Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Selvin Xavier | 3502 | 70.25% | 3 | 20.00% |
Devesh Sharma | 1283 | 25.74% | 3 | 20.00% |
Kalesh Purayil | 72 | 1.44% | 1 | 6.67% |
Jason Gunthorpe | 63 | 1.26% | 2 | 13.33% |
SF Markus Elfring | 23 | 0.46% | 1 | 6.67% |
Naresh Kumar PBS | 17 | 0.34% | 1 | 6.67% |
Joe Perches | 17 | 0.34% | 1 | 6.67% |
Lv Yunlong | 6 | 0.12% | 1 | 6.67% |
Christoph Hellwig | 1 | 0.02% | 1 | 6.67% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 6.67% |
Total | 4985 | 15 |
/* * Broadcom NetXtreme-E RoCE driver. * * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * BSD license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: QPLib resource manager */ #define dev_fmt(fmt) "QPLIB: " fmt #include <linux/spinlock.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/inetdevice.h> #include <linux/dma-mapping.h> #include <linux/if_vlan.h> #include <linux/vmalloc.h> #include <rdma/ib_verbs.h> #include <rdma/ib_umem.h> #include "roce_hsi.h" #include "qplib_res.h" #include "qplib_sp.h" #include "qplib_rcfw.h" static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats); static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_chip_ctx *cctx, struct bnxt_qplib_stats *stats); /* PBL */ static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl, bool is_umem) { struct pci_dev *pdev = res->pdev; int i; if (!is_umem) { for (i = 0; i < pbl->pg_count; i++) { if (pbl->pg_arr[i]) dma_free_coherent(&pdev->dev, pbl->pg_size, (void *)((unsigned long) pbl->pg_arr[i] & PAGE_MASK), pbl->pg_map_arr[i]); else dev_warn(&pdev->dev, "PBL free pg_arr[%d] empty?!\n", i); pbl->pg_arr[i] = NULL; } } vfree(pbl->pg_arr); pbl->pg_arr = NULL; vfree(pbl->pg_map_arr); pbl->pg_map_arr = NULL; pbl->pg_count = 0; pbl->pg_size = 0; } static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl, struct bnxt_qplib_sg_info *sginfo) { struct ib_block_iter biter; int i = 0; rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) { pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter); pbl->pg_arr[i] = NULL; pbl->pg_count++; i++; } } static int __alloc_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl, struct bnxt_qplib_sg_info *sginfo) { struct pci_dev *pdev = res->pdev; bool is_umem = false; u32 pages; int i; if (sginfo->nopte) return 0; if (sginfo->umem) pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize); else pages = sginfo->npages; /* page ptr arrays */ pbl->pg_arr = vmalloc(pages * sizeof(void *)); if (!pbl->pg_arr) return -ENOMEM; pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t)); if (!pbl->pg_map_arr) { vfree(pbl->pg_arr); pbl->pg_arr = NULL; return -ENOMEM; } pbl->pg_count = 0; pbl->pg_size = sginfo->pgsize; if (!sginfo->umem) { for (i = 0; i < pages; i++) { pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev, pbl->pg_size, &pbl->pg_map_arr[i], GFP_KERNEL); if (!pbl->pg_arr[i]) goto fail; pbl->pg_count++; } } else { is_umem = true; bnxt_qplib_fill_user_dma_pages(pbl, sginfo); } return 0; fail: __free_pbl(res, pbl, is_umem); return -ENOMEM; } /* HWQ */ void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res, struct bnxt_qplib_hwq *hwq) { int i; if (!hwq->max_elements) return; if (hwq->level >= PBL_LVL_MAX) return; for (i = 0; i < hwq->level + 1; i++) { if (i == hwq->level) __free_pbl(res, &hwq->pbl[i], hwq->is_user); else __free_pbl(res, &hwq->pbl[i], false); } hwq->level = PBL_LVL_MAX; hwq->max_elements = 0; hwq->element_size = 0; hwq->prod = 0; hwq->cons = 0; hwq->cp_bit = 0; } /* All HWQs are power of 2 in size */ int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq, struct bnxt_qplib_hwq_attr *hwq_attr) { u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0; struct bnxt_qplib_sg_info sginfo = {}; u32 depth, stride, npbl, npde; dma_addr_t *src_phys_ptr, **dst_virt_ptr; struct bnxt_qplib_res *res; struct pci_dev *pdev; int i, rc, lvl; res = hwq_attr->res; pdev = res->pdev; pg_size = hwq_attr->sginfo->pgsize; hwq->level = PBL_LVL_MAX; depth = roundup_pow_of_two(hwq_attr->depth); stride = roundup_pow_of_two(hwq_attr->stride); if (hwq_attr->aux_depth) { aux_slots = hwq_attr->aux_depth; aux_size = roundup_pow_of_two(hwq_attr->aux_stride); aux_pages = (aux_slots * aux_size) / pg_size; if ((aux_slots * aux_size) % pg_size) aux_pages++; } if (!hwq_attr->sginfo->umem) { hwq->is_user = false; npages = (depth * stride) / pg_size + aux_pages; if ((depth * stride) % pg_size) npages++; if (!npages) return -EINVAL; hwq_attr->sginfo->npages = npages; } else { unsigned long sginfo_num_pages = ib_umem_num_dma_blocks( hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize); hwq->is_user = true; npages = sginfo_num_pages; npages = (npages * PAGE_SIZE) / BIT_ULL(hwq_attr->sginfo->pgshft); if ((sginfo_num_pages * PAGE_SIZE) % BIT_ULL(hwq_attr->sginfo->pgshft)) if (!npages) npages++; } if (npages == MAX_PBL_LVL_0_PGS) { /* This request is Level 0, map PTE */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_0; } if (npages > MAX_PBL_LVL_0_PGS) { if (npages > MAX_PBL_LVL_1_PGS) { u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 0 : PTU_PTE_VALID; /* 2 levels of indirection */ npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) npbl++; npde = npbl >> MAX_PDL_LVL_SHIFT; if (npbl % BIT(MAX_PDL_LVL_SHIFT)) npde++; /* Alloc PDE pages */ sginfo.pgsize = npde * pg_size; sginfo.npages = 1; rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); /* Alloc PBL pages */ sginfo.npages = npbl; sginfo.pgsize = PAGE_SIZE; rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo); if (rc) goto fail; /* Fill PDL with PBL page pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; if (hwq_attr->type == HWQ_TYPE_MR) { /* For MR it is expected that we supply only 1 contigous * page i.e only 1 entry in the PDL that will contain * all the PBLs for the user supplied memory region */ for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[0][i] = src_phys_ptr[i] | flag; } else { for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PDE_VALID; } /* Alloc or init PTEs */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_2; if (hwq_attr->sginfo->nopte) goto done; /* Fill PBLs with PTE pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) { dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PTE_VALID; } if (hwq_attr->type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_2].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } } else { /* pages < 512 npbl = 1, npde = 0 */ u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 0 : PTU_PTE_VALID; /* 1 level of indirection */ npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) npbl++; sginfo.npages = npbl; sginfo.pgsize = PAGE_SIZE; /* Alloc PBL page */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); if (rc) goto fail; /* Alloc or init PTEs */ rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], hwq_attr->sginfo); if (rc) goto fail; hwq->level = PBL_LVL_1; if (hwq_attr->sginfo->nopte) goto done; /* Fill PBL with PTE pointers */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | flag; if (hwq_attr->type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_1].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } } } done: hwq->prod = 0; hwq->cons = 0; hwq->pdev = pdev; hwq->depth = hwq_attr->depth; hwq->max_elements = depth; hwq->element_size = stride; hwq->qe_ppg = pg_size / stride; /* For direct access to the elements */ lvl = hwq->level; if (hwq_attr->sginfo->nopte && hwq->level) lvl = hwq->level - 1; hwq->pbl_ptr = hwq->pbl[lvl].pg_arr; hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr; spin_lock_init(&hwq->lock); return 0; fail: bnxt_qplib_free_hwq(res, hwq); return -ENOMEM; } /* Context Tables */ void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *ctx) { int i; bnxt_qplib_free_hwq(res, &ctx->qpc_tbl); bnxt_qplib_free_hwq(res, &ctx->mrw_tbl); bnxt_qplib_free_hwq(res, &ctx->srqc_tbl); bnxt_qplib_free_hwq(res, &ctx->cq_tbl); bnxt_qplib_free_hwq(res, &ctx->tim_tbl); for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]); /* restore original pde level before destroy */ ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level; bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde); bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats); } static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *ctx) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; struct bnxt_qplib_tqm_ctx *tqmctx; int rc = 0; int i; tqmctx = &ctx->tqm_ctx; sginfo.pgsize = PAGE_SIZE; sginfo.pgshft = PAGE_SHIFT; hwq_attr.sginfo = &sginfo; hwq_attr.res = res; hwq_attr.type = HWQ_TYPE_CTX; hwq_attr.depth = 512; hwq_attr.stride = sizeof(u64); /* Alloc pdl buffer */ rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr); if (rc) goto out; /* Save original pdl level */ tqmctx->pde_level = tqmctx->pde.level; hwq_attr.stride = 1; for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) { if (!tqmctx->qcount[i]) continue; hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i]; rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr); if (rc) goto out; } out: return rc; } static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx) { struct bnxt_qplib_hwq *tbl; dma_addr_t *dma_ptr; __le64 **pbl_ptr, *ptr; int i, j, k; int fnz_idx = -1; int pg_count; pbl_ptr = (__le64 **)ctx->pde.pbl_ptr; for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ; i++, j += MAX_TQM_ALLOC_BLK_SIZE) { tbl = &ctx->qtbl[i]; if (!tbl->max_elements) continue; if (fnz_idx == -1) fnz_idx = i; /* first non-zero index */ switch (tbl->level) { case PBL_LVL_2: pg_count = tbl->pbl[PBL_LVL_1].pg_count; for (k = 0; k < pg_count; k++) { ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)]; dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k]; *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID); } break; case PBL_LVL_1: case PBL_LVL_0: default: ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)]; *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] | PTU_PTE_VALID); break; } } if (fnz_idx == -1) fnz_idx = 0; /* update pde level as per page table programming */ ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 : ctx->qtbl[fnz_idx].level + 1; } static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *ctx) { int rc = 0; rc = bnxt_qplib_alloc_tqm_rings(res, ctx); if (rc) goto fail; bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx); fail: return rc; } /* * Routine: bnxt_qplib_alloc_ctx * Description: * Context tables are memories which are used by the chip fw. * The 6 tables defined are: * QPC ctx - holds QP states * MRW ctx - holds memory region and window * SRQ ctx - holds shared RQ states * CQ ctx - holds completion queue states * TQM ctx - holds Tx Queue Manager context * TIM ctx - holds timer context * Depending on the size of the tbl requested, either a 1 Page Buffer List * or a 1-to-2-stage indirection Page Directory List + 1 PBL is used * instead. * Table might be employed as follows: * For 0 < ctx size <= 1 PAGE, 0 level of ind is used * For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used * For 512 < ctx size <= MAX, 2 levels of ind is used * Returns: * 0 if success, else -ERRORS */ int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res, struct bnxt_qplib_ctx *ctx, bool virt_fn, bool is_p5) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; int rc = 0; if (virt_fn || is_p5) goto stats_alloc; /* QPC Tables */ sginfo.pgsize = PAGE_SIZE; sginfo.pgshft = PAGE_SHIFT; hwq_attr.sginfo = &sginfo; hwq_attr.res = res; hwq_attr.depth = ctx->qpc_count; hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE; hwq_attr.type = HWQ_TYPE_CTX; rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr); if (rc) goto fail; /* MRW Tables */ hwq_attr.depth = ctx->mrw_count; hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE; rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr); if (rc) goto fail; /* SRQ Tables */ hwq_attr.depth = ctx->srqc_count; hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE; rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr); if (rc) goto fail; /* CQ Tables */ hwq_attr.depth = ctx->cq_count; hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE; rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr); if (rc) goto fail; /* TQM Buffer */ rc = bnxt_qplib_setup_tqm_rings(res, ctx); if (rc) goto fail; /* TIM Buffer */ ctx->tim_tbl.max_elements = ctx->qpc_count * 16; hwq_attr.depth = ctx->qpc_count * 16; hwq_attr.stride = 1; rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr); if (rc) goto fail; stats_alloc: /* Stats */ rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats); if (rc) goto fail; return 0; fail: bnxt_qplib_free_ctx(res, ctx); return rc; } /* GUID */ void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid) { u8 mac[ETH_ALEN]; /* MAC-48 to EUI-64 mapping */ memcpy(mac, dev_addr, ETH_ALEN); guid[0] = mac[0] ^ 2; guid[1] = mac[1]; guid[2] = mac[2]; guid[3] = 0xff; guid[4] = 0xfe; guid[5] = mac[3]; guid[6] = mac[4]; guid[7] = mac[5]; } static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl) { kfree(sgid_tbl->tbl); kfree(sgid_tbl->hw_id); kfree(sgid_tbl->ctx); kfree(sgid_tbl->vlan); sgid_tbl->tbl = NULL; sgid_tbl->hw_id = NULL; sgid_tbl->ctx = NULL; sgid_tbl->vlan = NULL; sgid_tbl->max = 0; sgid_tbl->active = 0; } static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl, u16 max) { sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL); if (!sgid_tbl->tbl) return -ENOMEM; sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL); if (!sgid_tbl->hw_id) goto out_free1; sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL); if (!sgid_tbl->ctx) goto out_free2; sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL); if (!sgid_tbl->vlan) goto out_free3; sgid_tbl->max = max; return 0; out_free3: kfree(sgid_tbl->ctx); sgid_tbl->ctx = NULL; out_free2: kfree(sgid_tbl->hw_id); sgid_tbl->hw_id = NULL; out_free1: kfree(sgid_tbl->tbl); sgid_tbl->tbl = NULL; return -ENOMEM; }; static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl) { int i; for (i = 0; i < sgid_tbl->max; i++) { if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero))) bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid, sgid_tbl->tbl[i].vlan_id, true); } memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max); memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max); sgid_tbl->active = 0; } static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct net_device *netdev) { u32 i; for (i = 0; i < sgid_tbl->max; i++) sgid_tbl->tbl[i].vlan_id = 0xffff; memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); } static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl) { if (!pkey_tbl->tbl) dev_dbg(&res->pdev->dev, "PKEY tbl not present\n"); else kfree(pkey_tbl->tbl); pkey_tbl->tbl = NULL; pkey_tbl->max = 0; pkey_tbl->active = 0; } static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl, u16 max) { pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL); if (!pkey_tbl->tbl) return -ENOMEM; pkey_tbl->max = max; return 0; }; /* PDs */ int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) { u32 bit_num; bit_num = find_first_bit(pdt->tbl, pdt->max); if (bit_num == pdt->max) return -ENOMEM; /* Found unused PD */ clear_bit(bit_num, pdt->tbl); pd->id = bit_num; return 0; } int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res, struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) { if (test_and_set_bit(pd->id, pdt->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n", pd->id); return -EINVAL; } pd->id = 0; return 0; } static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt) { kfree(pdt->tbl); pdt->tbl = NULL; pdt->max = 0; } static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pd_tbl *pdt, u32 max) { u32 bytes; bytes = max >> 3; if (!bytes) bytes = 1; pdt->tbl = kmalloc(bytes, GFP_KERNEL); if (!pdt->tbl) return -ENOMEM; pdt->max = max; memset((u8 *)pdt->tbl, 0xFF, bytes); return 0; } /* DPIs */ int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit, struct bnxt_qplib_dpi *dpi, void *app) { u32 bit_num; bit_num = find_first_bit(dpit->tbl, dpit->max); if (bit_num == dpit->max) return -ENOMEM; /* Found unused DPI */ clear_bit(bit_num, dpit->tbl); dpit->app_tbl[bit_num] = app; dpi->dpi = bit_num; dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE); dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE); return 0; } int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit, struct bnxt_qplib_dpi *dpi) { if (dpi->dpi >= dpit->max) { dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi); return -EINVAL; } if (test_and_set_bit(dpi->dpi, dpit->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n", dpi->dpi); return -EINVAL; } if (dpit->app_tbl) dpit->app_tbl[dpi->dpi] = NULL; memset(dpi, 0, sizeof(*dpi)); return 