Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Erik Andrén | 1293 | 60.28% | 2 | 16.67% |
Hans Verkuil | 608 | 28.34% | 1 | 8.33% |
Hans de Goede | 144 | 6.71% | 2 | 16.67% |
Joe Perches | 41 | 1.91% | 2 | 16.67% |
Theodore Kilgore | 30 | 1.40% | 1 | 8.33% |
Johan Hovold | 14 | 0.65% | 1 | 8.33% |
Jesper Juhl | 9 | 0.42% | 1 | 8.33% |
Ondrej Zary | 4 | 0.19% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.09% | 1 | 8.33% |
Total | 2145 | 12 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland * Copyright (c) 2002, 2003 Tuukka Toivonen * Copyright (c) 2008 Erik Andrén * * P/N 861037: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam * P/N 861075-0040: Sensor HDCS1000 ASIC * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web */ /* * The spec file for the PB-0100 suggests the following for best quality * images after the sensor has been reset : * * PB_ADCGAINL = R60 = 0x03 (3 dec) : sets low reference of ADC to produce good black level * PB_PREADCTRL = R32 = 0x1400 (5120 dec) : Enables global gain changes through R53 * PB_ADCMINGAIN = R52 = 0x10 (16 dec) : Sets the minimum gain for auto-exposure * PB_ADCGLOBALGAIN = R53 = 0x10 (16 dec) : Sets the global gain * PB_EXPGAIN = R14 = 0x11 (17 dec) : Sets the auto-exposure value * PB_UPDATEINT = R23 = 0x02 (2 dec) : Sets the speed on auto-exposure routine * PB_CFILLIN = R5 = 0x0E (14 dec) : Sets the frame rate */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "stv06xx_pb0100.h" struct pb0100_ctrls { struct { /* one big happy control cluster... */ struct v4l2_ctrl *autogain; struct v4l2_ctrl *gain; struct v4l2_ctrl *exposure; struct v4l2_ctrl *red; struct v4l2_ctrl *blue; struct v4l2_ctrl *natural; }; struct v4l2_ctrl *target; }; static struct v4l2_pix_format pb0100_mode[] = { /* low res / subsample modes disabled as they are only half res horizontal, halving the vertical resolution does not seem to work */ { 320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 320 * 240, .bytesperline = 320, .colorspace = V4L2_COLORSPACE_SRGB, .priv = PB0100_CROP_TO_VGA }, { 352, 288, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 352 * 288, .bytesperline = 352, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 } }; static int pb0100_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); struct sd *sd = (struct sd *)gspca_dev; struct pb0100_ctrls *ctrls = sd->sensor_priv; int err = -EINVAL; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: err = pb0100_set_autogain(gspca_dev, ctrl->val); if (err) break; if (ctrl->val) break; err = pb0100_set_gain(gspca_dev, ctrls->gain->val); if (err) break; err = pb0100_set_exposure(gspca_dev, ctrls->exposure->val); break; case V4L2_CTRL_CLASS_USER + 0x1001: err = pb0100_set_autogain_target(gspca_dev, ctrl->val); break; } return err; } static const struct v4l2_ctrl_ops pb0100_ctrl_ops = { .s_ctrl = pb0100_s_ctrl, }; static int pb0100_init_controls(struct sd *sd) { struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler; struct pb0100_ctrls *ctrls; static const struct v4l2_ctrl_config autogain_target = { .ops = &pb0100_ctrl_ops, .id = V4L2_CTRL_CLASS_USER + 0x1000, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Automatic Gain Target", .max = 255, .step = 1, .def = 128, }; static const struct v4l2_ctrl_config natural_light = { .ops = &pb0100_ctrl_ops, .id = V4L2_CTRL_CLASS_USER + 0x1001, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Natural Light Source", .max = 1, .step = 1, .def = 1, }; ctrls = kzalloc(sizeof(*ctrls), GFP_KERNEL); if (!ctrls) return -ENOMEM; v4l2_ctrl_handler_init(hdl, 6); ctrls->autogain = v4l2_ctrl_new_std(hdl, &pb0100_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); ctrls->exposure = v4l2_ctrl_new_std(hdl, &pb0100_ctrl_ops, V4L2_CID_EXPOSURE, 0, 511, 1, 12); ctrls->gain = v4l2_ctrl_new_std(hdl, &pb0100_ctrl_ops, V4L2_CID_GAIN, 0, 255, 1, 128); ctrls->red = v4l2_ctrl_new_std(hdl, &pb0100_ctrl_ops, V4L2_CID_RED_BALANCE, -255, 255, 1, 0); ctrls->blue = v4l2_ctrl_new_std(hdl, &pb0100_ctrl_ops, V4L2_CID_BLUE_BALANCE, -255, 255, 1, 0); ctrls->natural = v4l2_ctrl_new_custom(hdl, &natural_light, NULL); ctrls->target = v4l2_ctrl_new_custom(hdl, &autogain_target, NULL); if (hdl->error) { kfree(ctrls); return hdl->error; } sd->sensor_priv = ctrls; v4l2_ctrl_auto_cluster(5, &ctrls->autogain, 0, false); return 0; } static int pb0100_probe(struct sd *sd) { u16 sensor; int err; err = stv06xx_read_sensor(sd, PB_IDENT, &sensor); if (err < 0) return -ENODEV; if ((sensor >> 8) != 0x64) return -ENODEV; pr_info("Photobit pb0100 sensor detected\n"); sd->gspca_dev.cam.cam_mode = pb0100_mode; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(pb0100_mode); return 0; } static int pb0100_start(struct sd *sd) { int err, packet_size, max_packet_size; struct usb_host_interface *alt; struct usb_interface *intf; struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; struct cam *cam = &sd->gspca_dev.cam; u32 mode = cam->cam_mode[sd->gspca_dev.curr_mode].priv; intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface); alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt); if (!alt) return -ENODEV; if (alt->desc.bNumEndpoints < 1) return -ENODEV; packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize); /* If we don't have enough bandwidth use a lower framerate */ max_packet_size = sd->sensor->max_packet_size[sd->gspca_dev.curr_mode]; if (packet_size < max_packet_size) stv06xx_write_sensor(sd, PB_ROWSPEED, BIT(4)|BIT(3)|BIT(1)); else stv06xx_write_sensor(sd, PB_ROWSPEED, BIT(5)|BIT(3)|BIT(1)); /* Setup sensor window */ if (mode & PB0100_CROP_TO_VGA) { stv06xx_write_sensor(sd, PB_RSTART, 30); stv06xx_write_sensor(sd, PB_CSTART, 20); stv06xx_write_sensor(sd, PB_RWSIZE, 240 - 1); stv06xx_write_sensor(sd, PB_CWSIZE, 320 - 1); } else { stv06xx_write_sensor(sd, PB_RSTART, 8); stv06xx_write_sensor(sd, PB_CSTART, 4); stv06xx_write_sensor(sd, PB_RWSIZE, 288 - 1); stv06xx_write_sensor(sd, PB_CWSIZE, 352 - 1); } if (mode & PB0100_SUBSAMPLE) { stv06xx_write_bridge(sd, STV_Y_CTRL, 0x02); /* Wrong, FIXME */ stv06xx_write_bridge(sd, STV_X_CTRL, 0x06); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x10); } else { stv06xx_write_bridge(sd, STV_Y_CTRL, 0x01); stv06xx_write_bridge(sd, STV_X_CTRL, 0x0a); /* larger -> slower */ stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x20); } err = stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)|BIT(1)); gspca_dbg(gspca_dev, D_STREAM, "Started stream, status: %d\n", err); return (err < 0) ? err : 0; } static int pb0100_stop(struct sd *sd) { struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; int err; err = stv06xx_write_sensor(sd, PB_ABORTFRAME, 1); if (err < 0) goto out; /* Set bit 1 to zero */ err = stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)); gspca_dbg(gspca_dev, D_STREAM, "Halting stream\n"); out: return (err < 0) ? err : 0; } /* FIXME: Sort the init commands out and put them into tables, this is only for getting the camera to work */ /* FIXME: No error handling for now, add this once the init has been converted to proper tables */ static int pb0100_init(struct sd *sd) { stv06xx_write_bridge(sd, STV_REG00, 1); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0); /* Reset sensor */ stv06xx_write_sensor(sd, PB_RESET, 1); stv06xx_write_sensor(sd, PB_RESET, 0); /* Disable chip */ stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)); /* Gain stuff...