err; return regmap_bulk_read(data->regmap, start_reg, buffer, length); } static int si1133_measure(struct si1133_data *data, struct iio_chan_spec const *chan, int *val) { int err; u8 buffer[SI1133_MEASURE_BUFFER_SIZE]; err = si1133_set_adcmux(data, 0, chan->channel); if (err) return err; /* Deactivate lux measurements if they were active */ err = si1133_set_chlist(data, BIT(0)); if (err) return err; err = si1133_bulk_read(data, SI1133_REG_HOSTOUT(0), sizeof(buffer), buffer); if (err) return err; *val = sign_extend32(get_unaligned_be24(&buffer[0]), 23); return err; } static irqreturn_t si1133_threaded_irq_handler(int irq, void *private) { struct iio_dev *iio_dev = private; struct si1133_data *data = iio_priv(iio_dev); u32 irq_status; int err; err = regmap_read(data->regmap, SI1133_REG_IRQ_STATUS, &irq_status); if (err) { dev_err_ratelimited(&iio_dev->dev, "Error reading IRQ\n"); goto out; } if (irq_status != data->scan_mask) return IRQ_NONE; out: complete(&data->completion); return IRQ_HANDLED; } static int si1133_scale_to_swgain(int scale_integer, int scale_fractional) { scale_integer = find_closest(scale_integer, si1133_scale_available, ARRAY_SIZE(si1133_scale_available)); if (scale_integer < 0 || scale_integer > ARRAY_SIZE(si1133_scale_available) || scale_fractional != 0) return -EINVAL; return scale_integer; } static int si1133_chan_set_adcsens(struct si1133_data *data, u8 adc, u8 adc_sens) { int err; err = si1133_param_set(data, SI1133_PARAM_REG_ADCSENS(adc), adc_sens); if (err) return err; data->adc_sens[adc] = adc_sens; return 0; } static int si1133_update_adcsens(struct si1133_data *data, u8 mask, u8 shift, u8 value) { int err; u32 adc_sens; err = si1133_param_query(data, SI1133_PARAM_REG_ADCSENS(0), &adc_sens); if (err) return err; adc_sens &= ~mask; adc_sens |= (value << shift); return si1133_chan_set_adcsens(data, 0, adc_sens); } static int si1133_get_lux(struct si1133_data *data, int *val) { int err; int lux; s32 high_vis; s32 low_vis; s32 ir; u8 buffer[SI1133_LUX_BUFFER_SIZE]; /* Activate lux channels */ err = si1133_set_chlist(data, SI1133_LUX_ADC_MASK); if (err) return err; err = si1133_bulk_read(data, SI1133_REG_HOSTOUT(0), SI1133_LUX_BUFFER_SIZE, buffer); if (err) return err; high_vis = sign_extend32(get_unaligned_be24(&buffer[0]), 23); low_vis = sign_extend32(get_unaligned_be24(&buffer[3]), 23); ir = sign_extend32(get_unaligned_be24(&buffer[6]), 23); if (high_vis > SI1133_ADC_THRESHOLD || ir > SI1133_ADC_THRESHOLD) lux = si1133_calc_polynomial(high_vis, ir, SI1133_INPUT_FRACTION_HIGH, ARRAY_SIZE(lux_coeff.coeff_high), &lux_coeff.coeff_high[0]); else lux = si1133_calc_polynomial(low_vis, ir, SI1133_INPUT_FRACTION_LOW, ARRAY_SIZE(lux_coeff.coeff_low), &lux_coeff.coeff_low[0]); *val = lux >> SI1133_LUX_OUTPUT_FRACTION; return err; } static int si1133_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct si1133_data *data = iio_priv(iio_dev); u8 adc_sens = data->adc_sens[0]; int err; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: err = si1133_get_lux(data, val); if (err) return err; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: err = si1133_measure(data, chan, val); if (err) return err; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: adc_sens &= SI1133_ADCSENS_HW_GAIN_MASK; *val = si1133_int_time_table[adc_sens][0]; *val2 = si1133_int_time_table[adc_sens][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: adc_sens &= SI1133_ADCSENS_SCALE_MASK; adc_sens >>= SI1133_ADCSENS_SCALE_SHIFT; *val = BIT(adc_sens); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_HARDWAREGAIN: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: adc_sens >>= SI1133_ADCSENS_HSIG_SHIFT; *val = adc_sens; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int si1133_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct si1133_data *data = iio_priv(iio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: val = si1133_scale_to_swgain(val, val2); if (val < 0) return val; return si1133_update_adcsens(data, SI1133_ADCSENS_SCALE_MASK, SI1133_ADCSENS_SCALE_SHIFT, val); default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: return si1133_set_integration_time(data, 0, val, val2); case IIO_CHAN_INFO_HARDWAREGAIN: switch (chan->type) { case IIO_INTENSITY: case IIO_UVINDEX: if (val != 0 && val != 1) return -EINVAL; return si1133_update_adcsens(data, SI1133_ADCSENS_HSIG_MASK, SI1133_ADCSENS_HSIG_SHIFT, val); default: return -EINVAL; } default: return -EINVAL; } } static struct attribute *si1133_attributes[] = { &iio_const_attr_integration_time_available.dev_attr.attr, &iio_const_attr_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group