Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Meerwald-Stadler | 5339 | 99.04% | 1 | 12.50% |
Jonathan Cameron | 24 | 0.45% | 3 | 37.50% |
Chuhong Yuan | 21 | 0.39% | 1 | 12.50% |
Lee Jones | 3 | 0.06% | 1 | 12.50% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 12.50% |
Thomas Gleixner | 2 | 0.04% | 1 | 12.50% |
Total | 5391 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * si1145.c - Support for Silabs SI1132 and SI1141/2/3/5/6/7 combined ambient * light, UV index and proximity sensors * * Copyright 2014-16 Peter Meerwald-Stadler <pmeerw@pmeerw.net> * Copyright 2016 Crestez Dan Leonard <leonard.crestez@intel.com> * * SI1132 (7-bit I2C slave address 0x60) * SI1141/2/3 (7-bit I2C slave address 0x5a) * SI1145/6/6 (7-bit I2C slave address 0x60) */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/buffer.h> #include <linux/util_macros.h> #define SI1145_REG_PART_ID 0x00 #define SI1145_REG_REV_ID 0x01 #define SI1145_REG_SEQ_ID 0x02 #define SI1145_REG_INT_CFG 0x03 #define SI1145_REG_IRQ_ENABLE 0x04 #define SI1145_REG_IRQ_MODE 0x05 #define SI1145_REG_HW_KEY 0x07 #define SI1145_REG_MEAS_RATE 0x08 #define SI1145_REG_PS_LED21 0x0f #define SI1145_REG_PS_LED3 0x10 #define SI1145_REG_UCOEF1 0x13 #define SI1145_REG_UCOEF2 0x14 #define SI1145_REG_UCOEF3 0x15 #define SI1145_REG_UCOEF4 0x16 #define SI1145_REG_PARAM_WR 0x17 #define SI1145_REG_COMMAND 0x18 #define SI1145_REG_RESPONSE 0x20 #define SI1145_REG_IRQ_STATUS 0x21 #define SI1145_REG_ALSVIS_DATA 0x22 #define SI1145_REG_ALSIR_DATA 0x24 #define SI1145_REG_PS1_DATA 0x26 #define SI1145_REG_PS2_DATA 0x28 #define SI1145_REG_PS3_DATA 0x2a #define SI1145_REG_AUX_DATA 0x2c #define SI1145_REG_PARAM_RD 0x2e #define SI1145_REG_CHIP_STAT 0x30 #define SI1145_UCOEF1_DEFAULT 0x7b #define SI1145_UCOEF2_DEFAULT 0x6b #define SI1145_UCOEF3_DEFAULT 0x01 #define SI1145_UCOEF4_DEFAULT 0x00 /* Helper to figure out PS_LED register / shift per channel */ #define SI1145_PS_LED_REG(ch) \ (((ch) == 2) ? SI1145_REG_PS_LED3 : SI1145_REG_PS_LED21) #define SI1145_PS_LED_SHIFT(ch) \ (((ch) == 1) ? 4 : 0) /* Parameter offsets */ #define SI1145_PARAM_CHLIST 0x01 #define SI1145_PARAM_PSLED12_SELECT 0x02 #define SI1145_PARAM_PSLED3_SELECT 0x03 #define SI1145_PARAM_PS_ENCODING 0x05 #define SI1145_PARAM_ALS_ENCODING 0x06 #define SI1145_PARAM_PS1_ADC_MUX 0x07 #define SI1145_PARAM_PS2_ADC_MUX 0x08 #define SI1145_PARAM_PS3_ADC_MUX 0x09 #define SI1145_PARAM_PS_ADC_COUNTER 0x0a #define SI1145_PARAM_PS_ADC_GAIN 0x0b #define SI1145_PARAM_PS_ADC_MISC 0x0c #define SI1145_PARAM_ALS_ADC_MUX 0x0d #define SI1145_PARAM_ALSIR_ADC_MUX 0x0e #define SI1145_PARAM_AUX_ADC_MUX 0x0f #define SI1145_PARAM_ALSVIS_ADC_COUNTER 0x10 #define SI1145_PARAM_ALSVIS_ADC_GAIN 0x11 #define SI1145_PARAM_ALSVIS_ADC_MISC 0x12 #define SI1145_PARAM_LED_RECOVERY 0x1c #define SI1145_PARAM_ALSIR_ADC_COUNTER 0x1d #define SI1145_PARAM_ALSIR_ADC_GAIN 0x1e #define SI1145_PARAM_ALSIR_ADC_MISC 0x1f #define SI1145_PARAM_ADC_OFFSET 0x1a /* Channel enable masks for CHLIST parameter */ #define SI1145_CHLIST_EN_PS1 BIT(0) #define SI1145_CHLIST_EN_PS2 BIT(1) #define SI1145_CHLIST_EN_PS3 BIT(2) #define SI1145_CHLIST_EN_ALSVIS BIT(4) #define SI1145_CHLIST_EN_ALSIR BIT(5) #define SI1145_CHLIST_EN_AUX BIT(6) #define SI1145_CHLIST_EN_UV BIT(7) /* Proximity measurement mode for ADC_MISC parameter */ #define SI1145_PS_ADC_MODE_NORMAL BIT(2) /* Signal range mask for ADC_MISC parameter */ #define SI1145_ADC_MISC_RANGE BIT(5) /* Commands for REG_COMMAND */ #define SI1145_CMD_NOP 0x00 #define SI1145_CMD_RESET 0x01 #define SI1145_CMD_PS_FORCE 0x05 #define SI1145_CMD_ALS_FORCE 0x06 #define SI1145_CMD_PSALS_FORCE 0x07 #define SI1145_CMD_PS_PAUSE 0x09 #define SI1145_CMD_ALS_PAUSE 0x0a #define SI1145_CMD_PSALS_PAUSE 0x0b #define SI1145_CMD_PS_AUTO 0x0d #define SI1145_CMD_ALS_AUTO 0x0e #define SI1145_CMD_PSALS_AUTO 0x0f #define SI1145_CMD_PARAM_QUERY 0x80 #define