Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephane Grosjean | 3315 | 99.67% | 8 | 61.54% |
Gustavo A. R. Silva | 4 | 0.12% | 2 | 15.38% |
Kees Cook | 4 | 0.12% | 1 | 7.69% |
Marc Kleine-Budde | 2 | 0.06% | 1 | 7.69% |
Thomas Gleixner | 1 | 0.03% | 1 | 7.69% |
Total | 3326 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2007, 2011 Wolfgang Grandegger <wg@grandegger.com> * Copyright (C) 2012 Stephane Grosjean <s.grosjean@peak-system.com> * * Derived from the PCAN project file driver/src/pcan_pci.c: * * Copyright (C) 2001-2006 PEAK System-Technik GmbH */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/io.h> #include <linux/can.h> #include <linux/can/dev.h> #include "peak_canfd_user.h" MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>"); MODULE_DESCRIPTION("Socket-CAN driver for PEAK PCAN PCIe/M.2 FD family cards"); MODULE_LICENSE("GPL v2"); #define PCIEFD_DRV_NAME "peak_pciefd" #define PEAK_PCI_VENDOR_ID 0x001c /* The PCI device and vendor IDs */ #define PEAK_PCIEFD_ID 0x0013 /* for PCIe slot cards */ #define PCAN_CPCIEFD_ID 0x0014 /* for Compact-PCI Serial slot cards */ #define PCAN_PCIE104FD_ID 0x0017 /* for PCIe-104 Express slot cards */ #define PCAN_MINIPCIEFD_ID 0x0018 /* for mini-PCIe slot cards */ #define PCAN_PCIEFD_OEM_ID 0x0019 /* for PCIe slot OEM cards */ #define PCAN_M2_ID 0x001a /* for M2 slot cards */ /* PEAK PCIe board access description */ #define PCIEFD_BAR0_SIZE (64 * 1024) #define PCIEFD_RX_DMA_SIZE (4 * 1024) #define PCIEFD_TX_DMA_SIZE (4 * 1024) #define PCIEFD_TX_PAGE_SIZE (2 * 1024) /* System Control Registers */ #define PCIEFD_REG_SYS_CTL_SET 0x0000 /* set bits */ #define PCIEFD_REG_SYS_CTL_CLR 0x0004 /* clear bits */ /* Version info registers */ #define PCIEFD_REG_SYS_VER1 0x0040 /* version reg #1 */ #define PCIEFD_REG_SYS_VER2 0x0044 /* version reg #2 */ #define PCIEFD_FW_VERSION(x, y, z) (((u32)(x) << 24) | \ ((u32)(y) << 16) | \ ((u32)(z) << 8)) /* System Control Registers Bits */ #define PCIEFD_SYS_CTL_TS_RST 0x00000001 /* timestamp clock */ #define PCIEFD_SYS_CTL_CLK_EN 0x00000002 /* system clock */ /* CAN-FD channel addresses */ #define PCIEFD_CANX_OFF(c) (((c) + 1) * 0x1000) #define PCIEFD_ECHO_SKB_MAX PCANFD_ECHO_SKB_DEF /* CAN-FD channel registers */ #define PCIEFD_REG_CAN_MISC 0x0000 /* Misc. control */ #define PCIEFD_REG_CAN_CLK_SEL 0x0008 /* Clock selector */ #define PCIEFD_REG_CAN_CMD_PORT_L 0x0010 /* 64-bits command port */ #define PCIEFD_REG_CAN_CMD_PORT_H 0x0014 #define PCIEFD_REG_CAN_TX_REQ_ACC 0x0020 /* Tx request accumulator */ #define PCIEFD_REG_CAN_TX_CTL_SET 0x0030 /* Tx control set register */ #define PCIEFD_REG_CAN_TX_CTL_CLR 0x0038 /* Tx control clear register */ #define PCIEFD_REG_CAN_TX_DMA_ADDR_L 0x0040 /* 64-bits addr for Tx DMA */ #define PCIEFD_REG_CAN_TX_DMA_ADDR_H 0x0044 #define PCIEFD_REG_CAN_RX_CTL_SET 0x0050 /* Rx control set register */ #define PCIEFD_REG_CAN_RX_CTL_CLR 0x0058 /* Rx control clear register */ #define PCIEFD_REG_CAN_RX_CTL_WRT 0x0060 /* Rx control write register */ #define PCIEFD_REG_CAN_RX_CTL_ACK 0x0068 /* Rx control ACK register */ #define PCIEFD_REG_CAN_RX_DMA_ADDR_L 0x0070 /* 64-bits addr for Rx DMA */ #define PCIEFD_REG_CAN_RX_DMA_ADDR_H 0x0074 /* CAN-FD channel misc register bits */ #define CANFD_MISC_TS_RST 0x00000001 /* timestamp cnt rst */ /* CAN-FD channel Clock SELector Source & DIVider */ #define CANFD_CLK_SEL_DIV_MASK 0x00000007 #define CANFD_CLK_SEL_DIV_60MHZ 0x00000000 /* SRC=240MHz only */ #define