si1133_attribute_group = { .attrs = si1133_attributes, }; static const struct iio_info si1133_info = { .read_raw = si1133_read_raw, .write_raw = si1133_write_raw, .attrs = &si1133_attribute_group, }; /* * si1133_init_lux_channels - Configure 3 different channels(adc) (1,2 and 3) * The channel configuration for the lux measurement was taken from : * https://siliconlabs.github.io/Gecko_SDK_Doc/efm32zg/html/si1133_8c_source.html#l00578 * * Reserved the channel 0 for the other raw measurements */ static int si1133_init_lux_channels(struct si1133_data *data) { int err; err = si1133_chan_set_adcconfig(data, 1, SI1133_ADCCONFIG_DECIM_RATE(1) | SI1133_PARAM_ADCMUX_LARGE_WHITE); if (err) return err; err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(1), SI1133_ADCPOST_24BIT_EN | SI1133_ADCPOST_POSTSHIFT_BITQTY(0)); if (err) return err; err = si1133_chan_set_adcsens(data, 1, SI1133_ADCSENS_HSIG_MASK | SI1133_ADCSENS_NB_MEAS(64) | _48_8_us); if (err) return err; err = si1133_chan_set_adcconfig(data, 2, SI1133_ADCCONFIG_DECIM_RATE(1) | SI1133_PARAM_ADCMUX_LARGE_WHITE); if (err) return err; err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(2), SI1133_ADCPOST_24BIT_EN | SI1133_ADCPOST_POSTSHIFT_BITQTY(2)); if (err) return err; err = si1133_chan_set_adcsens(data, 2, SI1133_ADCSENS_HSIG_MASK | SI1133_ADCSENS_NB_MEAS(1) | _3_120_0_us); if (err) return err; err = si1133_chan_set_adcconfig(data, 3, SI1133_ADCCONFIG_DECIM_RATE(1) | SI1133_PARAM_ADCMUX_MED_IR); if (err) return err; err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(3), SI1133_ADCPOST_24BIT_EN | SI1133_ADCPOST_POSTSHIFT_BITQTY(2)); if (err) return err; return si1133_chan_set_adcsens(data, 3, SI1133_ADCSENS_HSIG_MASK | SI1133_ADCSENS_NB_MEAS(64) | _48_8_us); } static int si1133_initialize(struct si1133_data *data) { int err; err = si1133_cmd_reset_sw(data); if (err) return err; /* Turn off autonomous mode */ err = si1133_param_set(data, SI1133_REG_MEAS_RATE, 0); if (err) return err; err = si1133_init_lux_channels(data); if (err) return err; return regmap_write(data->regmap, SI1133_REG_IRQ_ENABLE, SI1133_IRQ_CHANNEL_ENABLE); } static int si1133_validate_ids(struct iio_dev *iio_dev) { struct si1133_data *data = iio_priv(iio_dev); unsigned int part_id, rev_id, mfr_id; int err; err = regmap_read(data->regmap, SI1133_REG_PART_ID, &part_id); if (err) return err; err = regmap_read(data->regmap, SI1133_REG_REV_ID, &rev_id); if (err) return err; err = regmap_read(data->regmap, SI1133_REG_MFR_ID, &mfr_id); if (err) return err; dev_info(&iio_dev->dev, "Device ID part 0x%02x rev 0x%02x mfr 0x%02x\n", part_id, rev_id, mfr_id); if (part_id != SI1133_PART_ID) { dev_err(&iio_dev->dev, "Part ID mismatch got 0x%02x, expected 0x%02x\n", part_id, SI1133_PART_ID); return -ENODEV; } return 0; } static int si1133_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct si1133_data *data; struct iio_dev *iio_dev; int err; iio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!iio_dev) return -ENOMEM; data = iio_priv(iio_dev); init_completion(&data->completion); data->regmap = devm_regmap_init_i2c(client, &si1133_regmap_config); if (IS_ERR(data->regmap)) { err = PTR_ERR(data->regmap); dev_err(&client->dev, "Failed to initialise regmap: %d\n", err); return err; } i2c_set_clientdata(client, iio_dev); data->client = client; iio_dev->name = id->name; iio_dev->channels = si1133_channels; iio_dev->num_channels = ARRAY_SIZE(si1133_channels); iio_dev->info = &si1133_info; iio_dev->modes = INDIO_DIRECT_MODE; mutex_init(&data->mutex); err = si1133_validate_ids(iio_dev); if (err) return err; err = si1133_initialize(data); if (err) { dev_err(&client->dev, "Error when initializing chip: %d\n", err); return err; } if (!client->irq) { dev_err(&client->dev, "Required interrupt not provided, cannot proceed\n"); return -EINVAL; } err = devm_request_threaded_irq(&client->dev, client->irq, NULL, si1133_threaded_irq_handler, IRQF_ONESHOT | IRQF_SHARED, client->name, iio_dev); if (err) { dev_warn(&client->dev, "Request irq %d failed: %i\n", client->irq, err); return err; } return devm_iio_device_register(&client->dev, iio_dev); } static const struct i2c_device_id si1133_ids[] = { { "si1133", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, si1133_ids); static struct i2c_driver si1133_driver = { .driver = { .name = "si1133", }, .probe = si1133_probe, .id_table = si1133_ids, }; module_i2c_driver(si1133_driver); MODULE_AUTHOR("Maxime Roussin-Belanger <maxime.roussinbelanger@gmail.com>"); MODULE_DESCRIPTION("Silabs SI1133, UV index sensor and ambient light sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1