SI1145_CMD_PARAM_SET 0xa0 #define SI1145_RSP_INVALID_SETTING 0x80 #define SI1145_RSP_COUNTER_MASK 0x0F /* Minimum sleep after each command to ensure it's received */ #define SI1145_COMMAND_MINSLEEP_MS 5 /* Return -ETIMEDOUT after this long */ #define SI1145_COMMAND_TIMEOUT_MS 25 /* Interrupt configuration masks for INT_CFG register */ #define SI1145_INT_CFG_OE BIT(0) /* enable interrupt */ #define SI1145_INT_CFG_MODE BIT(1) /* auto reset interrupt pin */ /* Interrupt enable masks for IRQ_ENABLE register */ #define SI1145_MASK_ALL_IE (BIT(4) | BIT(3) | BIT(2) | BIT(0)) #define SI1145_MUX_TEMP 0x65 #define SI1145_MUX_VDD 0x75 /* Proximity LED current; see Table 2 in datasheet */ #define SI1145_LED_CURRENT_45mA 0x04 enum { SI1132, SI1141, SI1142, SI1143, SI1145, SI1146, SI1147, }; struct si1145_part_info { u8 part; const struct iio_info *iio_info; const struct iio_chan_spec *channels; unsigned int num_channels; unsigned int num_leds; bool uncompressed_meas_rate; }; /** * struct si1145_data - si1145 chip state data * @client: I2C client * @lock: mutex to protect shared state. * @cmdlock: Low-level mutex to protect command execution only * @rsp_seq: Next expected response number or -1 if counter reset required * @scan_mask: Saved scan mask to avoid duplicate set_chlist * @autonomous: If automatic measurements are active (for buffer support) * @part_info: Part information * @trig: Pointer to iio trigger * @meas_rate: Value of MEAS_RATE register. Only set in HW in auto mode * @buffer: Used to pack data read from sensor. */ struct si1145_data { struct i2c_client *client; struct mutex lock; struct mutex cmdlock; int rsp_seq; const struct si1145_part_info *part_info; unsigned long scan_mask; bool autonomous; struct iio_trigger *trig; int meas_rate; /* * Ensure timestamp will be naturally aligned if present. * Maximum buffer size (may be only partly used if not all * channels are enabled): * 6*2 bytes channels data + 4 bytes alignment + * 8 bytes timestamp */ u8 buffer[24] __aligned(8); }; /* * __si1145_command_reset() - Send CMD_NOP and wait for response 0 * * Does not modify data->rsp_seq * * Return: 0 on success and -errno on error. */ static int __si1145_command_reset(struct si1145_data *data) { struct device *dev = &data->client->dev; unsigned long stop_jiffies; int ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_COMMAND, SI1145_CMD_NOP); if (ret < 0) return ret; msleep(SI1145_COMMAND_MINSLEEP_MS); stop_jiffies = jiffies + SI1145_COMMAND_TIMEOUT_MS * HZ / 1000; while (true) { ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_RESPONSE); if (ret <= 0) return ret; if (time_after(jiffies, stop_jiffies)) { dev_warn(dev, "timeout on reset\n"); return -ETIMEDOUT; } msleep(SI1145_COMMAND_MINSLEEP_MS); } } /* * si1145_command() - Execute a command and poll the response register * * All conversion overflows are reported as -EOVERFLOW * INVALID_SETTING is reported as -EINVAL * Timeouts are reported as -ETIMEDOUT * * Return: 0 on success or -errno on failure */ static int si1145_command(struct si1145_data *data, u8 cmd) { struct device *dev = &data->client->dev; unsigned long stop_jiffies; int ret; mutex_lock(&data->cmdlock); if (data->rsp_seq < 0) { ret = __si1145_command_reset(data); if (ret < 0) { dev_err(dev, "failed to reset command counter, ret=%d\n", ret); goto out; } data->rsp_seq = 0; } ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_COMMAND, cmd); if (ret) { dev_warn(dev, "failed to write command, ret=%d\n", ret); goto out; } /* Sleep a little to ensure the command is received */ msleep(SI1145_COMMAND_MINSLEEP_MS); stop_jiffies = jiffies + SI1145_COMMAND_TIMEOUT_MS * HZ / 1000; while (true) { ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_RESPONSE); if (ret < 0) { dev_warn(dev, "failed to read response, ret=%d\n", ret); break; } if ((ret & ~SI1145_RSP_COUNTER_MASK) == 0) { if (ret == data->rsp_seq) { if (time_after(jiffies, stop_jiffies)) { dev_warn(dev, "timeout on command 0x%02x\n", cmd); ret = -ETIMEDOUT; break; } msleep(SI1145_COMMAND_MINSLEEP_MS); continue; } if (ret == ((data->rsp_seq + 1) & SI1145_RSP_COUNTER_MASK)) { data->rsp_seq = ret; ret = 0; break; } dev_warn(dev, "unexpected response counter %d instead of %d\n", ret, (data->rsp_seq + 1) & SI1145_RSP_COUNTER_MASK); ret = -EIO; } else { if (ret == SI1145_RSP_INVALID_SETTING) { dev_warn(dev, "INVALID_SETTING error on command 0x%02x\n", cmd); ret = -EINVAL; } else { /* All overflows are treated identically */ dev_dbg(dev, "overflow, ret=%d, cmd=0x%02x\n", ret, cmd); ret = -EOVERFLOW; } } /* Force a counter reset next time */ data->rsp_seq = -1; break; } out: mutex_unlock(&data->cmdlock); return ret; } static int si1145_param_update(struct si1145_data *data, u8 op, u8 param, u8 value) { int ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_PARAM_WR, value); if (ret < 0) return ret; return si1145_command(data, op | (param & 0x1F)); } static int si1145_param_set(struct si1145_data *data, u8 param, u8 value) { return si1145_param_update(data, SI1145_CMD_PARAM_SET, param, value); } /* Set param. Returns negative errno or current value */ static int si1145_param_query(struct si1145_data *data, u8 param) { int ret; ret = si1145_command(data, SI1145_CMD_PARAM_QUERY | (param & 0x1F)); if (ret < 0) return ret; return i2c_smbus_read_byte_data(data->client, SI1145_REG_PARAM_RD); } /* Expand 8 bit compressed value to 16 bit, see Silabs AN498 */ static u16 si1145_uncompress(u8 x) { u16 result = 0; u8 exponent = 0; if (x < 8) return 0; exponent = (x & 0xf0) >> 4; result = 0x10 | (x & 0x0f); if (exponent >= 4) return result << (exponent - 4); return result >> (4 - exponent); } /* Compress 16 bit value to 8 bit, see Silabs AN498 */ static u8 si1145_compress(u16 x) { u32 exponent = 0; u32 significand = 0; u32 tmp = x; if (x == 0x0000) return 0x00; if (x == 0x0001) return 0x08; while (1) { tmp >>= 1; exponent += 1; if (tmp == 1) break; } if (exponent < 5) { significand = x << (4 - exponent); return (exponent << 4) | (significand & 0xF); } significand = x >> (exponent - 5); if (significand & 1) { significand += 2; if (significand & 0x0040) { exponent += 1; significand >>= 1; } } return (exponent << 4) | ((significand >> 1) & 0xF); } /* Write meas_rate in hardware */ static int si1145_set_meas_rate(struct si1145_data *data, int interval) { if (data->part_info->uncompressed_meas_rate) return i2c_smbus_write_word_data(data->client, SI1145_REG_MEAS_RATE, interval); else return i2c_smbus_write_byte_data(data->client, SI1145_REG_MEAS_RATE, interval); } static int si1145_read_samp_freq(struct si1145_data *data, int *val, int *val2) { *val = 32000; if (data->part_info->uncompressed_meas_rate) *val2 = data->meas_rate; else *val2 = si1145_uncompress(data->meas_rate); return IIO_VAL_FRACTIONAL; } /* Set the samp freq in driver private data */ static int si1145_store_samp_freq(struct si1145_data *data, int val) { int ret = 0; int meas_rate; if (val <= 0 || val > 32000) return -ERANGE; meas_rate = 32000 / val; mutex_lock(&data->lock); if (data->autonomous) { ret = si1145_set_meas_rate(data, meas_rate); if (ret) goto out; } if (data->part_info->uncompressed_meas_rate) data->meas_rate = meas_rate; else data->meas_rate = si1145_compress(meas_rate); out: mutex_unlock(&data->lock); return ret; } static irqreturn_t si1145_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct si1145_data *data = iio_priv(indio_dev); int i, j = 0; int ret; u8 irq_status = 0; if (!data->autonomous) { ret = si1145_command(data, SI1145_CMD_PSALS_FORCE); if (ret < 0 && ret != -EOVERFLOW) goto done; } else { irq_status = ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_IRQ_STATUS); if (ret < 0) goto done; if (!