CANFD_CLK_SEL_DIV_40MHZ 0x00000001 /* SRC=240MHz only */ #define CANFD_CLK_SEL_DIV_30MHZ 0x00000002 /* SRC=240MHz only */ #define CANFD_CLK_SEL_DIV_24MHZ 0x00000003 /* SRC=240MHz only */ #define CANFD_CLK_SEL_DIV_20MHZ 0x00000004 /* SRC=240MHz only */ #define CANFD_CLK_SEL_SRC_MASK 0x00000008 /* 0=80MHz, 1=240MHz */ #define CANFD_CLK_SEL_SRC_240MHZ 0x00000008 #define CANFD_CLK_SEL_SRC_80MHZ (~CANFD_CLK_SEL_SRC_240MHZ & \ CANFD_CLK_SEL_SRC_MASK) #define CANFD_CLK_SEL_20MHZ (CANFD_CLK_SEL_SRC_240MHZ |\ CANFD_CLK_SEL_DIV_20MHZ) #define CANFD_CLK_SEL_24MHZ (CANFD_CLK_SEL_SRC_240MHZ |\ CANFD_CLK_SEL_DIV_24MHZ) #define CANFD_CLK_SEL_30MHZ (CANFD_CLK_SEL_SRC_240MHZ |\ CANFD_CLK_SEL_DIV_30MHZ) #define CANFD_CLK_SEL_40MHZ (CANFD_CLK_SEL_SRC_240MHZ |\ CANFD_CLK_SEL_DIV_40MHZ) #define CANFD_CLK_SEL_60MHZ (CANFD_CLK_SEL_SRC_240MHZ |\ CANFD_CLK_SEL_DIV_60MHZ) #define CANFD_CLK_SEL_80MHZ (CANFD_CLK_SEL_SRC_80MHZ) /* CAN-FD channel Rx/Tx control register bits */ #define CANFD_CTL_UNC_BIT 0x00010000 /* Uncached DMA mem */ #define CANFD_CTL_RST_BIT 0x00020000 /* reset DMA action */ #define CANFD_CTL_IEN_BIT 0x00040000 /* IRQ enable */ /* Rx IRQ Count and Time Limits */ #define CANFD_CTL_IRQ_CL_DEF 16 /* Rx msg max nb per IRQ in Rx DMA */ #define CANFD_CTL_IRQ_TL_DEF 10 /* Time before IRQ if < CL (x100 µs) */ /* Tx anticipation window (link logical address should be aligned on 2K * boundary) */ #define PCIEFD_TX_PAGE_COUNT (PCIEFD_TX_DMA_SIZE / PCIEFD_TX_PAGE_SIZE) #define CANFD_MSG_LNK_TX 0x1001 /* Tx msgs link */ /* 32-bits IRQ status fields, heading Rx DMA area */ static inline int pciefd_irq_tag(u32 irq_status) { return irq_status & 0x0000000f; } static inline int pciefd_irq_rx_cnt(u32 irq_status) { return (irq_status & 0x000007f0) >> 4; } static inline int pciefd_irq_is_lnk(u32 irq_status) { return irq_status & 0x00010000; } /* Rx record */ struct pciefd_rx_dma { __le32 irq_status; __le32 sys_time_low; __le32 sys_time_high; struct pucan_rx_msg msg[]; } __packed __aligned(4); /* Tx Link record */ struct pciefd_tx_link { __le16 size; __le16 type; __le32 laddr_lo; __le32 laddr_hi; } __packed __aligned(4); /* Tx page descriptor */ struct pciefd_page { void *vbase; /* page virtual address */ dma_addr_t lbase; /* page logical address */ u32 offset; u32 size; }; /* CAN-FD channel object */ struct pciefd_board; struct pciefd_can { struct peak_canfd_priv ucan; /* must be the first member */ void __iomem *reg_base; /* channel config base addr */ struct pciefd_board *board; /* reverse link */ struct pucan_command pucan_cmd; /* command buffer */ dma_addr_t rx_dma_laddr; /* DMA virtual and logical addr */ void *rx_dma_vaddr; /* for Rx and Tx areas */ dma_addr_t tx_dma_laddr; void *tx_dma_vaddr; struct pciefd_page tx_pages[PCIEFD_TX_PAGE_COUNT]; u16 tx_pages_free; /* free Tx pages counter */ u16 tx_page_index; /* current page used for Tx */ spinlock_t tx_lock; u32 irq_status; u32 irq_tag; /* next irq tag */ }; /* PEAK-PCIe FD board object */ struct pciefd_board { void __iomem *reg_base; struct pci_dev *pci_dev; int can_count; spinlock_t cmd_lock; /* 64-bits cmds must be atomic */ struct pciefd_can *can[]; /* array of network devices */ }; /* supported device ids. */ static const struct pci_device_id