Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Garzik | 3606 | 46.87% | 1 | 0.73% |
Jiri Bohac | 781 | 10.15% | 2 | 1.46% |
Shmulik Hen | 471 | 6.12% | 14 | 10.22% |
Veaceslav Falico | 364 | 4.73% | 15 | 10.95% |
Mahesh Bandewar | 342 | 4.45% | 5 | 3.65% |
Amir Noam | 306 | 3.98% | 3 | 2.19% |
Jarod Wilson | 197 | 2.56% | 2 | 1.46% |
Vlad Yasevich | 195 | 2.53% | 5 | 3.65% |
Eric Dumazet | 191 | 2.48% | 8 | 5.84% |
Nikolay Aleksandrov | 184 | 2.39% | 8 | 5.84% |
Debabrata Banerjee | 142 | 1.85% | 5 | 3.65% |
David Ahern | 136 | 1.77% | 1 | 0.73% |
Jay Vosburgh | 130 | 1.69% | 8 | 5.84% |
Maor Gottlieb | 116 | 1.51% | 2 | 1.46% |
Jiri Pirko | 107 | 1.39% | 5 | 3.65% |
Maxim Uvarov | 77 | 1.00% | 1 | 0.73% |
Ding Tianhong | 54 | 0.70% | 3 | 2.19% |
Mitch A Williams | 39 | 0.51% | 2 | 1.46% |
Taehee Yoo | 32 | 0.42% | 2 | 1.46% |
David S. Miller | 31 | 0.40% | 4 | 2.92% |
Wang Chen | 26 | 0.34% | 2 | 1.46% |
Arnaldo Carvalho de Melo | 23 | 0.30% | 6 | 4.38% |
John W. Linville | 20 | 0.26% | 2 | 1.46% |
Joe Perches | 20 | 0.26% | 2 | 1.46% |
Zheng Li | 15 | 0.19% | 1 | 0.73% |
Andy Gospodarek | 15 | 0.19% | 2 | 1.46% |
Flavio Leitner | 12 | 0.16% | 1 | 0.73% |
Al Viro | 11 | 0.14% | 1 | 0.73% |
Petr Machata | 8 | 0.10% | 1 | 0.73% |
Andrew Morton | 6 | 0.08% | 1 | 0.73% |
Patrick McHardy | 5 | 0.06% | 1 | 0.73% |
Wang Hai | 4 | 0.05% | 1 | 0.73% |
Neil Horman | 3 | 0.04% | 1 | 0.73% |
Tonghao Zhang | 2 | 0.03% | 1 | 0.73% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.73% |
Wang Yufen | 2 | 0.03% | 1 | 0.73% |
Adrian Bunk | 2 | 0.03% | 1 | 0.73% |
Brian Haley | 2 | 0.03% | 1 | 0.73% |
Weiping Pan (潘卫平) | 2 | 0.03% | 2 | 1.46% |
Greg Edwards | 2 | 0.03% | 1 | 0.73% |
Lee Jones | 1 | 0.01% | 1 | 0.73% |
Mark Rutland | 1 | 0.01% | 1 | 0.73% |
Johannes Berg | 1 | 0.01% | 1 | 0.73% |
Américo Wang | 1 | 0.01% | 1 | 0.73% |
Joe Jin | 1 | 0.01% | 1 | 0.73% |
Harvey Harrison | 1 | 0.01% | 1 | 0.73% |
Arjan van de Ven | 1 | 0.01% | 1 | 0.73% |
Thadeu Lima de Souza Cascardo | 1 | 0.01% | 1 | 0.73% |
Andreea-Cristina Bernat | 1 | 0.01% | 1 | 0.73% |
Amitoj Kaur Chawla | 1 | 0.01% | 1 | 0.73% |
Li Peng | 1 | 0.01% | 1 | 0.73% |
Total | 7694 | 137 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. */ #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/pkt_sched.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_bonding.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <net/arp.h> #include <net/ipv6.h> #include <asm/byteorder.h> #include <net/bonding.h> #include <net/bond_alb.h> static const u8 mac_v6_allmcast[ETH_ALEN + 2] __long_aligned = { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 }; static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; #pragma pack(1) struct learning_pkt { u8 mac_dst[ETH_ALEN]; u8 mac_src[ETH_ALEN]; __be16 type; u8 padding[ETH_ZLEN - ETH_HLEN]; }; struct arp_pkt { __be16 hw_addr_space; __be16 prot_addr_space; u8 hw_addr_len; u8 prot_addr_len; __be16 op_code; u8 mac_src[ETH_ALEN]; /* sender hardware address */ __be32 ip_src; /* sender IP address */ u8 mac_dst[ETH_ALEN]; /* target hardware address */ __be32 ip_dst; /* target IP address */ }; #pragma pack() /* Forward declaration */ static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[], bool strict_match); static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp); static void rlb_src_unlink(struct bonding *bond, u32 index); static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash); static inline u8 _simple_hash(const u8 *hash_start, int hash_size) { int i; u8 hash = 0; for (i = 0; i < hash_size; i++) hash ^= hash_start[i]; return hash; } /*********************** tlb specific functions ***************************/ static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) { if (save_load) { entry->load_history = 1 + entry->tx_bytes / BOND_TLB_REBALANCE_INTERVAL; entry->tx_bytes = 0; } entry->tx_slave = NULL; entry->next = TLB_NULL_INDEX; entry->prev = TLB_NULL_INDEX; } static inline void tlb_init_slave(struct slave *slave) { SLAVE_TLB_INFO(slave).load = 0; SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; } static void __tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) { struct tlb_client_info *tx_hash_table; u32 index; /* clear slave from tx_hashtbl */ tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; /* skip this if we've already freed the tx hash table */ if (tx_hash_table) { index = SLAVE_TLB_INFO(slave).head; while (index != TLB_NULL_INDEX) { u32 next_index = tx_hash_table[index].next; tlb_init_table_entry(&tx_hash_table[index], save_load); index = next_index; } } tlb_init_slave(slave); } static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) { spin_lock_bh(&bond->mode_lock); __tlb_clear_slave(bond, slave, save_load); spin_unlock_bh(&bond->mode_lock); } /* Must be called before starting the monitor timer */ static int tlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); struct tlb_client_info *new_hashtbl; int i; new_hashtbl = kzalloc(size, GFP_KERNEL); if (!new_hashtbl) return -ENOMEM; spin_lock_bh(&bond->mode_lock); bond_info->tx_hashtbl = new_hashtbl; for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) tlb_init_table_entry(&bond_info->tx_hashtbl[i], 0); spin_unlock_bh(&bond->mode_lock); return 0; } /* Must be called only after all slaves have been released */ static void tlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); spin_lock_bh(&bond->mode_lock); kfree(bond_info->tx_hashtbl); bond_info->tx_hashtbl = NULL; spin_unlock_bh(&bond->mode_lock); } static long long compute_gap(struct slave *slave) { return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */ (s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ } static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) { struct slave *slave, *least_loaded; struct list_head *iter; long long max_gap; least_loaded = NULL; max_gap = LLONG_MIN; /* Find the slave with the largest gap */ bond_for_each_slave_rcu(bond, slave, iter) { if (bond_slave_can_tx(slave)) { long long gap = compute_gap(slave); if (max_gap < gap) { least_loaded = slave; max_gap = gap; } } } return least_loaded; } static struct slave *__tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct tlb_client_info *hash_table; struct slave *assigned_slave; hash_table = bond_info->tx_hashtbl; assigned_slave = hash_table[hash_index].tx_slave; if (!assigned_slave) { assigned_slave = tlb_get_least_loaded_slave(bond); if (assigned_slave) { struct tlb_slave_info *slave_info = &(SLAVE_TLB_INFO(assigned_slave)); u32 next_index = slave_info->head; hash_table[hash_index].tx_slave = assigned_slave; hash_table[hash_index].next = next_index; hash_table[hash_index].prev = TLB_NULL_INDEX; if (next_index != TLB_NULL_INDEX) hash_table[next_index].prev = hash_index; slave_info->head = hash_index; slave_info->load += hash_table[hash_index].load_history; } } if (assigned_slave) hash_table[hash_index].tx_bytes += skb_len; return assigned_slave; } static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) { struct slave *tx_slave; /* We don't need to disable softirq here, because * tlb_choose_channel() is only called by bond_alb_xmit() * which already has softirq disabled. */ spin_lock(&bond->mode_lock); tx_slave = __tlb_choose_channel(bond, hash_index, skb_len); spin_unlock(&bond->mode_lock); return tx_slave; } /*********************** rlb specific functions ***************************/ /* when an ARP REPLY is received from a client update its info * in the rx_hashtbl */ static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src)); client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->assigned) && (client_info->ip_src == arp->ip_dst) && (client_info->ip_dst == arp->ip_src) && (!ether_addr_equal_64bits(client_info->mac_dst, arp->mac_src))) { /* update the clients MAC address */ ether_addr_copy(client_info->mac_dst, arp->mac_src); client_info->ntt = 1; bond_info->rx_ntt = 1; } spin_unlock_bh(&bond->mode_lock); } static int rlb_arp_recv(const struct sk_buff *skb, struct bonding *bond, struct slave *slave) { struct arp_pkt *arp, _arp; if (skb->protocol != cpu_to_be16(ETH_P_ARP)) goto out; arp = skb_header_pointer(skb, 0, sizeof(_arp), &_arp); if (!arp) goto out; /* We received an ARP from arp->ip_src. * We might have used this IP address previously (on the bonding host * itself or on a system that is bridged together with the bond). * However, if arp->mac_src is different than what is stored in * rx_hashtbl, some other host is now using the IP and we must prevent * sending out client updates with this IP address and the old MAC * address. * Clean up all hash table entries that have this address as ip_src but * have a different mac_src. */ rlb_purge_src_ip(bond, arp); if (arp->op_code == htons(ARPOP_REPLY)) { /* update rx hash table for this ARP */ rlb_update_entry_from_arp(bond, arp); slave_dbg(bond->dev, slave->dev, "Server received an ARP Reply from client\n"); } out: return RX_HANDLER_ANOTHER; } /* Caller must hold rcu_read_lock() */ static struct slave *__rlb_next_rx_slave(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *before = NULL, *rx_slave = NULL, *slave; struct list_head *iter; bool found = false; bond_for_each_slave_rcu(bond, slave, iter) { if (!bond_slave_can_tx(slave)) continue; if (!found) { if (!before || before->speed < slave->speed) before = slave; } else { if (!rx_slave || rx_slave->speed < slave->speed) rx_slave = slave; } if (slave == bond_info->rx_slave) found = true; } /* we didn't find anything after the current or we have something * better before and up to the current slave */ if (!rx_slave || (before && rx_slave->speed < before->speed)) rx_slave = before; if (rx_slave) bond_info->rx_slave = rx_slave; return rx_slave; } /* Caller must hold RTNL, rcu_read_lock is obtained only to silence checkers */ static struct slave *rlb_next_rx_slave(struct bonding *bond) { struct slave *rx_slave; ASSERT_RTNL(); rcu_read_lock(); rx_slave = __rlb_next_rx_slave(bond); rcu_read_unlock(); return rx_slave; } /* teach the switch the mac of a disabled slave * on the primary for fault tolerance * * Caller must hold RTNL */ static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) { struct slave *curr_active = rtnl_dereference(bond->curr_active_slave); if (!curr_active) return; if (!bond->alb_info.primary_is_promisc) { if (!dev_set_promiscuity(curr_active->dev, 1)) bond->alb_info.primary_is_promisc = 1; else bond->alb_info.primary_is_promisc = 0; } bond->alb_info.rlb_promisc_timeout_counter = 0; alb_send_learning_packets(curr_active, addr, true); } /* slave being removed should not be active at this point * * Caller must hold rtnl. */ static void rlb_clear_slave(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *rx_hash_table; u32 index, next_index; /* clear slave from rx_hashtbl */ spin_lock_bh(&bond->mode_lock); rx_hash_table = bond_info->rx_hashtbl; index = bond_info->rx_hashtbl_used_head; for (; index != RLB_NULL_INDEX; index = next_index) { next_index = rx_hash_table[index].used_next; if (rx_hash_table[index].slave == slave) { struct slave *assigned_slave = rlb_next_rx_slave(bond); if (assigned_slave) { rx_hash_table[index].slave = assigned_slave; if (is_valid_ether_addr(rx_hash_table[index].mac_dst)) { bond_info->rx_hashtbl[index].ntt = 1; bond_info->rx_ntt = 1; /* A slave has been