(irq_status & SI1145_MASK_ALL_IE)) goto done; } for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) { int run = 1; while (i + run < indio_dev->masklength) { if (!test_bit(i + run, indio_dev->active_scan_mask)) break; if (indio_dev->channels[i + run].address != indio_dev->channels[i].address + 2 * run) break; run++; } ret = i2c_smbus_read_i2c_block_data_or_emulated( data->client, indio_dev->channels[i].address, sizeof(u16) * run, &data->buffer[j]); if (ret < 0) goto done; j += run * sizeof(u16); i += run - 1; } if (data->autonomous) { ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_IRQ_STATUS, irq_status & SI1145_MASK_ALL_IE); if (ret < 0) goto done; } iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int si1145_set_chlist(struct iio_dev *indio_dev, unsigned long scan_mask) { struct si1145_data *data = iio_priv(indio_dev); u8 reg = 0, mux; int ret; int i; /* channel list already set, no need to reprogram */ if (data->scan_mask == scan_mask) return 0; for_each_set_bit(i, &scan_mask, indio_dev->masklength) { switch (indio_dev->channels[i].address) { case SI1145_REG_ALSVIS_DATA: reg |= SI1145_CHLIST_EN_ALSVIS; break; case SI1145_REG_ALSIR_DATA: reg |= SI1145_CHLIST_EN_ALSIR; break; case SI1145_REG_PS1_DATA: reg |= SI1145_CHLIST_EN_PS1; break; case SI1145_REG_PS2_DATA: reg |= SI1145_CHLIST_EN_PS2; break; case SI1145_REG_PS3_DATA: reg |= SI1145_CHLIST_EN_PS3; break; case SI1145_REG_AUX_DATA: switch (indio_dev->channels[i].type) { case IIO_UVINDEX: reg |= SI1145_CHLIST_EN_UV; break; default: reg |= SI1145_CHLIST_EN_AUX; if (indio_dev->channels[i].type == IIO_TEMP) mux = SI1145_MUX_TEMP; else mux = SI1145_MUX_VDD; ret = si1145_param_set(data, SI1145_PARAM_AUX_ADC_MUX, mux); if (ret < 0) return ret; break; } } } data->scan_mask = scan_mask; ret = si1145_param_set(data, SI1145_PARAM_CHLIST, reg); return ret < 0 ? ret : 0; } static int si1145_measure(struct iio_dev *indio_dev, struct iio_chan_spec const *chan) { struct si1145_data *data = iio_priv(indio_dev); u8 cmd; int ret; ret = si1145_set_chlist(indio_dev, BIT(chan->scan_index)); if (ret < 0) return ret; cmd = (chan->type == IIO_PROXIMITY) ? SI1145_CMD_PS_FORCE : SI1145_CMD_ALS_FORCE; ret = si1145_command(data, cmd); if (ret < 0 && ret != -EOVERFLOW) return ret; return i2c_smbus_read_word_data(data->client, chan->address); } /* * Conversion between iio scale and ADC_GAIN values * These could be further adjusted but proximity/intensity are dimensionless */ static const int si1145_proximity_scale_available[] = { 128, 64, 32, 16, 8, 4}; static const int si1145_intensity_scale_available[] = { 128, 64, 32, 16, 8, 4, 2, 1}; static IIO_CONST_ATTR(in_proximity_scale_available, "128 64 32 16 8 4"); static IIO_CONST_ATTR(in_intensity_scale_available, "128 64 32 16 8 4 2 1"); static IIO_CONST_ATTR(in_intensity_ir_scale_available, "128 64 32 16 8 4 2 1"); static int si1145_scale_from_adcgain(int regval) { return 128 >> regval; } static int si1145_proximity_adcgain_from_scale(int val, int val2) { val = find_closest_descending(val, si1145_proximity_scale_available, ARRAY_SIZE(si1145_proximity_scale_available)); if (val < 0 || val > 5 || val2 != 0) return -EINVAL; return val; } static int si1145_intensity_adcgain_from_scale(int val, int val2) { val = find_closest_descending(val, si1145_intensity_scale_available, ARRAY_SIZE(si1145_intensity_scale_available)); if (val < 0 || val > 7 || val2 != 0) return -EINVAL; return val; } static int si1145_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct si1145_data *data = iio_priv(indio_dev); int ret; u8 reg; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_INTENSITY: case IIO_PROXIMITY: case IIO_VOLTAGE: case IIO_TEMP: case IIO_UVINDEX: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = si1145_measure(indio_dev, chan); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CURRENT: ret = i2c_smbus_read_byte_data(data->client, SI1145_PS_LED_REG(chan->channel)); if (ret < 0) return ret; *val = (ret >> SI1145_PS_LED_SHIFT(chan->channel)) & 0x0f; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_PROXIMITY: reg = SI1145_PARAM_PS_ADC_GAIN; break; case IIO_INTENSITY: if (chan->channel2 == IIO_MOD_LIGHT_IR) reg = SI1145_PARAM_ALSIR_ADC_GAIN; else reg = SI1145_PARAM_ALSVIS_ADC_GAIN; break; case IIO_TEMP: *val = 28; *val2 = 571429; return IIO_VAL_INT_PLUS_MICRO; case IIO_UVINDEX: *val = 0; *val2 = 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } ret = si1145_param_query(data, reg); if (ret < 0) return ret; *val = si1145_scale_from_adcgain(ret & 0x07); return IIO_VAL_INT; case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: /* * -ADC offset - ADC counts @ 25°C - * 35 * ADC counts / °C */ *val = -256 - 11136 + 25 * 35; return IIO_VAL_INT; default: /* * All ADC measurements have are by default offset * by -256 * See AN498 5.6.3 */ ret = si1145_param_query(data, SI1145_PARAM_ADC_OFFSET); if (ret < 0) return ret; *val = -si1145_uncompress(ret); return IIO_VAL_INT; } case IIO_CHAN_INFO_SAMP_FREQ: return si1145_read_samp_freq(data, val, val2); default: return -EINVAL; } } static int si1145_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct si1145_data *data = iio_priv(indio_dev); u8 reg1, reg2, shift; int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_PROXIMITY: val = si1145_proximity_adcgain_from_scale(val, val2); if (val < 0) return val; reg1 = SI1145_PARAM_PS_ADC_GAIN; reg2 = SI1145_PARAM_PS_ADC_COUNTER; break; case IIO_INTENSITY: val = si1145_intensity_adcgain_from_scale(val, val2); if (val < 0) return val; if (chan->channel2 == IIO_MOD_LIGHT_IR) { reg1 = SI1145_PARAM_ALSIR_ADC_GAIN; reg2 = SI1145_PARAM_ALSIR_ADC_COUNTER; } else { reg1 = SI1145_PARAM_ALSVIS_ADC_GAIN; reg2 = SI1145_PARAM_ALSVIS_ADC_COUNTER; } break; default: return -EINVAL; } ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = si1145_param_set(data, reg1, val); if (ret < 0) { iio_device_release_direct_mode(indio_dev); return ret; } /* Set recovery period to one's complement of gain */ ret = si1145_param_set(data, reg2, (~val & 0x07) << 4); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_RAW: if (chan->type != IIO_CURRENT) return -EINVAL; if (val < 0 || val > 15 || val2 != 0) return -EINVAL; reg1 = SI1145_PS_LED_REG(chan->channel); shift = SI1145_PS_LED_SHIFT(chan->channel); ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = i2c_smbus_read_byte_data(data->client, reg1); if (ret < 0) { iio_device_release_direct_mode(indio_dev); return ret; } ret = i2c_smbus_write_byte_data(data->client, reg1, (ret & ~(0x0f << shift)) | ((val & 0x0f) << shift)); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: return si1145_store_samp_freq(data, val); default: return -EINVAL; } } #define SI1145_ST { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ } #define SI1145_INTENSITY_CHANNEL(_si) { \ .type = IIO_INTENSITY, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_ALSVIS_DATA, \ } #define SI1145_INTENSITY_IR_CHANNEL(_si) { \ .type = IIO_INTENSITY, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .modified = 1, \ .channel2 = IIO_MOD_LIGHT_IR, \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_ALSIR_DATA, \ } #define SI1145_TEMP_CHANNEL(_si) { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_AUX_DATA, \ } #define SI1145_UV_CHANNEL(_si) { \ .type = IIO_UVINDEX, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_AUX_DATA, \ } #define SI1145_PROXIMITY_CHANNEL(_si, _ch) { \ .type = IIO_PROXIMITY, \ .indexed = 1, \ .channel = _ch, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_PS1_DATA + _ch * 2, \ } #define SI1145_VOLTAGE_CHANNEL(_si) { \ .type = IIO_VOLTAGE, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = SI1145_ST, \ .scan_index = _si, \ .address = SI1145_REG_AUX_DATA, \ } #define SI1145_CURRENT_CHANNEL(_ch) { \ .type = IIO_CURRENT, \ .indexed = 1, \ .channel = _ch, \ .output = 1, \ .scan_index = -1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ } static const struct iio_chan_spec si1132_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_TEMP_CHANNEL(2), SI1145_VOLTAGE_CHANNEL(3), SI1145_UV_CHANNEL(4), IIO_CHAN_SOFT_TIMESTAMP(6), }; static const struct iio_chan_spec si1141_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_PROXIMITY_CHANNEL(2, 0), SI1145_TEMP_CHANNEL(3), SI1145_VOLTAGE_CHANNEL(4), IIO_CHAN_SOFT_TIMESTAMP(5), SI1145_CURRENT_CHANNEL(0), }; static const struct iio_chan_spec si1142_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_PROXIMITY_CHANNEL(2, 0), SI1145_PROXIMITY_CHANNEL(3, 1), SI1145_TEMP_CHANNEL(4), SI1145_VOLTAGE_CHANNEL(5), IIO_CHAN_SOFT_TIMESTAMP(6), SI1145_CURRENT_CHANNEL(0), SI1145_CURRENT_CHANNEL(1), }; static const struct iio_chan_spec si1143_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_PROXIMITY_CHANNEL(2, 0), SI1145_PROXIMITY_CHANNEL(3, 1), SI1145_PROXIMITY_CHANNEL(4, 2), SI1145_TEMP_CHANNEL(5), SI1145_VOLTAGE_CHANNEL(6), IIO_CHAN_SOFT_TIMESTAMP(7), SI1145_CURRENT_CHANNEL(0), SI1145_CURRENT_CHANNEL(1), SI1145_CURRENT_CHANNEL(2), }; static const struct iio_chan_spec si1145_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_PROXIMITY_CHANNEL(2, 0), SI1145_TEMP_CHANNEL(3), SI1145_VOLTAGE_CHANNEL(4), SI1145_UV_CHANNEL(5), IIO_CHAN_SOFT_TIMESTAMP(6), SI1145_CURRENT_CHANNEL(0), }; static const struct iio_chan_spec si1146_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_TEMP_CHANNEL(2), SI1145_VOLTAGE_CHANNEL(3), SI1145_UV_CHANNEL(4), SI1145_PROXIMITY_CHANNEL(5, 0), SI1145_PROXIMITY_CHANNEL(6, 1), IIO_CHAN_SOFT_TIMESTAMP(7), SI1145_CURRENT_CHANNEL(0), SI1145_CURRENT_CHANNEL(1), }; static const struct iio_chan_spec si1147_channels[] = { SI1145_INTENSITY_CHANNEL(0), SI1145_INTENSITY_IR_CHANNEL(1), SI1145_PROXIMITY_CHANNEL(2, 0), SI1145_PROXIMITY_CHANNEL(3, 1), SI1145_PROXIMITY_CHANNEL(4, 2), SI1145_TEMP_CHANNEL(5), SI1145_VOLTAGE_CHANNEL(6), SI1145_UV_CHANNEL(7), IIO_CHAN_SOFT_TIMESTAMP(8), SI1145_CURRENT_CHANNEL(0), SI1145_CURRENT_CHANNEL(1), SI1145_CURRENT_CHANNEL(2), }; static struct attribute *si1132_attributes[] = { &iio_const_attr_in_intensity_scale_available.dev_attr.attr, &iio_const_attr_in_intensity_ir_scale_available.dev_attr.attr, NULL, }; static struct attribute *si114x_attributes[] = { &iio_const_attr_in_intensity_scale_available.dev_attr.attr, &iio_const_attr_in_intensity_ir_scale_available.dev_attr.attr, &iio_const_attr_in_proximity_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group si1132_attribute_group = { .attrs = si1132_attributes, }; static const struct attribute_group si114x_attribute_group = { .attrs = si114x_attributes, }; static const struct iio_info si1132_info = { .read_raw = si1145_read_raw, .write_raw = si1145_write_raw, .attrs = &si1132_attribute_group, }; static const struct iio_info si114x_info = { .read_raw = si1145_read_raw, .write_raw = si1145_write_raw, .attrs = &si114x_attribute_group, }; #define SI1145_PART(id, iio_info, chans, leds, uncompressed_meas_rate) \ {id, iio_info, chans, ARRAY_SIZE(chans), leds, uncompressed_meas_rate} static const struct si1145_part_info si1145_part_info[] = { [SI1132] = SI1145_PART(0x32, &si1132_info, si1132_channels, 0, true), [SI1141] = SI1145_PART(0x41, &si114x_info, si1141_channels, 1, false), [SI1142] = SI1145_PART(0x42, &si114x_info, si1142_channels, 2, false), [SI1143] = SI1145_PART(0x43, &si114x_info, si1143_channels, 3, false), [SI1145] = SI1145_PART(0x45, &si114x_info, si1145_channels, 1, true), [SI1146] = SI1145_PART(0x46, &si114x_info, si1146_channels, 2, true), [SI1147] = SI1145_PART(0x47, &si114x_info, si1147_channels, 3, true), }; static int si1145_initialize(struct si1145_data *data) { struct i2c_client *client = data->client; int ret; ret = i2c_smbus_write_byte_data(client, SI1145_REG_COMMAND, SI1145_CMD_RESET); if (ret < 0) return