*/ stv06xx_write_sensor(sd, PB_PREADCTRL, BIT(12)|BIT(10)|BIT(6)); stv06xx_write_sensor(sd, PB_ADCGLOBALGAIN, 12); /* Set up auto-exposure */ /* ADC VREF_HI new setting for a transition from the Expose1 to the Expose2 setting */ stv06xx_write_sensor(sd, PB_R28, 12); /* gain max for autoexposure */ stv06xx_write_sensor(sd, PB_ADCMAXGAIN, 180); /* gain min for autoexposure */ stv06xx_write_sensor(sd, PB_ADCMINGAIN, 12); /* Maximum frame integration time (programmed into R8) allowed for auto-exposure routine */ stv06xx_write_sensor(sd, PB_R54, 3); /* Minimum frame integration time (programmed into R8) allowed for auto-exposure routine */ stv06xx_write_sensor(sd, PB_R55, 0); stv06xx_write_sensor(sd, PB_UPDATEINT, 1); /* R15 Expose0 (maximum that auto-exposure may use) */ stv06xx_write_sensor(sd, PB_R15, 800); /* R17 Expose2 (minimum that auto-exposure may use) */ stv06xx_write_sensor(sd, PB_R17, 10); stv06xx_write_sensor(sd, PB_EXPGAIN, 0); /* 0x14 */ stv06xx_write_sensor(sd, PB_VOFFSET, 0); /* 0x0D */ stv06xx_write_sensor(sd, PB_ADCGAINH, 11); /* Set black level (important!) */ stv06xx_write_sensor(sd, PB_ADCGAINL, 0); /* ??? */ stv06xx_write_bridge(sd, STV_REG00, 0x11); stv06xx_write_bridge(sd, STV_REG03, 0x45); stv06xx_write_bridge(sd, STV_REG04, 0x07); /* Scan/timing for the sensor */ stv06xx_write_sensor(sd, PB_ROWSPEED, BIT(4)|BIT(3)|BIT(1)); stv06xx_write_sensor(sd, PB_CFILLIN, 14); stv06xx_write_sensor(sd, PB_VBL, 0); stv06xx_write_sensor(sd, PB_FINTTIME, 0); stv06xx_write_sensor(sd, PB_RINTTIME, 123); stv06xx_write_bridge(sd, STV_REG01, 0xc2); stv06xx_write_bridge(sd, STV_REG02, 0xb0); return 0; } static int pb0100_dump(struct sd *sd) { return 0; } static int pb0100_set_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; struct pb0100_ctrls *ctrls = sd->sensor_priv; err = stv06xx_write_sensor(sd, PB_G1GAIN, val); if (!err) err = stv06xx_write_sensor(sd, PB_G2GAIN, val); gspca_dbg(gspca_dev, D_CONF, "Set green gain to %d, status: %d\n", val, err); if (!err) err = pb0100_set_red_balance(gspca_dev, ctrls->red->val); if (!err) err = pb0100_set_blue_balance(gspca_dev, ctrls->blue->val); return err; } static int pb0100_set_red_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; struct pb0100_ctrls *ctrls = sd->sensor_priv; val += ctrls->gain->val; if (val < 0) val = 0; else if (val > 255) val = 255; err = stv06xx_write_sensor(sd, PB_RGAIN, val); gspca_dbg(gspca_dev, D_CONF, "Set red gain to %d, status: %d\n", val, err); return err; } static int pb0100_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; struct pb0100_ctrls *ctrls = sd->sensor_priv; val += ctrls->gain->val; if (val < 0) val = 0; else if (val > 255) val = 255; err = stv06xx_write_sensor(sd, PB_BGAIN, val); gspca_dbg(gspca_dev, D_CONF, "Set blue gain to %d, status: %d\n", val, err); return err; } static int pb0100_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; int err; err = stv06xx_write_sensor(sd, PB_RINTTIME, val); gspca_dbg(gspca_dev, D_CONF, "Set exposure to %d, status: %d\n", val, err); return err; } static int pb0100_set_autogain(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; struct pb0100_ctrls *ctrls = sd->sensor_priv; if (val) { if (ctrls->natural->val) val = BIT(6)|BIT(4)|BIT(0); else val = BIT(4)|BIT(0); } else val = 0; err = stv06xx_write_sensor(sd, PB_EXPGAIN, val); gspca_dbg(gspca_dev, D_CONF, "Set autogain to %d (natural: %d), status: %d\n", val, ctrls->natural->val, err); return err; } static int pb0100_set_autogain_target(struct gspca_dev *gspca_dev, __s32 val) { int err, totalpixels, brightpixels, darkpixels; struct sd *sd = (struct sd *) gspca_dev; /* Number of pixels counted by the sensor when subsampling the pixels. * Slightly larger than the real value to avoid oscillation */ totalpixels = gspca_dev->pixfmt.width * gspca_dev->pixfmt.height; totalpixels = totalpixels/(8*8) + totalpixels/(64*64); brightpixels = (totalpixels * val) >> 8; darkpixels = totalpixels - brightpixels; err = stv06xx_write_sensor(sd, PB_R21, brightpixels); if (!err) err = stv06xx_write_sensor(sd, PB_R22, darkpixels); gspca_dbg(gspca_dev, D_CONF, "Set autogain target to %d, status: %d\n", val, err); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1