peak_pciefd_tbl[] = { {PEAK_PCI_VENDOR_ID, PEAK_PCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PEAK_PCI_VENDOR_ID, PCAN_CPCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PEAK_PCI_VENDOR_ID, PCAN_PCIE104FD_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PEAK_PCI_VENDOR_ID, PCAN_MINIPCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PEAK_PCI_VENDOR_ID, PCAN_PCIEFD_OEM_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PEAK_PCI_VENDOR_ID, PCAN_M2_ID, PCI_ANY_ID, PCI_ANY_ID,}, {0,} }; MODULE_DEVICE_TABLE(pci, peak_pciefd_tbl); /* read a 32 bits value from a SYS block register */ static inline u32 pciefd_sys_readreg(const struct pciefd_board *priv, u16 reg) { return readl(priv->reg_base + reg); } /* write a 32 bits value into a SYS block register */ static inline void pciefd_sys_writereg(const struct pciefd_board *priv, u32 val, u16 reg) { writel(val, priv->reg_base + reg); } /* read a 32 bits value from CAN-FD block register */ static inline u32 pciefd_can_readreg(const struct pciefd_can *priv, u16 reg) { return readl(priv->reg_base + reg); } /* write a 32 bits value into a CAN-FD block register */ static inline void pciefd_can_writereg(const struct pciefd_can *priv, u32 val, u16 reg) { writel(val, priv->reg_base + reg); } /* give a channel logical Rx DMA address to the board */ static void pciefd_can_setup_rx_dma(struct pciefd_can *priv) { #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT const u32 dma_addr_h = (u32)(priv->rx_dma_laddr >> 32); #else const u32 dma_addr_h = 0; #endif /* (DMA must be reset for Rx) */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET); /* write the logical address of the Rx DMA area for this channel */ pciefd_can_writereg(priv, (u32)priv->rx_dma_laddr, PCIEFD_REG_CAN_RX_DMA_ADDR_L); pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_RX_DMA_ADDR_H); /* also indicates that Rx DMA is cacheable */ pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_RX_CTL_CLR); } /* clear channel logical Rx DMA address from the board */ static void pciefd_can_clear_rx_dma(struct pciefd_can *priv) { /* DMA must be reset for Rx */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET); /* clear the logical address of the Rx DMA area for this channel */ pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_L); pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_H); } /* give a channel logical Tx DMA address to the board */ static void pciefd_can_setup_tx_dma(struct pciefd_can *priv) { #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT const u32 dma_addr_h = (u32)(priv->tx_dma_laddr >> 32); #else const u32 dma_addr_h = 0; #endif /* (DMA must be reset for Tx) */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET); /* write the logical address of the Tx DMA area for this channel */ pciefd_can_writereg(priv, (u32)priv->tx_dma_laddr, PCIEFD_REG_CAN_TX_DMA_ADDR_L); pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_TX_DMA_ADDR_H); /* also indicates that Tx DMA is cacheable */ pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_TX_CTL_CLR); } /* clear channel logical Tx DMA address from the board */ static void pciefd_can_clear_tx_dma(struct pciefd_can *priv) { /* DMA must be reset for Tx */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET); /* clear the logical address of the Tx DMA area for this channel */ pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_L); pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_H); } static void pciefd_can_ack_rx_dma(struct pciefd_can *priv) { /* read value of current IRQ tag and inc it for next one */ priv->irq_tag = le32_to_cpu(*(__le32 *)priv->rx_dma_vaddr); priv->irq_tag++; priv->irq_tag &= 0xf; /* write the next IRQ tag for this CAN */ pciefd_can_writereg(priv, priv->irq_tag, PCIEFD_REG_CAN_RX_CTL_ACK); } /* IRQ handler */ static irqreturn_t pciefd_irq_handler(int irq, void *arg) { struct pciefd_can *priv = arg; struct pciefd_rx_dma *rx_dma = priv->rx_dma_vaddr; /* INTA mode only to sync with PCIe transaction */ if (!pci_dev_msi_enabled(priv->board->pci_dev)) (void)pciefd_sys_readreg(priv->board, PCIEFD_REG_SYS_VER1); /* read IRQ status from the first 32-bits of the Rx DMA area */ priv->irq_status = le32_to_cpu(rx_dma->irq_status); /* check if this (shared) IRQ is for this CAN */ if (pciefd_irq_tag(priv->irq_status) != priv->irq_tag) return IRQ_NONE; /* handle rx messages (if any) */ peak_canfd_handle_msgs_list(&priv->ucan, rx_dma->msg, pciefd_irq_rx_cnt(priv->irq_status)); /* handle tx link interrupt (if any) */ if (pciefd_irq_is_lnk(priv->irq_status)) { unsigned long flags; spin_lock_irqsave(&priv->tx_lock, flags); priv->tx_pages_free++; spin_unlock_irqrestore(&priv->tx_lock, flags); /* wake producer up (only if enough room in echo_skb array) */ spin_lock_irqsave(&priv->ucan.echo_lock, flags); if (!priv->ucan.can.echo_skb[priv->ucan.echo_idx]) netif_wake_queue(priv->ucan.ndev); spin_unlock_irqrestore(&priv->ucan.echo_lock, flags); } /* re-enable Rx DMA transfer for this CAN */ pciefd_can_ack_rx_dma(priv); return IRQ_HANDLED; } static int pciefd_enable_tx_path(struct peak_canfd_priv *ucan) { struct pciefd_can *priv = (struct pciefd_can *)ucan; int i; /* initialize the Tx pages descriptors */ priv->tx_pages_free = PCIEFD_TX_PAGE_COUNT - 1; priv->tx_page_index = 0; priv->tx_pages[0].vbase = priv->tx_dma_vaddr; priv->tx_pages[0].lbase = priv->tx_dma_laddr; for (i = 0; i < PCIEFD_TX_PAGE_COUNT; i++) { priv->tx_pages[i].offset = 0; priv->tx_pages[i].size = PCIEFD_TX_PAGE_SIZE - sizeof(struct pciefd_tx_link); if (i) { priv->tx_pages[i].vbase = priv->tx_pages[i - 1].vbase + PCIEFD_TX_PAGE_SIZE; priv->tx_pages[i].lbase = priv->tx_pages[i - 1].lbase + PCIEFD_TX_PAGE_SIZE; } } /* setup Tx DMA addresses into IP core */ pciefd_can_setup_tx_dma(priv); /* start (TX_RST=0) Tx Path */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_CLR); return 0; } /* board specific CANFD command pre-processing */ static int pciefd_pre_cmd(struct peak_canfd_priv *ucan) { struct pciefd_can *priv = (struct pciefd_can *)ucan; u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd); int err; /* pre-process command */ switch (cmd) { case PUCAN_CMD_NORMAL_MODE: case PUCAN_CMD_LISTEN_ONLY_MODE: if (ucan->can.state == CAN_STATE_BUS_OFF) break; /* going into operational mode: setup IRQ handler */ err = request_irq(priv->ucan.ndev->irq, pciefd_irq_handler, IRQF_SHARED, PCIEFD_DRV_NAME, priv); if (err) return err; /* setup Rx DMA address */ pciefd_can_setup_rx_dma(priv); /* setup max count of msgs per IRQ */ pciefd_can_writereg(priv, (CANFD_CTL_IRQ_TL_DEF) << 8 | CANFD_CTL_IRQ_CL_DEF, PCIEFD_REG_CAN_RX_CTL_WRT); /* clear DMA RST for Rx (Rx start) */ pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_CLR); /* reset timestamps */ pciefd_can_writereg(priv, !CANFD_MISC_TS_RST, PCIEFD_REG_CAN_MISC); /* do an initial ACK */ pciefd_can_ack_rx_dma(priv); /* enable IRQ for this CAN after having set next irq_tag */ pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT, PCIEFD_REG_CAN_RX_CTL_SET); /* Tx path will be setup as soon as RX_BARRIER is received */ break; default: break; } return 0; } /* write a command */ static int pciefd_write_cmd(struct peak_canfd_priv *ucan) { struct pciefd_can *priv = (struct pciefd_can *)ucan; unsigned long flags; /* 64-bits command is atomic */ spin_lock_irqsave(&priv->board->cmd_lock, flags); pciefd_can_writereg(priv, *(u32 *)ucan->cmd_buffer, PCIEFD_REG_CAN_CMD_PORT_L); pciefd_can_writereg(priv, *(u32 *)(ucan->cmd_buffer + 4), PCIEFD_REG_CAN_CMD_PORT_H); spin_unlock_irqrestore(&priv->board->cmd_lock, flags); return 0; } /* board specific CANFD command post-processing */ static int pciefd_post_cmd(struct peak_canfd_priv *ucan) { struct pciefd_can *priv = (struct pciefd_can *)ucan; u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd); switch (cmd) { case PUCAN_CMD_RESET_MODE: if (ucan->can.state == CAN_STATE_STOPPED) break; /* controller now in reset mode: */ /* disable IRQ for this CAN */ pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT, PCIEFD_REG_CAN_RX_CTL_CLR); /* stop and reset DMA addresses in Tx/Rx engines */ pciefd_can_clear_tx_dma(priv); pciefd_can_clear_rx_dma(priv); /* wait for above commands to complete (read cycle) */ (void)pciefd_sys_readreg(priv->board, PCIEFD_REG_SYS_VER1); free_irq(priv->ucan.ndev->irq, priv); ucan->can.state = CAN_STATE_STOPPED; break; } return 0; } static void *pciefd_alloc_tx_msg(struct peak_canfd_priv *ucan, u16 msg_size, int *room_left) { struct pciefd_can *priv = (struct pciefd_can *)ucan; struct pciefd_page *page = priv->tx_pages + priv->tx_page_index; unsigned long flags; void *msg; spin_lock_irqsave(&priv->tx_lock, flags); if (page->offset + msg_size > page->size) { struct pciefd_tx_link *lk; /* not enough space in this page: try another one */ if (!priv->tx_pages_free) { spin_unlock_irqrestore(&priv->tx_lock, flags); /* Tx overflow */ return NULL; } priv->tx_pages_free--; /* keep address of the very last free slot of current page */ lk = page->vbase + page->offset; /* next, move on a new free page */ priv->tx_page_index = (priv->tx_page_index + 1) % PCIEFD_TX_PAGE_COUNT; page = priv->tx_pages + priv->tx_page_index; /* put link record to this new page at the end of prev one */ lk->size = cpu_to_le16(sizeof(*lk)); lk->type = cpu_to_le16(CANFD_MSG_LNK_TX); lk->laddr_lo = cpu_to_le32(page->lbase); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT lk->laddr_hi = cpu_to_le32(page->lbase >> 32); #else lk->laddr_hi = 0; #endif /* next msgs will be put from the begininng of this new page */ page->offset = 0; } *room_left = priv->tx_pages_free * page->size; spin_unlock_irqrestore(&priv->tx_lock, flags); msg = page->vbase + page->offset; /* give back room left in the tx ring */ *room_left += page->size - (page->offset + msg_size); return msg; } static int pciefd_write_tx_msg(struct peak_canfd_priv *ucan, struct pucan_tx_msg *msg) { struct pciefd_can *priv = (struct pciefd_can *)ucan; struct pciefd_page *page = priv->tx_pages + priv->tx_page_index; /* this slot is now reserved for writing the frame */ page->offset += le16_to_cpu(msg->size); /* tell the board a frame has been written in Tx DMA area */ pciefd_can_writereg(priv, 1, PCIEFD_REG_CAN_TX_REQ_ACC); return 0; } /* probe for CAN-FD channel #pciefd_board->can_count */ static int pciefd_can_probe(struct pciefd_board *pciefd) { struct net_device *ndev; struct pciefd_can *priv; u32 clk; int err; /* allocate the candev object with default isize of echo skbs ring */ ndev = alloc_peak_canfd_dev(sizeof(*priv), pciefd->can_count, PCIEFD_ECHO_SKB_MAX); if (!ndev) { dev_err(&pciefd->pci_dev->dev, "failed to alloc candev object\n"); goto failure; } priv = netdev_priv(ndev); /* fill-in