ret; msleep(SI1145_COMMAND_TIMEOUT_MS); /* Hardware key, magic value */ ret = i2c_smbus_write_byte_data(client, SI1145_REG_HW_KEY, 0x17); if (ret < 0) return ret; msleep(SI1145_COMMAND_TIMEOUT_MS); /* Turn off autonomous mode */ ret = si1145_set_meas_rate(data, 0); if (ret < 0) return ret; /* Initialize sampling freq to 10 Hz */ ret = si1145_store_samp_freq(data, 10); if (ret < 0) return ret; /* Set LED currents to 45 mA; have 4 bits, see Table 2 in datasheet */ switch (data->part_info->num_leds) { case 3: ret = i2c_smbus_write_byte_data(client, SI1145_REG_PS_LED3, SI1145_LED_CURRENT_45mA); if (ret < 0) return ret; fallthrough; case 2: ret = i2c_smbus_write_byte_data(client, SI1145_REG_PS_LED21, (SI1145_LED_CURRENT_45mA << 4) | SI1145_LED_CURRENT_45mA); break; case 1: ret = i2c_smbus_write_byte_data(client, SI1145_REG_PS_LED21, SI1145_LED_CURRENT_45mA); break; default: ret = 0; break; } if (ret < 0) return ret; /* Set normal proximity measurement mode */ ret = si1145_param_set(data, SI1145_PARAM_PS_ADC_MISC, SI1145_PS_ADC_MODE_NORMAL); if (ret < 0) return ret; ret = si1145_param_set(data, SI1145_PARAM_PS_ADC_GAIN, 0x01); if (ret < 0) return ret; /* ADC_COUNTER should be one complement of ADC_GAIN */ ret = si1145_param_set(data, SI1145_PARAM_PS_ADC_COUNTER, 0x06 << 4); if (ret < 0) return ret; /* Set ALS visible measurement mode */ ret = si1145_param_set(data, SI1145_PARAM_ALSVIS_ADC_MISC, SI1145_ADC_MISC_RANGE); if (ret < 0) return ret; ret = si1145_param_set(data, SI1145_PARAM_ALSVIS_ADC_GAIN, 0x03); if (ret < 0) return ret; ret = si1145_param_set(data, SI1145_PARAM_ALSVIS_ADC_COUNTER, 0x04 << 4); if (ret < 0) return ret; /* Set ALS IR measurement mode */ ret = si1145_param_set(data, SI1145_PARAM_ALSIR_ADC_MISC, SI1145_ADC_MISC_RANGE); if (ret < 0) return ret; ret = si1145_param_set(data, SI1145_PARAM_ALSIR_ADC_GAIN, 0x01); if (ret < 0) return ret; ret = si1145_param_set(data, SI1145_PARAM_ALSIR_ADC_COUNTER, 0x06 << 4); if (ret < 0) return ret; /* * Initialize UCOEF to default values in datasheet * These registers are normally zero on reset */ if (data->part_info == &si1145_part_info[SI1132] || data->part_info == &si1145_part_info[SI1145] || data->part_info == &si1145_part_info[SI1146] || data->part_info == &si1145_part_info[SI1147]) { ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_UCOEF1, SI1145_UCOEF1_DEFAULT); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_UCOEF2, SI1145_UCOEF2_DEFAULT); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_UCOEF3, SI1145_UCOEF3_DEFAULT); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_UCOEF4, SI1145_UCOEF4_DEFAULT); if (ret < 0) return ret; } return 0; } /* * Program the channels we want to measure with CMD_PSALS_AUTO. No need for * _postdisable as we stop with CMD_PSALS_PAUSE; single measurement (direct) * mode reprograms the channels list anyway... */ static int si1145_buffer_preenable(struct iio_dev *indio_dev) { struct si1145_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); ret = si1145_set_chlist(indio_dev, *indio_dev->active_scan_mask); mutex_unlock(&data->lock); return ret; } static bool si1145_validate_scan_mask(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct si1145_data *data = iio_priv(indio_dev); unsigned int count = 0; int i; /* Check that at most one AUX channel is enabled */ for_each_set_bit(i, scan_mask, data->part_info->num_channels) { if (indio_dev->channels[i].address == SI1145_REG_AUX_DATA) count++; } return count <= 1; } static const struct iio_buffer_setup_ops si1145_buffer_setup_ops = { .preenable = si1145_buffer_preenable, .validate_scan_mask = si1145_validate_scan_mask, }; /* * si1145_trigger_set_state() - Set trigger state * * When not using triggers interrupts are disabled and measurement rate is * set to zero in order to minimize power consumption. */ static int si1145_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct si1145_data *data = iio_priv(indio_dev); int err = 0, ret; mutex_lock(&data->lock); if (state) { data->autonomous = true; err = i2c_smbus_write_byte_data(data->client, SI1145_REG_INT_CFG, SI1145_INT_CFG_OE); if (err < 0) goto disable; err = i2c_smbus_write_byte_data(data->client, SI1145_REG_IRQ_ENABLE, SI1145_MASK_ALL_IE); if (err < 0) goto disable; err = si1145_set_meas_rate(data, data->meas_rate); if (err < 0) goto disable; err = si1145_command(data, SI1145_CMD_PSALS_AUTO); if (err < 0) goto disable; } else { disable: /* Disable as much as possible skipping errors */ ret = si1145_command(data, SI1145_CMD_PSALS_PAUSE); if (ret < 0 && !err) err = ret; ret = si1145_set_meas_rate(data, 0); if (ret < 0 && !err) err = ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_IRQ_ENABLE, 0); if (ret < 0 && !err) err = ret; ret = i2c_smbus_write_byte_data(data->client, SI1145_REG_INT_CFG, 0); if (ret < 0 && !err) err = ret; data->autonomous = false; } mutex_unlock(&data->lock); return err; } static const struct iio_trigger_ops si1145_trigger_ops = { .set_trigger_state = si1145_trigger_set_state, }; static int si1145_probe_trigger(struct iio_dev *indio_dev) { struct si1145_data *data = iio_priv(indio_dev); struct i2c_client *client = data->client; struct iio_trigger *trig; int ret; trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trig) return -ENOMEM; trig->ops = &si1145_trigger_ops; iio_trigger_set_drvdata(trig, indio_dev); ret = devm_request_irq(&client->dev, client->irq, iio_trigger_generic_data_rdy_poll, IRQF_TRIGGER_FALLING, "si1145_irq", trig); if (ret < 0) { dev_err(&client->dev, "irq request failed\n"); return ret; } ret = devm_iio_trigger_register(&client->dev, trig); if (ret) return ret; data->trig = trig; indio_dev->trig = iio_trigger_get(data->trig); return 0; } static int si1145_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct si1145_data *data; struct iio_dev *indio_dev; u8 part_id, rev_id, seq_id; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->part_info = &si1145_part_info[id->driver_data]; part_id = ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_PART_ID); if (ret < 0) return ret; rev_id = ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_REV_ID); if (ret < 0) return ret; seq_id = ret = i2c_smbus_read_byte_data(data->client, SI1145_REG_SEQ_ID); if (ret < 0) return ret; dev_info(&client->dev, "device ID part 0x%02x rev 0x%02x seq 0x%02x\n", part_id, rev_id, seq_id); if (part_id != data->part_info->part) { dev_err(&client->dev, "part ID mismatch got 0x%02x, expected 0x%02x\n", part_id, data->part_info->part); return -ENODEV; } indio_dev->name = id->name; indio_dev->channels = data->part_info->channels; indio_dev->num_channels = data->part_info->num_channels; indio_dev->info = data->part_info->iio_info; indio_dev->modes = INDIO_DIRECT_MODE; mutex_init(&data->lock); mutex_init(&data->cmdlock); ret = si1145_initialize(data); if (ret < 0) return ret; ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL, si1145_trigger_handler, &si1145_buffer_setup_ops); if (ret < 0) return ret; if (client->irq) { ret = si1145_probe_trigger(indio_dev); if (ret < 0) return ret; } else { dev_info(&client->dev, "no irq, using polling\n"); } return devm_iio_device_register(&client->dev, indio_dev); } static const struct i2c_device_id si1145_ids[] = { { "si1132", SI1132 }, { "si1141", SI1141 }, { "si1142", SI1142 }, { "si1143", SI1143 }, { "si1145", SI1145 }, { "si1146", SI1146 }, { "si1147", SI1147 }, { } }; MODULE_DEVICE_TABLE(i2c, si1145_ids); static struct i2c_driver si1145_driver = { .driver = { .name = "si1145", }, .probe = si1145_probe, .id_table = si1145_ids, }; module_i2c_driver(si1145_driver); MODULE_AUTHOR("Peter Meerwald-Stadler <pmeerw@pmeerw.net>"); MODULE_DESCRIPTION("Silabs SI1132 and SI1141/2/3/5/6/7 proximity, ambient light and UV index sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1