0; } static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit) { kfree(dpit->tbl); kfree(dpit->app_tbl); if (dpit->dbr_bar_reg_iomem) pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); memset(dpit, 0, sizeof(*dpit)); } static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit, u32 dbr_offset) { u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION; resource_size_t bar_reg_base; u32 dbr_len, bytes; if (dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n", dbr_bar_reg); return -EALREADY; } bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg); if (!bar_reg_base) { dev_err(&res->pdev->dev, "BAR region %d resc start failed\n", dbr_bar_reg); return -ENOMEM; } dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset; if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) { dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len); return -ENOMEM; } dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset, dbr_len); if (!dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "FP: DBR BAR region %d mapping failed\n", dbr_bar_reg); return -ENOMEM; } dpit->unmapped_dbr = bar_reg_base + dbr_offset; dpit->max = dbr_len / PAGE_SIZE; dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL); if (!dpit->app_tbl) goto unmap_io; bytes = dpit->max >> 3; if (!bytes) bytes = 1; dpit->tbl = kmalloc(bytes, GFP_KERNEL); if (!dpit->tbl) { kfree(dpit->app_tbl); dpit->app_tbl = NULL; goto unmap_io; } memset((u8 *)dpit->tbl, 0xFF, bytes); return 0; unmap_io: pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); dpit->dbr_bar_reg_iomem = NULL; return -ENOMEM; } /* PKEYs */ static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl) { memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max); pkey_tbl->active = 0; } static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl) { u16 pkey = 0xFFFF; memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max); /* pkey default = 0xFFFF */ bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false); } /* Stats */ static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats) { if (stats->dma) { dma_free_coherent(&pdev->dev, stats->size, stats->dma, stats->dma_map); } memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; } static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_chip_ctx *cctx, struct bnxt_qplib_stats *stats) { memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; stats->size = cctx->hw_stats_size; stats->dma = dma_alloc_coherent(&pdev->dev, stats->size, &stats->dma_map, GFP_KERNEL); if (!stats->dma) { dev_err(&pdev->dev, "Stats DMA allocation failed\n"); return -ENOMEM; } return 0; } void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res) { bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl); bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl); } int bnxt_qplib_init_res(struct bnxt_qplib_res *res) { bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev); bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl); return 0; } void bnxt_qplib_free_res(struct bnxt_qplib_res *res) { bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl); bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl); bnxt_qplib_free_pd_tbl(&res->pd_tbl); bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl); } int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev, struct net_device *netdev, struct bnxt_qplib_dev_attr *dev_attr) { int rc = 0; res->pdev = pdev; res->netdev = netdev; rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid); if (rc) goto fail; rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey); if (rc) goto fail; rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd); if (rc) goto fail; rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size); if (rc) goto fail; return 0; fail: bnxt_qplib_free_res(res); return rc; } int bnxt_qplib_determine_atomics(struct pci_dev *dev) { int comp; u16 ctl2; comp = pci_enable_atomic_ops_to_root(dev, PCI_EXP_DEVCAP2_ATOMIC_COMP32); if (comp) return -EOPNOTSUPP; comp = pci_enable_atomic_ops_to_root(dev, PCI_EXP_DEVCAP2_ATOMIC_COMP64); if (comp) return -EOPNOTSUPP; pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2); return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1