removed from the * table because it is either disabled * or being released. We must retry the * update to avoid clients from not * being updated & disconnecting when * there is stress */ bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } } else { /* there is no active slave */ rx_hash_table[index].slave = NULL; } } } spin_unlock_bh(&bond->mode_lock); if (slave != rtnl_dereference(bond->curr_active_slave)) rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); } static void rlb_update_client(struct rlb_client_info *client_info) { int i; if (!client_info->slave || !is_valid_ether_addr(client_info->mac_dst)) return; for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { struct sk_buff *skb; skb = arp_create(ARPOP_REPLY, ETH_P_ARP, client_info->ip_dst, client_info->slave->dev, client_info->ip_src, client_info->mac_dst, client_info->slave->dev->dev_addr, client_info->mac_dst); if (!skb) { slave_err(client_info->slave->bond->dev, client_info->slave->dev, "failed to create an ARP packet\n"); continue; } skb->dev = client_info->slave->dev; if (client_info->vlan_id) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), client_info->vlan_id); } arp_xmit(skb); } } /* sends ARP REPLIES that update the clients that need updating */ static void rlb_update_rx_clients(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->ntt) { rlb_update_client(client_info); if (bond_info->rlb_update_retry_counter == 0) client_info->ntt = 0; } } /* do not update the entries again until this counter is zero so that * not to confuse the clients. */ bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; spin_unlock_bh(&bond->mode_lock); } /* The slave was assigned a new mac address - update the clients */ static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; int ntt = 0; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->slave == slave) && is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; ntt = 1; } } /* update the team's flag only after the whole iteration */ if (ntt) { bond_info->rx_ntt = 1; /* fasten the change */ bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } spin_unlock_bh(&bond->mode_lock); } /* mark all clients using src_ip to be updated */ static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (!client_info->slave) { netdev_err(bond->dev, "found a client with no channel in the client's hash table\n"); continue; } /* update all clients using this src_ip, that are not assigned * to the team's address (curr_active_slave) and have a known * unicast mac address. */ if ((client_info->ip_src == src_ip) && !ether_addr_equal_64bits(client_info->slave->dev->dev_addr, bond->dev->dev_addr) && is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; bond_info->rx_ntt = 1; } } spin_unlock(&bond->mode_lock); } static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond, const struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *assigned_slave, *curr_active_slave; struct rlb_client_info *client_info; u32 hash_index = 0; spin_lock(&bond->mode_lock); curr_active_slave = rcu_dereference(bond->curr_active_slave); hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_dst)); client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->assigned) { if ((client_info->ip_src == arp->ip_src) && (client_info->ip_dst == arp->ip_dst)) { /* the entry is already assigned to this client */ if (!is_broadcast_ether_addr(arp->mac_dst)) { /* update mac address from arp */ ether_addr_copy(client_info->mac_dst, arp->mac_dst); } ether_addr_copy(client_info->mac_src, arp->mac_src); assigned_slave = client_info->slave; if (assigned_slave) { spin_unlock(&bond->mode_lock); return assigned_slave; } } else { /* the entry is already assigned to some other client, * move the old client to primary (curr_active_slave) so * that the new client can be assigned to this entry. */ if (curr_active_slave && client_info->slave != curr_active_slave) { client_info->slave = curr_active_slave; rlb_update_client(client_info); } } } /* assign a new slave */ assigned_slave = __rlb_next_rx_slave(bond); if (assigned_slave) { if (!(client_info->assigned && client_info->ip_src == arp->ip_src)) { /* ip_src is going to be updated, * fix the src hash list */ u32 hash_src = _simple_hash((u8 *)&arp->ip_src, sizeof(arp->ip_src)); rlb_src_unlink(bond, hash_index); rlb_src_link(bond, hash_src, hash_index); } client_info->ip_src = arp->ip_src; client_info->ip_dst = arp->ip_dst; /* arp->mac_dst is broadcast for arp requests. * will be updated with clients actual unicast mac address * upon receiving an arp reply. */ ether_addr_copy(client_info->mac_dst, arp->mac_dst); ether_addr_copy(client_info->mac_src, arp->mac_src); client_info->slave = assigned_slave; if (is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; bond->alb_info.rx_ntt = 1; } else { client_info->ntt = 0; } if (vlan_get_tag(skb, &client_info->vlan_id)) client_info->vlan_id = 0; if (!client_info->assigned) { u32 prev_tbl_head = bond_info->rx_hashtbl_used_head; bond_info->rx_hashtbl_used_head = hash_index; client_info->used_next = prev_tbl_head; if (prev_tbl_head != RLB_NULL_INDEX) { bond_info->rx_hashtbl[prev_tbl_head].used_prev = hash_index; } client_info->assigned = 1; } } spin_unlock(&bond->mode_lock); return assigned_slave; } /* chooses (and returns) transmit channel for arp reply * does not choose channel for other arp types since they are * sent on the curr_active_slave */ static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) { struct slave *tx_slave = NULL; struct arp_pkt *arp; if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); /* Don't modify or load balance ARPs that do not originate locally * (e.g.,arrive via a bridge). */ if (!bond_slave_has_mac_rx(bond, arp->mac_src)) return NULL; if (arp->op_code == htons(ARPOP_REPLY)) { /* the arp must be sent on the selected rx channel */ tx_slave = rlb_choose_channel(skb, bond, arp); if (tx_slave) bond_hw_addr_copy(arp->mac_src, tx_slave->dev->dev_addr, tx_slave->dev->addr_len); netdev_dbg(bond->dev, "(slave %s): Server sent ARP Reply packet\n", tx_slave ? tx_slave->dev->name : "NULL"); } else if (arp->op_code == htons(ARPOP_REQUEST)) { /* Create an entry in the rx_hashtbl for this client as a * place holder. * When the arp reply is received the entry will be updated * with the correct unicast address of the client. */ tx_slave = rlb_choose_channel(skb, bond, arp); /* The ARP reply packets must be delayed so that * they can cancel out the influence of the ARP request. */ bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; /* arp requests are broadcast and are sent on the primary * the arp request will collapse all clients on the subnet to * the primary slave. We must register these clients to be * updated with their assigned mac. */ rlb_req_update_subnet_clients(bond, arp->ip_src); netdev_dbg(bond->dev, "(slave %s): Server sent ARP Request packet\n", tx_slave ? tx_slave->dev->name : "NULL"); } return tx_slave; } static void rlb_rebalance(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *assigned_slave; struct rlb_client_info *client_info; int ntt; u32 hash_index; spin_lock_bh(&bond->mode_lock); ntt = 0; hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); assigned_slave = __rlb_next_rx_slave(bond); if (assigned_slave && (client_info->slave != assigned_slave)) { client_info->slave = assigned_slave; if (!is_zero_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; ntt = 1; } } } /* update the team's flag only after the whole iteration */ if (ntt) bond_info->rx_ntt = 1; spin_unlock_bh(&bond->mode_lock); } /* Caller must hold mode_lock */ static void rlb_init_table_entry_dst(struct rlb_client_info *entry) { entry->used_next = RLB_NULL_INDEX; entry->used_prev = RLB_NULL_INDEX; entry->assigned = 0; entry->slave = NULL; entry->vlan_id = 0; } static void rlb_init_table_entry_src(struct rlb_client_info *entry) { entry->src_first = RLB_NULL_INDEX; entry->src_prev = RLB_NULL_INDEX; entry->src_next = RLB_NULL_INDEX; } static void rlb_init_table_entry(struct rlb_client_info *entry) { memset(entry, 0, sizeof(struct rlb_client_info)); rlb_init_table_entry_dst(entry); rlb_init_table_entry_src(entry); } static void rlb_delete_table_entry_dst(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next_index = bond_info->rx_hashtbl[index].used_next; u32 prev_index = bond_info->rx_hashtbl[index].used_prev; if (index == bond_info->rx_hashtbl_used_head) bond_info->rx_hashtbl_used_head = next_index; if (prev_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[prev_index].used_next = next_index; if (next_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[next_index].used_prev = prev_index; } /* unlink a rlb hash table entry from the src list */ static void rlb_src_unlink(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next_index = bond_info->rx_hashtbl[index].src_next; u32 prev_index = bond_info->rx_hashtbl[index].src_prev; bond_info->rx_hashtbl[index].src_next = RLB_NULL_INDEX; bond_info->rx_hashtbl[index].src_prev = RLB_NULL_INDEX; if (next_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[next_index].src_prev = prev_index; if (prev_index == RLB_NULL_INDEX) return; /* is prev_index pointing to the head of this list? */ if (bond_info->rx_hashtbl[prev_index].src_first == index) bond_info->rx_hashtbl[prev_index].src_first = next_index; else bond_info->rx_hashtbl[prev_index].src_next = next_index; } static void rlb_delete_table_entry(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]); rlb_delete_table_entry_dst(bond, index); rlb_init_table_entry_dst(entry); rlb_src_unlink(bond, index); } /* add the rx_hashtbl[ip_dst_hash] entry to the list * of entries with identical ip_src_hash */ static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next; bond_info->rx_hashtbl[ip_dst_hash].src_prev = ip_src_hash; next = bond_info->rx_hashtbl[ip_src_hash].src_first; bond_info->rx_hashtbl[ip_dst_hash].src_next = next; if (next != RLB_NULL_INDEX) bond_info->rx_hashtbl[next].src_prev = ip_dst_hash; bond_info->rx_hashtbl[ip_src_hash].src_first = ip_dst_hash; } /* deletes all rx_hashtbl entries with arp->ip_src if their mac_src does * not match arp->mac_src */ static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 ip_src_hash = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src)); u32 index; spin_lock_bh(&bond->mode_lock); index = bond_info->rx_hashtbl[ip_src_hash].src_first; while (index != RLB_NULL_INDEX) { struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]); u32 next_index = entry->src_next; if (entry->ip_src == arp->ip_src && !ether_addr_equal_64bits(arp->mac_src, entry->mac_src)) rlb_delete_table_entry(bond, index); index = next_index; } spin_unlock_bh(&bond->mode_lock); } static int rlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *new_hashtbl; int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); int i; new_hashtbl = kmalloc(size, GFP_KERNEL); if (!new_hashtbl) return -1; spin_lock_bh(&bond->mode_lock); bond_info->rx_hashtbl = new_hashtbl; bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX; for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) rlb_init_table_entry(bond_info->rx_hashtbl + i); spin_unlock_bh(&bond->mode_lock); /* register to receive ARPs */ bond->recv_probe = rlb_arp_recv; return 0; } static void rlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); spin_lock_bh(&bond->mode_lock); kfree(bond_info->rx_hashtbl); bond_info->rx_hashtbl = NULL; bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX; spin_unlock_bh(&bond->mode_lock); } static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 curr_index; spin_lock_bh(&bond->mode_lock); curr_index = bond_info->rx_hashtbl_used_head; while (curr_index != RLB_NULL_INDEX) { struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); u32 next_index = bond_info->rx_hashtbl[curr_index].used_next; if (curr->vlan_id == vlan_id) rlb_delete_table_entry(bond, curr_index); curr_index = next_index; } spin_unlock_bh(&bond->mode_lock); } /*********************** tlb/rlb shared functions *********************/ static void alb_send_lp_vid(struct slave *slave, u8 mac_addr[], __be16 vlan_proto, u16 vid) { struct learning_pkt pkt; struct sk_buff *skb; int size = sizeof(struct learning_pkt); memset(&pkt, 0, size); ether_addr_copy(pkt.mac_dst, mac_addr); ether_addr_copy(pkt.mac_src, mac_addr); pkt.type = cpu_to_be16(ETH_P_LOOPBACK); skb = dev_alloc_skb(size); if (!skb) return; skb_put_data(skb, &pkt, size); skb_reset_mac_header(skb); skb->network_header = skb->mac_header + ETH_HLEN; skb->protocol = pkt.type; skb->priority = TC_PRIO_CONTROL; skb->dev = slave->dev; slave_dbg(slave->bond->dev, slave->dev, "Send learning packet: mac %pM vlan %d\n", mac_addr, vid); if (vid) __vlan_hwaccel_put_tag(skb, vlan_proto, vid); dev_queue_xmit(skb); } struct alb_walk_data { struct bonding *bond; struct slave *slave; u8 *mac_addr; bool strict_match; }; static int alb_upper_dev_walk(struct net_device *upper, struct netdev_nested_priv *priv) { struct alb_walk_data *data = (struct alb_walk_data *)priv->data; bool strict_match = data->strict_match; struct bonding *bond = data->bond; struct slave *slave = data->slave; u8 *mac_addr = data->mac_addr; struct bond_vlan_tag *tags; if (is_vlan_dev(upper) && bond->dev->lower_level == upper->lower_level - 1) { if (upper->addr_assign_type == NET_ADDR_STOLEN) { alb_send_lp_vid(slave, mac_addr, vlan_dev_vlan_proto(upper), vlan_dev_vlan_id(upper)); } else { alb_send_lp_vid(slave, upper->dev_addr, vlan_dev_vlan_proto(upper), vlan_dev_vlan_id(upper)); } } /* If this is a macvlan device, then only send updates * when strict_match is turned off. */ if (netif_is_macvlan(upper) && !strict_match) { tags = bond_verify_device_path(bond->dev, upper, 0); if (IS_ERR_OR_NULL(tags)) BUG(); alb_send_lp_vid(slave, upper->dev_addr, tags[0].vlan_proto, tags[0].vlan_id); kfree(tags); } return 0; } static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[], bool strict_match) { struct bonding *bond = bond_get_bond_by_slave(slave); struct netdev_nested_priv priv; struct alb_walk_data data = { .strict_match = strict_match, .mac_addr = mac_addr, .slave = slave, .bond = bond, }; priv.data = (void *)&data; /* send untagged */ alb_send_lp_vid(slave, mac_addr, 0, 0); /* loop through all devices and see if we need to send a packet * for that device. */ rcu_read_lock(); netdev_walk_all_upper_dev_rcu(bond->dev, alb_upper_dev_walk, &priv); rcu_read_unlock(); } static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], unsigned int len) { struct net_device *dev = slave->dev; struct sockaddr_storage ss; if (BOND_MODE(slave->bond) == BOND_MODE_TLB) { memcpy(dev->dev_addr, addr, len); return 0; } /* for rlb each slave must have a unique hw mac addresses so that * each slave will receive packets destined to a different mac */ memcpy(ss.__data, addr, len); ss.ss_family = dev->type; if (dev_set_mac_address(dev, (struct sockaddr *)&ss, NULL)) { slave_err(slave->bond->dev, dev, "dev_set_mac_address on slave failed! ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n"); return -EOPNOTSUPP; } return 0; } /* Swap MAC addresses between two slaves. * * Called with RTNL held, and no other locks. */ static void alb_swap_mac_addr(struct slave *slave1, struct slave *slave2) { u8 tmp_mac_addr[MAX_ADDR_LEN]; bond_hw_addr_copy(tmp_mac_addr, slave1->dev->dev_addr, slave1->dev->addr_len); alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, slave2->dev->addr_len); alb_set_slave_mac_addr(slave2, tmp_mac_addr, slave1->dev->addr_len); } /* Send learning packets after MAC address swap. * * Called with RTNL and no other locks */ static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, struct slave *slave2) { int slaves_state_differ = (bond_slave_can_tx(slave1) != bond_slave_can_tx(slave2)); struct slave *disabled_slave = NULL; ASSERT_RTNL(); /* fasten the change in the switch */ if (bond_slave_can_tx(slave1)) { alb_send_learning_packets(slave1, slave1->dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave1); } } else { disabled_slave = slave1; } if (bond_slave_can_tx(slave2)) { alb_send_learning_packets(slave2, slave2->dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave2); } } else { disabled_slave = slave2; } if (bond->alb_info.rlb_enabled && slaves_state_differ) { /* A disabled slave was assigned an active mac addr */ rlb_teach_disabled_mac_on_primary(bond, disabled_slave->dev->dev_addr); } } /** * alb_change_hw_addr_on_detach * @bond: bonding we're working on * @slave: the slave that was just detached * * We assume that @slave was already detached from the slave list. * * If @slave's permanent hw address is different both from its current * address and from @bond's address, then somewhere in the bond there's * a slave that has @slave's permanet address as its current address. * We'll make sure that slave no longer uses @slave's permanent address. * * Caller must hold RTNL and no other locks */ static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) { int perm_curr_diff; int perm_bond_diff; struct slave *found_slave; perm_curr_diff = !ether_addr_equal_64bits(slave->perm_hwaddr, slave->dev->dev_addr); perm_bond_diff = !ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr); if (perm_curr_diff && perm_bond_diff) { found_slave = bond_slave_has_mac(bond, slave->perm_hwaddr); if (found_slave) { alb_swap_mac_addr(slave, found_slave); alb_fasten_mac_swap(bond, slave, found_slave); } } } /** * alb_handle_addr_collision_on_attach * @bond: bonding we're working on * @slave: the slave that was just attached * * checks uniqueness of slave's mac address and handles the case the * new slave uses the bonds mac address. * * If the permanent hw address of @slave is @bond's hw address, we need to * find a different hw address to give @slave, that isn't in use by any other * slave in the bond. This address must be, of course, one of the permanent * addresses of the other slaves. * * We go over the slave list, and for each slave there we compare its * permanent hw address with the current address of all the other slaves. * If no match was found, then we've found a slave with a permanent address * that isn't used by any other slave in the bond, so we can assign it to * @slave. * * assumption: this function is called before @slave is attached to the * bond slave list. */ static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) { struct slave *has_bond_addr = rcu_access_pointer(bond->curr_active_slave); struct slave *tmp_slave1, *free_mac_slave = NULL; struct list_head *iter; if (!bond_has_slaves(bond)) { /* this is the first slave */ return 0; } /* if slave's mac address differs from bond's mac address * check uniqueness of slave's mac address against the other * slaves in the bond. */ if (!ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) { if (!bond_slave_has_mac(bond, slave->dev->dev_addr)) return 0; /* Try setting slave mac to bond address and fall-through * to code handling that situation below... */ alb_set_slave_mac_addr(slave, bond->dev->dev_addr, bond->dev->addr_len); } /* The slave's address is equal to the address of the bond. * Search for a spare address in the bond for this slave. */ bond_for_each_slave(bond, tmp_slave1, iter) { if (!bond_slave_has_mac(bond, tmp_slave1->perm_hwaddr)) { /* no slave has tmp_slave1's perm addr * as its curr addr */ free_mac_slave = tmp_slave1; break; } if (!has_bond_addr) { if (ether_addr_equal_64bits(tmp_slave1->dev->dev_addr, bond->dev->dev_addr)) { has_bond_addr = tmp_slave1; } } } if (free_mac_slave) { alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, free_mac_slave->dev->addr_len); slave_warn(bond->dev, slave->dev, "the slave hw address is in use by the bond; giving it the hw address of %s\n", free_mac_slave->dev->name); } else if (has_bond_addr) { slave_err(bond->dev, slave->dev, "the slave hw address is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n"); return -EFAULT; } return 0; } /** * alb_set_mac_address * @bond: bonding we're working on * @addr: MAC address to set * * In TLB mode all slaves are configured to the bond's hw address, but set * their dev_addr field to different addresses (based on their permanent hw * addresses). * * For each slave, this function sets the interface to the new address and then * changes its dev_addr field to its previous value. * * Unwinding assumes bond's mac address has not yet changed. */ static int alb_set_mac_address(struct bonding *bond, void *addr) { struct slave *slave, *rollback_slave; struct list_head *iter; struct sockaddr_storage ss; char tmp_addr[MAX_ADDR_LEN]; int res; if (bond->alb_info.rlb_enabled) return 0; bond_for_each_slave(bond, slave, iter) { /* save net_device's current hw address */ bond_hw_addr_copy(tmp_addr, slave->dev->dev_addr, slave->dev->addr_len); res = dev_set_mac_address(slave->dev, addr, NULL); /* restore net_device's hw address */ bond_hw_addr_copy(slave->dev->dev_addr, tmp_addr, slave->dev->addr_len); if (res) goto unwind; } return 0; unwind: memcpy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len); ss.ss_family = bond->dev->type; /* unwind from head to the slave that failed */ bond_for_each_slave(bond, rollback_slave, iter) { if (rollback_slave == slave) break; bond_hw_addr_copy(tmp_addr, rollback_slave->dev->dev_addr, rollback_slave->dev->addr_len); dev_set_mac_address(rollback_slave->dev, (struct sockaddr *)&ss, NULL); bond_hw_addr_copy(rollback_slave->dev->dev_addr, tmp_addr, rollback_slave->dev->addr_len); } return res; } /************************ exported alb functions ************************/ int bond_alb_initialize(struct bonding *bond, int rlb_enabled) { int res; res = tlb_initialize(bond); if (res) return res; if (rlb_enabled) { bond->alb_info.rlb_enabled = 1; res = rlb_initialize(bond); if (res) { tlb_deinitialize(bond); return res; } } else { bond->alb_info.rlb_enabled = 0; } return 0; } void bond_alb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); tlb_deinitialize(bond); if (bond_info->rlb_enabled) rlb_deinitialize(bond); } static netdev_tx_t bond_do_alb_xmit(struct sk_buff *skb, struct bonding *bond, struct slave *tx_slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct ethhdr *eth_data = eth_hdr(skb); if (!tx_slave) { /* unbalanced or unassigned, send through primary */ tx_slave = rcu_dereference(bond->curr_active_slave); if (bond->params.tlb_dynamic_lb) bond_info->unbalanced_load += skb->len; } if (tx_slave && bond_slave_can_tx(tx_slave)) { if (tx_slave != rcu_access_pointer(bond->curr_active_slave)) { ether_addr_copy(eth_data->h_source, tx_slave->dev->dev_addr); } return bond_dev_queue_xmit(bond, skb, tx_slave->dev); } if (tx_slave && bond->params.tlb_dynamic_lb) { spin_lock(&bond->mode_lock); __tlb_clear_slave(bond, tx_slave, 0); spin_unlock(&bond->mode_lock); } /* no suitable interface, frame not sent */ return bond_tx_drop(bond->dev, skb); } struct slave *bond_xmit_tlb_slave_get(struct bonding *bond, struct sk_buff *skb) { struct slave *tx_slave = NULL; struct ethhdr *eth_data; u32 hash_index; skb_reset_mac_header(skb); eth_data = eth_hdr(skb); /* Do not TX balance any multicast or broadcast */ if (!is_multicast_ether_addr(eth_data->h_dest)) { switch (skb->protocol) { case htons(ETH_P_IP): case htons(ETH_P_IPV6): hash_index = bond_xmit_hash(bond, skb); if (bond->params.tlb_dynamic_lb) { tx_slave = tlb_choose_channel(bond, hash_index & 0xFF, skb->len); } else { struct bond_up_slave *slaves; unsigned int count; slaves = rcu_dereference(bond->usable_slaves); count = slaves ? READ_ONCE(slaves->count) : 0; if (likely(count)) tx_slave = slaves->arr[hash_index % count]; } break; } } return tx_slave; } netdev_tx_t bond_tlb_xmit(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = netdev_priv(bond_dev); struct slave *tx_slave; tx_slave = bond_xmit_tlb_slave_get(bond, skb); return bond_do_alb_xmit(skb, bond, tx_slave); } struct slave *bond_xmit_alb_slave_get(struct bonding *bond, struct sk_buff *skb) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); static const __be32 ip_bcast = htonl(0xffffffff); struct slave *tx_slave = NULL; const u8 *hash_start = NULL; bool do_tx_balance = true; struct ethhdr *eth_data; u32 hash_index = 0; int hash_size = 0; skb_reset_mac_header(skb); eth_data = eth_hdr(skb); switch (ntohs(skb->protocol)) { case ETH_P_IP: { const struct iphdr *iph; if (is_broadcast_ether_addr(eth_data->h_dest) || !pskb_network_may_pull(skb, sizeof(*iph))) { do_tx_balance = false; break; } iph = ip_hdr(skb); if (iph->daddr == ip_bcast || iph->protocol == IPPROTO_IGMP) { do_tx_balance = false; break; } hash_start = (char *)&(iph->daddr); hash_size = sizeof(iph->daddr); break; } case ETH_P_IPV6: { const struct ipv6hdr *ip6hdr; /* IPv6 doesn't really use broadcast mac address, but leave * that here just in case. */ if (is_broadcast_ether_addr(eth_data->h_dest)) { do_tx_balance = false; break; } /* IPv6 uses all-nodes multicast as an equivalent to * broadcasts in IPv4. */ if (ether_addr_equal_64bits(eth_data->h_dest, mac_v6_allmcast)) { do_tx_balance = false; break; } if (!pskb_network_may_pull(skb, sizeof(*ip6hdr))) { do_tx_balance = false; break; } /* Additionally, DAD probes should not be tx-balanced as that * will lead to false positives for duplicate addresses and * prevent address configuration from working. */ ip6hdr = ipv6_hdr(skb); if (ipv6_addr_any(&ip6hdr->saddr)) { do_tx_balance = false; break; } hash_start = (char *)&ip6hdr->daddr; hash_size = sizeof(ip6hdr->daddr); break; } case ETH_P_ARP: do_tx_balance = false; if (bond_info->rlb_enabled) tx_slave = rlb_arp_xmit(skb, bond); break; default: do_tx_balance = false; break; } if (do_tx_balance) { if (bond->params.tlb_dynamic_lb) { hash_index = _simple_hash(hash_start, hash_size); tx_slave = tlb_choose_channel(bond, hash_index, skb->len); } else { /* * do_tx_balance means we are free to select the tx_slave * So we do exactly what tlb would do for hash selection */ struct bond_up_slave *slaves; unsigned int count; slaves = rcu_dereference(bond->usable_slaves); count = slaves ? READ_ONCE(slaves->count) : 0; if (likely(count)) tx_slave = slaves->arr[bond_xmit_hash(bond, skb) % count]; } } return tx_slave; } netdev_tx_t bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = netdev_priv(bond_dev); struct slave *tx_slave = NULL; tx_slave = bond_xmit_alb_slave_get(bond, skb); return bond_do_alb_xmit(skb, bond, tx_slave); } void bond_alb_monitor(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, alb_work.work); struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct list_head *iter; struct slave *slave; if (!bond_has_slaves(bond)) { bond_info->tx_rebalance_counter = 0; bond_info->lp_counter = 0; goto re_arm; } rcu_read_lock(); bond_info->tx_rebalance_counter++; bond_info->lp_counter++; /* send learning packets */ if (bond_info->lp_counter >= BOND_ALB_LP_TICKS(bond)) { bool strict_match; bond_for_each_slave_rcu(bond, slave, iter) { /* If updating current_active, use all currently * user mac addresses (!strict_match). Otherwise, only * use mac of the slave device. * In RLB mode, we always use strict matches. */ strict_match = (slave != rcu_access_pointer(bond->curr_active_slave) || bond_info->rlb_enabled); alb_send_learning_packets(slave, slave->dev->dev_addr, strict_match); } bond_info->lp_counter = 0; } /* rebalance tx traffic */ if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { bond_for_each_slave_rcu(bond, slave, iter) { tlb_clear_slave(bond, slave, 1); if (slave == rcu_access_pointer(bond->curr_active_slave)) { SLAVE_TLB_INFO(slave).load = bond_info->unbalanced_load / BOND_TLB_REBALANCE_INTERVAL; bond_info->unbalanced_load = 0; } } bond_info->tx_rebalance_counter = 0; } if (bond_info->rlb_enabled) { if (bond_info->primary_is_promisc && (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { /* dev_set_promiscuity requires rtnl and * nothing else. Avoid race with bond_close. */ rcu_read_unlock(); if (!rtnl_trylock()) goto re_arm; bond_info->rlb_promisc_timeout_counter = 0; /* If the primary was set to promiscuous mode * because a slave was disabled then * it can now leave promiscuous mode. */ dev_set_promiscuity(rtnl_dereference(bond->curr_active_slave)->dev, -1); bond_info->primary_is_promisc = 0; rtnl_unlock(); rcu_read_lock(); } if (bond_info->rlb_rebalance) { bond_info->rlb_rebalance = 0; rlb_rebalance(bond); } /* check if clients need updating */ if (bond_info->rx_ntt) { if (bond_info->rlb_update_delay_counter) { --bond_info->rlb_update_delay_counter; } else { rlb_update_rx_clients(bond); if (bond_info->rlb_update_retry_counter) --bond_info->rlb_update_retry_counter; else bond_info->rx_ntt = 0; } } } rcu_read_unlock(); re_arm: queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); } /* assumption: called before the slave is attached to the bond * and not locked by the bond lock */ int bond_alb_init_slave(struct bonding *bond, struct slave *slave) { int res; res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, slave->dev->addr_len); if (res) return res; res = alb_handle_addr_collision_on_attach(bond, slave); if (res) return res; tlb_init_slave(slave); /* order a rebalance ASAP */ bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; if (bond->alb_info.rlb_enabled) bond->alb_info.rlb_rebalance = 1; return 0; } /* Remove slave from tlb and rlb hash tables, and fix up MAC addresses * if necessary. * * Caller must hold RTNL and no other locks */ void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) { if (bond_has_slaves(bond)) alb_change_hw_addr_on_detach(bond, slave); tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) { bond->alb_info.rx_slave = NULL; rlb_clear_slave(bond, slave); } } void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); if (link == BOND_LINK_DOWN) { tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) rlb_clear_slave(bond, slave); } else if (link == BOND_LINK_UP) { /* order a rebalance ASAP */ bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; if (bond->alb_info.rlb_enabled) { bond->alb_info.rlb_rebalance = 1; /* If the updelay module parameter is smaller than the * forwarding delay of the switch the rebalance will * not work because the rebalance arp replies will * not be forwarded to the clients.. */ } } if (bond_is_nondyn_tlb(bond)) { if (bond_update_slave_arr(bond, NULL)) pr_err("Failed to build slave-array for TLB mode.\n"); } } /** * bond_alb_handle_active_change - assign new curr_active_slave * @bond: our bonding struct * @new_slave: new slave to assign * * Set the bond->curr_active_slave to @new_slave and handle * mac address swapping and promiscuity changes as needed. * * Caller must hold RTNL */ void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) { struct slave *swap_slave; struct slave *curr_active; curr_active = rtnl_dereference(bond->curr_active_slave); if (curr_active == new_slave) return; if (curr_active && bond->alb_info.primary_is_promisc) { dev_set_promiscuity(curr_active->dev, -1); bond->alb_info.primary_is_promisc = 0; bond->alb_info.rlb_promisc_timeout_counter = 0; } swap_slave = curr_active; rcu_assign_pointer(bond->curr_active_slave, new_slave); if (!new_slave || !bond_has_slaves(bond)) return; /* set the new curr_active_slave to the bonds mac address * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave */ if (!swap_slave) swap_slave = bond_slave_has_mac(bond, bond->dev->dev_addr); /* Arrange for swap_slave and new_slave to temporarily be * ignored so we can mess with their MAC addresses without * fear of interference from transmit activity. */ if (swap_slave) tlb_clear_slave(bond, swap_slave, 1); tlb_clear_slave(bond, new_slave, 1); /* in TLB mode, the slave might flip down/up with the old dev_addr, * and thus filter bond->dev_addr's packets, so force bond's mac */ if (BOND_MODE(bond) == BOND_MODE_TLB) { struct sockaddr_storage ss; u8 tmp_addr[MAX_ADDR_LEN]; bond_hw_addr_copy(tmp_addr, new_slave->dev->dev_addr, new_slave->dev->addr_len); bond_hw_addr_copy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len); ss.ss_family = bond->dev->type; /* we don't care if it can't change its mac, best effort */ dev_set_mac_address(new_slave->dev, (struct sockaddr *)&ss, NULL); bond_hw_addr_copy(new_slave->dev->dev_addr, tmp_addr, new_slave->dev->addr_len); } /* curr_active_slave must be set before calling alb_swap_mac_addr */ if (swap_slave) { /* swap mac address */ alb_swap_mac_addr(swap_slave, new_slave); alb_fasten_mac_swap(bond, swap_slave, new_slave); } else { /* set the new_slave to the bond mac address */ alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, bond->dev->addr_len); alb_send_learning_packets(new_slave, bond->dev->dev_addr, false); } } /* Called with RTNL */ int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) { struct bonding *bond = netdev_priv(bond_dev); struct sockaddr_storage *ss = addr; struct slave *curr_active; struct slave *swap_slave; int res; if (!is_valid_ether_addr(ss->__data)) return -EADDRNOTAVAIL; res = alb_set_mac_address(bond, addr); if (res) return res; bond_hw_addr_copy(bond_dev->dev_addr, ss->__data, bond_dev->addr_len); /* If there is no curr_active_slave there is nothing else to do. * Otherwise we'll need to pass the new address to it and handle * duplications. */ curr_active = rtnl_dereference(bond->curr_active_slave); if (!curr_active) return 0; swap_slave = bond_slave_has_mac(bond, bond_dev->dev_addr); if (swap_slave) { alb_swap_mac_addr(swap_slave, curr_active); alb_fasten_mac_swap(bond, swap_slave, curr_active); } else { alb_set_slave_mac_addr(curr_active, bond_dev->dev_addr, bond_dev->addr_len); alb_send_learning_packets(curr_active, bond_dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform clients mac address has changed */ rlb_req_update_slave_clients(bond, curr_active); } } return 0; } void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { if (bond->alb_info.rlb_enabled) rlb_clear_vlan(bond, vlan_id); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1