candev private object: */ /* setup PCIe-FD own callbacks */ priv->ucan.pre_cmd = pciefd_pre_cmd; priv->ucan.write_cmd = pciefd_write_cmd; priv->ucan.post_cmd = pciefd_post_cmd; priv->ucan.enable_tx_path = pciefd_enable_tx_path; priv->ucan.alloc_tx_msg = pciefd_alloc_tx_msg; priv->ucan.write_tx_msg = pciefd_write_tx_msg; /* setup PCIe-FD own command buffer */ priv->ucan.cmd_buffer = &priv->pucan_cmd; priv->ucan.cmd_maxlen = sizeof(priv->pucan_cmd); priv->board = pciefd; /* CAN config regs block address */ priv->reg_base = pciefd->reg_base + PCIEFD_CANX_OFF(priv->ucan.index); /* allocate non-cacheable DMA'able 4KB memory area for Rx */ priv->rx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev, PCIEFD_RX_DMA_SIZE, &priv->rx_dma_laddr, GFP_KERNEL); if (!priv->rx_dma_vaddr) { dev_err(&pciefd->pci_dev->dev, "Rx dmam_alloc_coherent(%u) failure\n", PCIEFD_RX_DMA_SIZE); goto err_free_candev; } /* allocate non-cacheable DMA'able 4KB memory area for Tx */ priv->tx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev, PCIEFD_TX_DMA_SIZE, &priv->tx_dma_laddr, GFP_KERNEL); if (!priv->tx_dma_vaddr) { dev_err(&pciefd->pci_dev->dev, "Tx dmam_alloc_coherent(%u) failure\n", PCIEFD_TX_DMA_SIZE); goto err_free_candev; } /* CAN clock in RST mode */ pciefd_can_writereg(priv, CANFD_MISC_TS_RST, PCIEFD_REG_CAN_MISC); /* read current clock value */ clk = pciefd_can_readreg(priv, PCIEFD_REG_CAN_CLK_SEL); switch (clk) { case CANFD_CLK_SEL_20MHZ: priv->ucan.can.clock.freq = 20 * 1000 * 1000; break; case CANFD_CLK_SEL_24MHZ: priv->ucan.can.clock.freq = 24 * 1000 * 1000; break; case CANFD_CLK_SEL_30MHZ: priv->ucan.can.clock.freq = 30 * 1000 * 1000; break; case CANFD_CLK_SEL_40MHZ: priv->ucan.can.clock.freq = 40 * 1000 * 1000; break; case CANFD_CLK_SEL_60MHZ: priv->ucan.can.clock.freq = 60 * 1000 * 1000; break; default: pciefd_can_writereg(priv, CANFD_CLK_SEL_80MHZ, PCIEFD_REG_CAN_CLK_SEL); fallthrough; case CANFD_CLK_SEL_80MHZ: priv->ucan.can.clock.freq = 80 * 1000 * 1000; break; } ndev->irq = pciefd->pci_dev->irq; SET_NETDEV_DEV(ndev, &pciefd->pci_dev->dev); err = register_candev(ndev); if (err) { dev_err(&pciefd->pci_dev->dev, "couldn't register CAN device: %d\n", err); goto err_free_candev; } spin_lock_init(&priv->tx_lock); /* save the object address in the board structure */ pciefd->can[pciefd->can_count] = priv; dev_info(&pciefd->pci_dev->dev, "%s at reg_base=0x%p irq=%d\n", ndev->name, priv->reg_base, ndev->irq); return 0; err_free_candev: free_candev(ndev); failure: return -ENOMEM; } /* remove a CAN-FD channel by releasing all of its resources */ static void pciefd_can_remove(struct pciefd_can *priv) { /* unregister (close) the can device to go back to RST mode first */ unregister_candev(priv->ucan.ndev); /* finally, free the candev object */ free_candev(priv->ucan.ndev); } /* remove all CAN-FD channels by releasing their own resources */ static void pciefd_can_remove_all(struct pciefd_board *pciefd) { while (pciefd->can_count > 0) pciefd_can_remove(pciefd->can[--pciefd->can_count]); } /* probe for the entire device */ static int peak_pciefd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct pciefd_board *pciefd; int err, can_count; u16 sub_sys_id; u8 hw_ver_major; u8 hw_ver_minor; u8 hw_ver_sub; u32 v2; err = pci_enable_device(pdev); if (err) return err; err = pci_request_regions(pdev, PCIEFD_DRV_NAME); if (err) goto err_disable_pci; /* the number of channels depends on sub-system id */ err = pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sub_sys_id); if (err) goto err_release_regions; dev_dbg(&pdev->dev, "probing device %04x:%04x:%04x\n", pdev->vendor, pdev->device, sub_sys_id); if (sub_sys_id >= 0x0012) can_count = 4; else if (sub_sys_id >= 0x0010) can_count = 3; else if (sub_sys_id >= 0x0004) can_count = 2; else can_count = 1; /* allocate board structure object */ pciefd = devm_kzalloc(&pdev->dev, struct_size(pciefd, can, can_count), GFP_KERNEL); if (!pciefd) { err = -ENOMEM; goto err_release_regions; } /* initialize the board structure */ pciefd->pci_dev = pdev; spin_lock_init(&pciefd->cmd_lock); /* save the PCI BAR0 virtual address for further system regs access */ pciefd->reg_base = pci_iomap(pdev, 0, PCIEFD_BAR0_SIZE); if (!pciefd->reg_base) { dev_err(&pdev->dev, "failed to map PCI resource #0\n"); err = -ENOMEM; goto err_release_regions; } /* read the firmware version number */ v2 = pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER2); hw_ver_major = (v2 & 0x0000f000) >> 12; hw_ver_minor = (v2 & 0x00000f00) >> 8; hw_ver_sub = (v2 & 0x000000f0) >> 4; dev_info(&pdev->dev, "%ux CAN-FD PCAN-PCIe FPGA v%u.%u.%u:\n", can_count, hw_ver_major, hw_ver_minor, hw_ver_sub); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT /* FW < v3.3.0 DMA logic doesn't handle correctly the mix of 32-bit and * 64-bit logical addresses: this workaround forces usage of 32-bit * DMA addresses only when such a fw is detected. */ if (PCIEFD_FW_VERSION(hw_ver_major, hw_ver_minor, hw_ver_sub) < PCIEFD_FW_VERSION(3, 3, 0)) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) dev_warn(&pdev->dev, "warning: can't set DMA mask %llxh (err %d)\n", DMA_BIT_MASK(32), err); } #endif /* stop system clock */ pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN, PCIEFD_REG_SYS_CTL_CLR); pci_set_master(pdev); /* create now the corresponding channels objects */ while (pciefd->can_count < can_count) { err = pciefd_can_probe(pciefd); if (err) goto err_free_canfd; pciefd->can_count++; } /* set system timestamps counter in RST mode */ pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST, PCIEFD_REG_SYS_CTL_SET); /* wait a bit (read cycle) */ (void)pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER1); /* free all clocks */ pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST, PCIEFD_REG_SYS_CTL_CLR); /* start system clock */ pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN, PCIEFD_REG_SYS_CTL_SET); /* remember the board structure address in the device user data */ pci_set_drvdata(pdev, pciefd); return 0; err_free_canfd: pciefd_can_remove_all(pciefd); pci_iounmap(pdev, pciefd->reg_base); err_release_regions: pci_release_regions(pdev); err_disable_pci: pci_disable_device(pdev); /* pci_xxx_config_word() return positive PCIBIOS_xxx error codes while * the probe() function must return a negative errno in case of failure * (err is unchanged if negative) */ return pcibios_err_to_errno(err); } /* free the board structure object, as well as its resources: */ static void peak_pciefd_remove(struct pci_dev *pdev) { struct pciefd_board *pciefd = pci_get_drvdata(pdev); /* release CAN-FD channels resources */ pciefd_can_remove_all(pciefd); pci_iounmap(pdev, pciefd->reg_base); pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_driver peak_pciefd_driver = { .name = PCIEFD_DRV_NAME, .id_table = peak_pciefd_tbl, .probe = peak_pciefd_probe, .remove = peak_pciefd_remove, }; module_pci_driver(peak_pciefd_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1